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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Time-series ensemble model is proposed 
for real-time anaerobic digestion 
operation. 

• Simple/practical features i.e. waste 
composition, water and feeding volume 
are used. 

• Prediction accuracy is improved from 
75% to 91% in comparison to bench-
mark models. 

• Proposed weekly operation could reduce 
70% of required feeding day operation.  
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A B S T R A C T   

This study presents a novel approach for real-time operation of anaerobic digestion using an ensemble decision-making 
framework composed of weak learner data mining models. The framework utilises simple but practical features such as 
waste composition, added water and feeding volume to predict biogas yield and to generate an optimised weekly 
operation pattern to maximise biogas production and minimise operational costs. The effectiveness of this framework is 
validated through a real-world case study conducted in the UK. Comparative analysis with benchmark models dem-
onstrates a significant improvement in prediction accuracy, increasing from the range of 50–80% with benchmark 
models to 91% with the proposed framework. The results also show the efficacy of the weekly operation pattern, which 
leads to a substantial 78% increase in biogas generation during the testing period. Moreover, the pattern contributes to a 
reduction of 71% in total days required for feeding and 30% in total days required for pre-feeding.  
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1. Introduction 

The exponential growth in organic waste production, primarily 
driven by population expansion and economic development, has 
become a significant global concern. This issue is accompanied by 
several detrimental effects, including methane emissions, water 
contamination, pest infestation, land degradation, escalating costs for 
waste management authorities, heightened health risks and immigra-
tion challenges (Awasthi et al., 2022). Over time, various waste man-
agement systems such as landfilling, open dumping, composting and 
incineration have been introduced (Masalegooyan et al., 2022). How-
ever, anaerobic digestion (AD) has recently gained substantial attention 
from both the scientific and industrial communities due to its effec-
tiveness in organic waste management, with its production of liquid/ 
solid fertilisers and the generation of renewable energy in the form of 
biogas (Gupta et al., 2023). 

Accurate prediction of AD biogas production holds significant 
importance for several key reasons. Firstly, it enables effective energy 
planning by providing decision-makers with the means to estimate the 
potential energy output. This information is critical for assessing the 
feasibility and profitability of implementing these systems on a larger 
scale (Wang et al., 2020). Furthermore, if operators had a comprehen-
sive understanding of the mechanisms behind optimal biogas produc-
tion, they could adjust key operational variables, thus ensuring efficient 
utilisation of feedstock, enhancing process stability and minimising the 
risk of system failures (Khan et al., 2023). 

Several mechanistic models have been created to facilitate the design 
and optimisation of AD processes in which AQUASIM, and Anaerobic 
Digestion Model no.1 stand out as the most rigorous and accurate 
models (Emebu et al., 2022). These models incorporate the conservation 
of mass and energy to forecast the cumulative biogas yield and its 
composition over time. However, despite their accuracy, the practical 
implementation of these models for real-time biogas prediction, 
capturing the intricacies and dynamic nature of AD systems and AD 
operation is highly challenging due to their complexity, computationally 
intensive nature, extensive parameters for calibration and the knowl-
edge necessary to utilise them (Cruz et al., 2021). Alternatively, artificial 
intelligence (AI) models can effectively learn from the data, identify 
patterns and make accurate predictions or optimal decisions (Kazemi 
et al., 2021). The application of these models has garnered substantial 
interest over the past two decades, particularly in the context of opti-
misation and hybrid applications (Gupta et al., 2023), but many of these 
AI models have primarily been tested and validated at laboratory scale, 
limiting their applicability to industrial-scale and hindering their 
widespread deployment (Jia et al., 2022). 

The application of AD technologies has undergone extensive testing 
for sludge treatment in water and wastewater treatment plants, as well 
as for biogas production from agricultural and livestock waste (Cruz 
et al., 2022) and practical implementation of AI models in real AD 
systems for organic municipal waste is a relatively recent development 
(Offie et al., 2023). Several notable research studies have employed four 
primary approaches: (1) machine learning models, such as feed-forward 
neural networks coupled with back-propagation or elastic net (Almo-
mani, 2020; Clercq et al., 2020); (2) recurrent neural network models, 
specifically the nonlinear autoregressive network with exogenous inputs 
model (Offie et al., 2022); (3) weak learner data mining (WLDM) tech-
niques, particularly k-nearest neighbourhood (KNN), Gaussian process 
regression (GPR), support vector machine (SVM), decision tree (DT), 
multiple linear regression, polynomial regression, kernel ridge regres-
sion and extreme learning machine (Wang et al., 2023; Yildirim and 
Ozkaya, 2023); and (4) ensemble models such as extreme gradient 
boosting (XGBoost) and random forest (RF) (Xu et al., 2021; Sonwai 
et al., 2023). 

These models are typically used in numerical applications where 
input decision variables and predicted biogas as outputs are represented 
in actual volumes or concentrations. However, there is a growing 

demand to expand the application of AI models in the field of classifi-
cation, particularly as an initial step before using these advanced 
models. Compared to other models, these models may offer a more 
straightforward approach that can allow operators to easily understand 
and interpret the input variables and the corresponding output classes. 
This simplicity of operation makes them more accessible and user- 
friendly for operators who may not have extensive technical expertise 
in advanced modelling techniques (Wang et al., 2022). Furthermore, 
dealing with different volumes and numbers in a practical setting can be 
highly challenging and cumbersome, whereas these models may 
simplify the decision-making process by providing clear indications of 
the system’s operational state or the class to which inputs or outputs 
belongs (Yan et al., 2021). 

Additionally, the relevant research models rely heavily on opera-
tional decision variables, including chemical oxygen demand, carbon- 
to-nitrogen ratio, ammonium concentration, temperature, organic 
loading rate, substrate-to-inoculum ratio, retention time, total or vola-
tile solids, appropriate pretreatment, pH and heating condition (Fajobi 
et al., 2022; Sappl et al., 2023). These variables require either online 
monitoring of multiple parameters in field-scale applications or exten-
sive laboratory analysis of numerous samples. However, due to technical 
and economic limitations often faced by AD projects, conducting such 
comprehensive monitoring can be challenging (Jia et al., 2022). More-
over, in practical scenarios where AD systems receive contracted daily 
organic waste deliveries, significantly modifying the amount of feed-
stock received is not a viable option. This adds another layer of 
complexity to the development, training, testing and operation of real- 
time AI models that can effectively utilise in-field data which, by its 
nature, suffers from technical limitations and economic considerations 
(Offie et al., 2023). 

To the best of authors’ knowledge, there has been no such a study in 
the past that has included the above factors for developing AI-based 
decision making for optimal operation of AD in real-time. Hence this 
study focuses on the development of a novel framework for the real-time 
operation of AD systems in which proposed time-series ensemble data 
mining framework are introduced and an optimal weekly operation 
pattern is provided by using only accessible operational data. The pro-
posed framework exhibits several key innovations, making it highly 
suitable for real-time industrial operations. One crucial innovation lies 
in its simplicity and practicality, enabling straightforward application in 
various industrial contexts. Additionally, the incorporation of time- 
series concepts into the ensemble model represents another significant 
advancement, enhancing the model’s predictive capabilities. Moreover, 
this framework introduces a user-friendly weekly operation pattern for 
easy implementation by operators that can be applicable for other 
worldwide projects. This feature streamlines the operational process, 
fostering efficient and effective utilisation of AD systems. Further details 
of the methodology are described in the next section, followed by the 
results and discussion for its application on a real-world case study of a 
micro-AD in London. 

2. Methodology 

The proposed framework for the development of an ensemble model 
for real-time AD operation to produce maximum biogas involves three 
key stages, as illustrated in Fig. 1. These stages comprise Step #1: data 
acquisition; Step #2: model development; and Step #3 performance 
assessment. The proposed methodology is explained generally such that 
it allows for its broad adoption in similar projects. To enhance 
comprehension, the methodology is demonstrated through a detailed 
case study explained in section 2.1, providing a clear and practical 
illustration of its effectiveness. Relevant operational information is 
collected from real-time sensors or reported by operators. The data 
consists of simple parameters and includes details such as the compo-
sition of local waste, including soaked oats, soaked caddy liners, tea or 
coffee residues, which are fed to the pre-digester after separation and 
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screening. Furthermore, it includes the volume of water added to the 
pre-digester, feeding rates to the main digester and the amount of biogas 
produced. The data is reported at varying intervals, ranging from a few 
minutes to daily. Missing data and data cleaning procedures are handled 
according to recommendations from Offie et al. (2023). Finally, the 
numerical and time-series data are transformed into features and 
selected based on further explanation provided in Section 2.1. 

While many operational inputs, including the carbon-to-nitrogen 
ratio, ammonium concentration, temperature, organic loading rate, 
retention time, total solids, appropriate pretreatment, pH, and heating 
conditions can also be utilised in the development of data-driven 
models, this study primarily focuses on inputs related to feeding, 
added water and waste composition. This limitation is due this reason 
that many of these parameters are not consistently monitored and re-
ported in real-time management, particularly in micro-AD projects. Note 
that the main feature of a given waste or biomass feedstock to be used to 
produce biogas is based on biochemical composition which may be 
similar for some types of feedstocks. However, this is not always the case 
as gradients constituting a type of feedstock may vary from one place to 
another. Hence, developing worldwide applicability in micro-AD pro-
jects can be challenging as access to biochemical composition of the 
feedstocks may be hard. 

The selected features are employed to develop weak learner data 
mining (WLDM) models. These WLDM models, along with their key 
performance indicators (KPIs), are then stored in a data warehouse, 
which serves as the foundation for constructing the proposed ensemble 
model. Additional insights and comprehensive information on this 
development process are expounded in Section 2.2. Following the con-
struction of the ensemble model, rigorous testing is conducted on real- 
time unseen data to evaluate its performance under real-world condi-
tions. The outcomes of this testing and a detailed analysis of the results 

are discussed in Section 2.3. This analysis provides a comprehensive 
understanding of the model’s effectiveness and its potential for real-time 
optimisation in practical scenarios. 

2.1. Step 1: Data acquisition 

Several key input parameters were considered for the analysis: (1) 
daily feed into the main digester tank, (2–3) added water and feed 
composition with various materials into the pre-digester tank, and (4) 
yielded biogas over the last days. Each constituent of the feed is cat-
egorised as an individual feature. To achieve this, a preliminary 
assessment is conducted, encompassing cross-correlation analyses be-
tween each waste category and the biogas generation, an evaluation of 
data accessibility, and an assessment of data reliability (refer to the work 
by Offie et al. (2023) for further details). While the presented framework 
holds applicability beyond the specific context and can be extrapolated 
to similar projects, its explication is based on a real case study to facil-
itate enhanced comprehension. 

The data in this study was collected from a micro-AD plant situated 
in Camley Street Natural Park, Central London, UK. This micro-AD plant 
was equipped with various components, including a manual shredder 
for biomass loading, a pre-digester tank (0.65 m3) and a feed pump. 
Additionally, it featured a main anaerobic digester tank (2 m3) with an 
automated mechanical mixer and a heater powered by an internal water 
heat exchanger. Among its other key components were a hydrogen 
sulphide scrubber filled with activated carbon pellets, a floating 
gasometer for biogas storage, a digestate sedimentation tank, and a 
digestate liquor storage tank. 

The preliminary assessment, see supplementary materials, reveals 
that the feed composition consists of various components, including 
apples, coffee waste, green waste, catering waste, waste oats, soaked 

Fig. 1. The proposed framework for developing an ensemble model for real-time operation of anaerobic operation to maximise biogas production.  
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peanuts, tea leaves, tea bags, oil, soaked muesli and soaked caddy liners. 
However, it was observed that only catering waste, oats, and soaked 
liners constitute the major portion of the received daily waste. 
Furthermore, the analysis indicates a stable situation in terms of total 
solids, volatile solids and digester temperature, rendering them poten-
tially removable from the decision variables. 

Hence, the feed composition and AD output are grouped into six 
main features (data sets) as feed (FF), catering (CF), oat (OF), liner (LF), 
water (WF) and biogas (BF). Each data set is transformed into four 
distinct classifications: negligible (N), low (L), medium (M), and high 
(H) classes as listed in Table 1. The range of each class is determined 
based on operational practices and desired industrial goals using the k- 
mean classification model. For each group of data, seven features are 
introduced, each representing one specific day of operation, which 
characterise the 7-day operation of the AD system. For instance, con-
cerning the feeding data (FF), features FFt to FFt-6 are constructed, where 
FFt represents the feeding volume of the current day, and FFt-6 repre-
sents the feeding volume of six days ago. 

The extracted features were subjected to refinement using two 
established techniques including partial least squares (PLS) and 
sequential sensitivity (SA) analyses. More comprehensive explanations 
of these techniques is provided in the results section. These techniques 
are widely recognised as essential preliminary steps for identifying key 
variables that enhance classification performance while reducing 
computation times (Khan et al., 2023). PLS is used to estimate linear 
relationships between dependent and independent variables, revealing 
the direct effect of independent variables on the dependent variables 
(Orzi et al., 2018). The selected features, after undergoing these 
refinement techniques, were stored in the data warehouse for the sub-
sequent development and testing using the WLDM models. 

2.2. Step 2: Model development 

The development of WLDM models comprises six different tech-
niques: discriminant analysis (DA), decision tree (DT), k-nearest neigh-
bourhood (KNN), naïve Bayes (NB), Gaussian process regression (GPR) 
and support vector machine (SVM). These specific models were selected 
based on their widespread application and recognised potential in pre-
vious anaerobic digestion processes, where they have been applied for 
various purposes (Cruz et al., 2022; Gupta et al., 2023; Khan et al., 
2023). Each model was developed using MATLAB 2022b and optimised 
through automatic hyperparameter optimisation, including linear, 
Gaussian, kernel, quadratic, or course forms, that aims to minimise the 
five-fold cross-validation loss over 30 iterations. The five-fold cross- 
validation method was adopted to mitigate the error bias (Offie et al., 
2023). For further details on the optimisation process, see the supple-
mentary materials. 

The dataset was divided into three distinct portions for training and 
testing the models based on recommendation of Piadeh et al. (2023). 
More specifically, 60 % of the dataset was allocated for training the 
individual WLDM models. Another 20 % of the dataset was reserved for 
testing the performance of these models. The remaining 20 % of the 
dataset was set aside as unseen data for evaluating the proposed 
ensemble model. To ensure equal representation of the databases, the 
group features were randomly distributed across the training, validation 
and testing databases. This approach aimed to maintain a balanced and 
representative distribution of data. Subsequently, the built WLDM 
models were stored in a model library and their KPIs were stored in the 
data warehouse cube shown in Fig. 1. 

The KPIs of the models developed to predict biogas production were 
assessed using the confusion matrix concept as a statistical classification 
technique (Grandini et al., 2020; Tharwat, 2021). This technique in-
volves mapping the three predicted biogas classes (i.e., low, medium, 
high) onto the confusion matrix. Using this mapping of the confusion 
matrix, this study employed two main KPIs of true positive rate (TPR) i. 
e., the ratio of correct prediction of the ith class of yielded biogas and 
true negative rate (TNR) i.e., the ratio of correct rejection for a situation 
in which the biogas yield is not within the ith class. These two KPIs are 
determined for each of the classes of yielded biogas as class 1 (low), class 
2 (medium) and class 3 (high). As such, TPR and TNR are determined 
based on Eqs. (1) and (2). Model library and data cube are integrated as a 
data warehouse used for developing the ensemble model. 

TPRi (%) =
TPi

ni
× 100 (1)  

TNRi (%) =
TNi

ni
× 100 (2)  

where TPRi is the TPR of the ith class; TNRi is the TNR of the ith class; TPi 
is the number of the correct ith class prediction; TNi is the number of 
correct rejections of non– ith class prediction and ni is the total number of 
measured ith classes. 

The proposed ensemble model was developed by combining the 
developed WLDMs to create a more robust and accurate prediction 
model. The stacking method was selected due to the homogeneous na-
ture and high variance and bias of the data (Kazemi et al., 2020). This 
method involved the training of all WLDM models on the same set of 
training data. The WLDM models were blended afterwards using the 
proposed framework, hereafter denoted the ‘smart model’, which uses a 
decision support framework inspired by the bucket of models. 

Sets of WLDM models are adjusted first to provide three classes as 
shown in Fig. 1 (See three groups mentioned in the proposed ensemble 
model in Fig. 1). Each group consists of higher performance in each of 
the KPIs that are previously stored in the data cube. For example, group 
1 models are the models in which TPR1 is recorded in the range of 
acceptable (e.g., DA, DT, and NB model in Fig. 1). To screen and exclude 
low-performance models, here, the performance rate is selected as 70 % 

Table 1 
Group features of feed composition and AD output extracted for developing 
weak learning data mining models with the classification rates identified for the 
micro-AD of this study.  

Group 
feature* 

Data unit Description Defined 
Classification 

Feed (FF) kg/day The fresh weight of organic 
material sent to the digester for 
decomposition, measured in kg. 

N: Zero 
L: <20 
M: 20–40 
H: >40  

Catering 
(FC) 

% Daily pre- 
feeding** 

The composition of food waste 
produced in commercial kitchens, 
canteens, and restaurants. 

N: Zero 
L: <16 % 
M: 16–50 % 
H: >50 %  

Oat (FO) % Daily pre- 
feeding 

The composition of organic wastes 
containing oat grains 

N: Zero 
L: <9 % 
M: 9–45 % 
H: >45 %  

Liner (FL) % Daily pre- 
feeding 

The composition of organic wastes 
containing liners soaked in liquid. 

N: Zero 
L: <7 % 
M: 7–63 % 
H: >63 %  

Water 
(FW) 

% Daily pre- 
feeding 

The amount of water added to the 
pre-digester during its operations. 

N: Zero 
L: <5 % 
M: 16–40 % 
H: >40 %  

Biogas 
(FB) 

m3/day The end product of the entire 
anaerobic digestion process 
measured in volumes. 

L: <1 
M: 1–4 
H: >4  
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based on the recommendations of Cruz et al. (2022), and Khan et al. 
(2023). After determining the forecasted biogas class by all selected 
WLDM in each group, the answers are blended by hard voting tech-
niques in which the most predicted class becomes the ensemble’s pre-
diction. As a result, a total of three answers i.e., F1, F2 and F3 in Fig. 1, 
are generated by this ensemble modelling. 

The predicted answers are then fed into a decision support frame-
work as shown in Fig. 1 to determine the final prediction. This frame-
work operates under specific conditions to identify the most appropriate 
predicted class. In scenarios where a single predicted class aligns with 
the selected group, that particular class is chosen as the final prediction. 
To illustrate this process, consider an example where group 3 predicts a 
high value for F3 (F3 = H), and F2 is predicted to be anything other than 
medium (F2 = L or H, but not M), and similarly, F1 is predicted to be 
anything other than low (F1 = M or H, but not L). Under these condi-
tions, the correct predicted class would be H, following the fifth left 
branch of the flowchart in Fig. 1. On the other hand, if all models predict 
their respective classes, the model with the highest average of TPR takes 
precedence. This is demonstrated in the first right branch of the flow-
chart in Fig. 1. This approach ensures that the model with the highest 
correct accuracy is selected when all models agree on their predictions. 

In cases where none of the models can accurately predict their 
respective classes, the final decision is made by assessing the overall 
performance of these models using the highest average of TPR and TNR. 
This criterion is represented by the first left branch of the flowchart in 
Fig. 1. When faced with situations where two models strongly advocate 
for their respective classes and are unable to reach a consensus, the 
model with the highest Score value (Sij), as determined based on Eq. (3), 
is selected as the final decision. 

Sij = TPR iforgroupi + TNRi for group j (3)  

where Sij is the determined score, i and j are the two selected groups. 
For this purpose, two scores are determined. For example, F3 and F2 

are predicted as H and M, respectively, and F1 is predicted as not L. In 
this scenario, the first score is calculated as the summation of the TPR of 
group 3 and the TNR of group 1 (S31 in the second right branch of the 
flowchart in Fig. 1). The other score is computed as the summation of the 
TPR of group 2 and the TNR of group 1 (S21). To make the final decision, 
the two scores are compared. If S31 is greater than S21, F3 is selected as 
the final prediction. Otherwise, F2 is chosen. This approach effectively 
evaluates the capability of true prediction of the two-group model 
(consisting of groups 1 and 2 in this example) based on the TNR rate of 
the other model group (group 3). By employing this decision support 
framework, the model systematically determines the final prediction in 
cases involving multiple predicted classes from different groups. This 
method ensures a structured and reliable approach to arrive at the most 
suitable prediction based on the aligned groups’ predictions. 

2.3. Real-time weekly operation 

The model was optimised by using shuffled frog leaping algorithm 
(SFLA) to determine the optimum condition for the weekly operation of 
the AD plant for maximum biogas generation. The model was optimised 
for a 7-day ahead cycle to provide the operator with the optimal weekly 
operational pattern of the AD plant. To achieve this objective, a set of 
constraint rules can also be incorporated into the process of selecting the 
optimal scenario. These constraints serve as guiding principles to 
determine the best course of action, considering various factors. 

The following key constraint rules have been established and can 
serve as generalised recommendations for other similar projects, seeking 
to apply these principles to optimise patterns in their research or prac-
tical projects: (1) minimising input loads to ensure that the highest 
possible biogas yield is obtained for each unit of added material, opti-
mising resource utilisation. (2) minimising collection days to mitigate 
the operational costs associated with material handling, transportation 

and processing, (3) minimising added water load aligning with the goal 
of conserving water resources and mitigating associated energy costs, 
resulting in more sustainable and efficient operation, (4) minimising 
feeding days for cost savings arise from frequency of operational activ-
ities and associated resource consumption. 

By integrating these constraint rules, the optimisation framework 
aims to obtain a balance between maximising biogas production, min-
imising resource inputs and optimising operational costs. This compre-
hensive approach ensures that the chosen scenarios align with both 
environmental sustainability and economic efficiency goals. By under-
standing and following this pattern, operators can effectively optimise 
their operations to maximise biogas yield. The proposed pattern is 
evaluated against the conventional operation of micro-AD for a one- 
month period. 

2.4. Step 3: Performance assessment 

To assess the performance of ensemble models, in addition to TPR 
and TNR, accuracy or correct prediction of all classes (ACC), false pos-
itive ratio (FPR) i.e., the portion of abnormal prediction, overestimation 
rate and underestimation rate were calculated as shown in Eqs. (3) to 
(6). Moreover, the SA analysis was carried out to determine the impact 
of each feature on biogas generation. To do this, one feature at a time 
was removed, and the accuracy difference of the developed WLDM 
models was measured. Furthermore, this method served the purpose of 
providing insights into the impact of each feature on the proposed 
ensemble model. Uncertainty analysis was also carried out to show 
changes in the relative accuracy with corresponding reductions in the 
dataset (Piadeh et al., 2023). 

ACC (%) =

∑
TPi + TNi

∑
ni

× 100 (3)  

FPRi =
FPi

TNi + FPi
(4)  

Overestimation (%) =

∑
FPi

∑
ni

× 100 (5)  

Underestimation (%) =

∑
FNi

∑
ni

× 100 (6)  

where FPRi is the FPR of the ith class, FPi is the portion of the situation in 
which ith class is predicted as higher yielded biogas, FNi is the portion of 
the situation in which ith class is predicted as lower yielded biogas. 

3. Results and discussion 

Several benchmark models inspired by Gupta et al. (2023) were 
developed to facilitate a comparative analysis and served as a valuable 
reference point for evaluating the effectiveness of the models. These 
models were trained, validated and tested with the same dataset that 
was used for the developing the proposed framework. The benchmark 
models used in this study include: (1) a “hard voting” stacked model that 
specifies the final class based on the majority class label predicted by the 
individual WLDM models, and (2) a “soft voting” stacked model that 
specifies the probabilities or confidence scores assigned by each WLDM 
model for each class and blending them to predict the final class. It 
should be mentioned that low-performance models are excluded in both 
benchmark models based on the aforementioned criteria in the section 
2. Furthermore, optimised stacking models were created by combining 
the best performance developed WLDM models (screening and 
excluding the low-performance model), including (1) ensemble of the 
best performance WLDM model in TPR1 i.e., low based, (2) ensemble of 
the best performance WLDM model in TPR2 i.e., medium based, and (3) 
ensemble of the best performance WLDM model in TPR3 i.e., high based. 

Moreover, to ensure the generalisation and comprehensiveness of the 
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proposed model, other blending methods such as bootstrap aggregating 
(bagging) and boosting were also selected, including optimised versions 
of (1) RF, (2) subspace of developed NB, (3) XGBoost, (4) Gentle boost of 
developed DA model and (5) random under sampling and boosting (RUS 
Boost) of the GPR model. The SFLA optimisation technique, along with 
the classification and optimisation toolboxes of MATLAB 2022a, were 
employed to identify the best type of documented various models of 
stacking, bagging and boosting. During the optimisation, the number of 
learners was varied from 1 to 500, the learning rate ranged from 0.001 to 
1, the maximum number of splits varied from 1 to 18,618 and the 
classification error improvement threshold was set at 0.01 % (Offie 
et al., 2023). 

3.1. Feature analysis 

Fig. 2 presents the results of feature analysis for all the features 
outlined in Table 1. Out of the 42 total time-series features (i.e., 6 ma-
terials including FF, CF, OF, LF, WF and BF over the last 7 days), 16 
features account for over 90 % of the cumulative variances in the PLS 
analysis (91.3 % in Fig. 2a). Notably, the feeding (FF) of the last four 
days (between day t and day/t−3(−|-)) contributed significantly to this 
group of features, indicating its high impact on the modelling process. 
This observation is further corroborated by the SA analysis shown in 
Fig. 2b. The biogas levels (BF) at day t and t-1 also exhibit a substantial 

impact on the modelling outcomes i.e. biogas production at date t + 1, 
suggesting that some part of biogas production may be influenced by the 
feeding activities of the current day and the day before for the prediction 
of the next day’s biogas yield. Moreover, the analysis demonstrates that 
the waste composition i.e. CF, OF and LF over the last two days signif-
icantly affected both the PLS analysis and the accuracy of WLDM 
modelling. 

Also note that the overall importance of the features identified in the 
PLS analysis appears to align well with the results of the SA analysis, 
specifically when considering the criterion of cumulative PLS over 90 %. 
This implies that the features selected based on their cumulative PLS 
values above 90 % indeed have a significant impact on the accuracy of 
the model. However, it is essential to recognise that changing the cri-
terion for cumulative PLS may lead to different results. For instance, if 
the criterion is set to cumulative PLS over 95 %, additional features with 
negligible impacts on accuracy may be included in the analysis, making 
the model less efficient in practice (as can be seen from a comparison of 
Fig. 2a with Fig. 2b). On the other hand, if the cumulative PLS criterion 
is lowered to 85 %, relevant features with a noticeable impact on ac-
curacy, such as the three features related to added water, might be 
excluded, leading to potential loss of predictive power. 

Therefore, relying solely on the PLS analysis, which is commonly 
utilised in several research works, might not always yield the most ac-
curate or appropriate results. It becomes evident that incorporating the 

Fig. 2. Feature analysis of the feed composition and AD output: (a) PLS analysis of extracted features, (b) average accuracy decrease of all WLDM models obtained by 
the SA analysis. 

F. Piadeh et al.                                                                                                                                                                                                                                  



Bioresource Technology 392 (2024) 130017

7

SA analysis mentioned earlier, is crucial in the feature selection process. 
Such an approach allows for a more robust understanding of the fea-
tures’ actual influence on the model’s accuracy and helps in making 
informed decisions regarding their inclusion or exclusion of any feature 
for further analysis. By adopting this approach, the final model can be 
more reliable and better suited for practical applications. 

Consequently, among all extracted time-series features, the appro-
priate class of biogas yield (low, medium and high) for the next day is 
predicted based on the following 16 features: (1–4) feeds to the main 
digester tank over the last four days (FF from day/t−3(−|-) to day t); 
(5–8) water added to the pre-digester tank over the last four days (WF 
from day/t−3(−|-) to day t); (9–10) biogas generation over the last two 
days (BF from day/t and day t), and (11–16) oat, liner and catering 
added to the pre-digester tank over the last two days (OF, CF and LF from 
day/t to day t). This structure of input and output is used for the 
development of individual WLDM models and the proposed ensemble 
models that will be presented and discussed in the following section. 

3.2. Performance of individual WLDM models 

The performance of six individual WLDM models is depicted in 
Fig. 3, based on three KPIs (TPR, TNR and ACC). For the TPR of the low 
class (Fig. 3a), the DA, DT and NB models demonstrate an acceptable 
rate, indicating their ability to correctly identify instances in this class. 
In the case of the medium class (Fig. 3b), the GPR model outperforms the 
NB model. Furthermore, for the high class (Fig. 3c), most models, except 
GPR, exhibit excellent performance in recognising situations with high 
biogas yields. 

On the other hand, when comparing Fig. 3d – f, it becomes evident 
that although the models excel in detecting the high-class situation, they 
also display many instances of underestimation and overestimation in 
other situations, as evident from the low TNR in the low class and high 
class, which are only relatively compensated for in the medium class 
(Fig. 2e). These limitations result in low overall accuracy for all models, 
even in the best- performance one, DA, as shown in Fig. 3g, where it 
achieves an accuracy of only around 80 %. Overall, these findings 

Fig. 3. Performance assessment of the individual WLDM models based on: (a) TPR of low class, (b) TPR of medium class, (c) TPR of high class, (d) TNR of low class, 
(e) TNR of medium class, (f) TNR of high class, (g) ACC rate. 
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suggest that while the selected models demonstrate proficiency in 
certain areas, they still suffer from some shortcomings that hinder their 
overall accuracy. Consequently, the proposed ensemble model com-
bined the strengths of the superior models in each class and improved 
performance in a broader range of scenarios. 

3.3. Performance of the ensemble models 

Fig. 4 and Table 2 show the performance of the ensemble models, 
including the proposed ensemble and other benchmark models (further 
details given in Fig. A3). Compared to the performance of individual 

Fig. 4. Performance assessment of FPR for the proposed ensemble model compared with the three best performing benchmark ensemble models: (a) accuracy 
assessment, (b-d) ROC curves and AUC of the four best performance models, (b) high class, (c) medium class, (d) low class. 
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WLDM models, the accuracy of the ensemble models improved from 80 
% to 91 % in comparison to the best performance WLDM model (DA 
model in Fig. 3g). Fig. 4a also shows that the proposed ensemble model 
outperforms other benchmark models with a remarkable 5 % for each 
underestimation and over estimation. As can be seen, both hard and soft 
voting approaches of all stacked models showed an accuracy around 63 
% and 51 % respectively which indicates the relatively low accuracy of 
all individual WLDM models. On the other hand, group stacking of the 
models based on their capability in a specific class – for example, the low 
or high class – shows a better result, especially for a high-based model, 
which could improve accuracy to near 70 %. However, large over-
estimation of this model still is challenging especially for optimal 
operation in which higher rate of yielded biogas is a goal. 

The results of comparing ensemble models reveal the high accuracy 
of bagging and boosting models, particularly Random Forest and 
XGBoost, over benchmark stacking models. This finding aligns with 
previous research conducted on numerical problems (Xu et al., 2021; 
Sonwai et al., 2023). However, it is important to note that despite this 
progress, the obtained accuracy, which remains below 80 %, still falls 
short when compared to the performance of the proposed stacked 
model. To further validate these outcomes, the study examines the 
receiver operating characteristic (ROC) curves and their corresponding 
area under the ROC curve (AUC) for the top four best performance 
models. The proposed ensemble model notably excels by consistently 
maintaining an AUC above 0.94 across all three classes, particularly 
demonstrating exceptional performance in the high class where the AUC 
is reported as 0.98 (Fig. 4b). In contrast, the alternate benchmark models 
exhibit AUC values ranging from 0.74 to 0.8 in the high class, while their 
performance notably deteriorates in the medium class with AUC figures 
of 0.62 to 0.72. Moreover, it is noteworthy that the optimal thresholds 
for the proposed model remained relatively consistent along the x-axis, 
within the range of 0.8–1 in TPR rates and 0.2–1 for FPR rates, while for 
the other models, these thresholds shifted towards higher values. These 
observations provide strong evidence of the better performance of the 
proposed model than the other benchmark models. 

3.4. Further analysis 

Fig. 5 illustrates the results of the uncertainty and sensitivity analysis 
conducted on the developed model for biogas prediction. As depicted in 
Fig. 5a, the models exhibit a notable ability to be trained using a reduced 
dataset size of up to 80 % of the total available training data while 
maintaining a remarkable 95 % accuracy. In simpler terms, the models 
showcase robust performance within this specified range of training 

dataset size, displaying resilience against the impact of dataset reduc-
tion. However, it is important to note that as the dataset size is further 
reduced beyond this range, the models exhibit an adaptive behaviour 
resulting in a gradual nonlinear decline in accuracy. Notably, as the 
dataset size dwindles to less than 30 %, the models encounter significant 
challenges, ultimately leading to a complete failure in performance, 
with accuracy levels plummeting to nearly 0 %. This particular revela-
tion bears substantial significance. Despite the models being developed 
within a relatively uncomplicated framework utilising input data 
spanning close to a year, the demonstrated adaptability and efficiency 
within this context can have far-reaching implications. Such efficiencies 
have the potential to yield substantial energy cost savings and mitigate 
the need for recurrent and time-consuming retraining, particularly in 
the context of broader industrial applications. 

The sensitivity analysis focusing on the influence of removing indi-
vidual groups of features is presented in Fig. 5b. The observed decline in 
overall accuracy underscores the pivotal role of specific group features, 
particularly the feeding-related attributes, in shaping the model’s per-
formance. Notably, the removal of these feeding-related features results 
in a substantial 50 % drop in accuracy, contributing significantly to both 
overestimation and underestimation tendencies. Interestingly, the na-
ture of impact varies across different group features. Specifically, the 
removal of catering and oat-related group features primarily leads to an 
increase in underestimation, while the attributes related to biogas, water 
and liner exert a more pronounced effect on overestimation tendencies. 

This outcome underscores the unique role of each material exerting a 
distinct influence on the model’s predictive performance. Moreover, 
insights derived from previous biogas production provide valuable cues 
to the model regarding the residual potential for biogas release. This, in 
turn, has the potential to mitigate overestimation in future predictions. 
Remarkably, the incorporation of this group of features as input has the 
capacity to alleviate a significant portion of overestimation instances, 
effectively addressing approximately 20 % of such cases. 

3.5. Optimal operational pattern for maximum biogas generation 

Fig. 6a presents the optimal weekly condition and best input pattern 
for obtaining maximum volume of biogas from the AD plan for the case 
study. This pattern undergoes rigorous testing with previously unseen 
data spanning a period of 76 days. A comparative analysis is then con-
ducted against the actual operational performance recorded most pro-
ductive phase of biogas generation during this period. Fig. 6b clearly 
demonstrates the efficacy of the proposed optimal pattern in increasing 
the number of days with high biogas yield. According to the data, the 

Table 2 
Performance of the developed ensemble models.  

Model ACC TPR class TNR class 

Low Medium High Low Medium High 

Proposed 91 90 88 93 91 92 89  

Benchmark staked models  
Low based 68 85 72 53 62 66 78  
Medium based 60 50 84 47 64 48 69  
High based 71 50 68 87 78 72 60  
Hard voting 51 30 76 43 58 38 56  
Soft voting 63 45 56 80 69 66 51  

Benchmark bagging models  
RF 75 83 72 73 73 77 77  
Subspace NB 74 65 65 87 77 78 65  

Benchmark boosted models  
XGBoost 77 78 76 77 76 77 77  
Gentle Boost DA 70 78 48 82 67 80 60  
RUS Boost GPR 72 55 72 83 78 72 64  
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implementation of the proposed optimal pattern can lead to a notable 
78 % increase in the duration of time which substantial biogas pro-
duction is achieved. This significant improvement underlines the 
effectiveness of the proposed approach in optimising biogas generation. 

From Fig. 6a, it is observed that the feed feature is heavily fed into 
the digester only on the 4th and 7th days. Catering feature needs to be 
fed into the pre-feed tank on the 3rd, 4th, 6th and 7th days. The oat 
feature is fed into the pre-feed tank on the 3rd and 6th days. Water is 
added to the digester on the 3rd, 4th, 6th and 7th days to obtain 
maximum biogas. Intriguingly, the absence of the liner input in the 
optimal condition signifies its negligible positive impact on enhancing 
biogas generation. This finding underscores that the inclusion of the 
liner feature has no significant contribution to the overall biogas yield, 
thus making its omission from the optimal setup a justifiable decision. 

In the case of the feed feature, high-class variables are strategically 
incorporated into the digester for a mere two days within the week. This 
observation underscores a potential strategy for optimising biogas 
generation, indicating that rather than continual input of materials, a 
more effective approach could involve extending the intervals between 
feed additions by 2 or 3 days, followed by a substantial surge in the 
system’s load. This noticeable difference becomes apparent in Fig. 6c, 
where a clear departure from the usual practice of frequent waste 
feeding into the pre-digester (black dots) is vividly reduced by imple-
mentation of the proposed strategy (red dots). Results highlight a sub-
stantial and statistically significant reduction of 71 % in the amount of 
time spent on operational activities, during which the mechanised 
pumping mechanism facilitates the controlled transfer of materials into 
the digester. This reduction carries important implications, 

encompassing energy conservation, as well as a notable decrease in the 
demands for careful monitoring, extensive maintenance efforts and la-
bour costs. 

Interestingly, the manner in which catering and oat materials are 
suggested showcases contrasting patterns. The model proposes an initial 
infusion of a substantial quantity of catering materials into the pre- 
digester, followed by a subsequent day with a relatively low catering 
input. Conversely, a light input of oat material on one day is suggested. 
Furthermore, the recommended approach for adding water demon-
strates a distinct trend. It also suggests that the addition of water should 
be prioritised on days when waste materials are input (as evident on 
days 3, 4, 6 and 7 in Fig. 6a) that is compatible with experimental ex-
periences in which pumped water used for dilution of dry feedstock or 
for cleaning the hammer mill before the pre-feed tank. 

Upon comparing the input pattern with the real case observations, 
see the supplementary materials, it becomes evident that the total 
operation days for each input increased by approximately 25 %. How-
ever, when considering the overall picture, as depicted in Fig. 6d, there 
is a 30 % decrease in the total number of pre-feeding days. This indicates 
that despite the individual increase in the number of input materials 
being added, the strategy of compacting them on specific days contrib-
utes to a reduction in the overall operation days and associated costs. 

This pattern serves to illustrate the applicability and validity of the 
developed prediction model when coupled with the proposed optimi-
sation method. While it is understandable that the demonstrated pattern 
may not be applicable directly in other research or industrial AD pro-
jects, the underlying concept can be employed on other projects to 
achieve similar conservation, especially on operational days and with 

Fig. 5. Further analysis on proposed ensemble model: (a) uncertainty analysis on size of dataset, and (b) sensitivity analysis on group features.  
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other resources/materials. 

4. Limitations and future perspective 

This study holds significant potential in accurately predicting biogas 
and optimising real-time operations in AD projects. However, certain 
limitations need to be acknowledged, pointing towards avenues for 
further research and development. A primary limitation lies in the 
challenge of accessing comprehensive big data and operational data-
bases for time spans shorter than a day and datasets spanning over a 
year. This challenge arises due to commercial-in-confidence of large AD 
projects or the relatively nascent nature of using micro-AD projects. 
While parameters such as the volume of added water, daily feeding and 
generated biogas can be automatically tracked with high reliability, the 
composition of waste materials continues to rely on operator reports, 
introducing uncertainties into the data. 

To overcome these limitations and advance the proposed model, a 
series of pre-processing steps such as harnessing data mining techniques 
and bolstering the capabilities of real-time remote sensing can be 
considered. Moreover, it is imperative to subject both the proposed 
model and the distinct weekly pattern introduced in this study to longer- 
term testing across various timeframes and within comparable projects. 
Such extended validation efforts would provide a comprehensive un-
derstanding of the model’s effectiveness and potential scalability. An 
intriguing avenue for exploration involves integrating the real-time 
operational pattern with risk assessment. These could encompass risk 
scenarios such as shifts in waste composition or errors made by opera-
tors while adding input materials. The introduced pattern and optimi-
sation framework have the potential to dynamically adapt the weekly 
pattern to address these operational challenges, suggesting a broader 
application within the realm of digital visualisation projects. 

Finally, this study predominantly relied on WLDM models, with the 

exclusion of more advanced deep learning or recurrent data-driven 
modelling techniques from its scope. Nevertheless, even though the 
application of these alternative models has been tested within the 
context of AD design, planning, and operation (as referenced in Gupta 
et al., 2023), it is imperative that the accuracy of the proposed model be 
compared and validated against the approaches outlined in such studies. 

5. Conclusions 

This study introduces an Ensemble-based framework that offers a 
suggested real-time weekly operation pattern aiming to enhance biogas 
generation in an AD plant. The proposed model exhibits a remarkable 
91 % accuracy in providing accurate estimations, outperforming other 
developed models achieving 50–80 % accuracy. Both PLS and SA ana-
lyses reveal a high sensitivity to the feed feature. The optimised weekly 
AD operation demonstrates promising results, with a substantial 78 % 
increase in the number of days achieving high biogas generation, 
accompanied by a 71 % reduction in total required feeding days and a 
30 % reduction in pre-feeding days. 
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