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We explore the concept of emergent quantum-like theory in complex adaptive systems, and ex-
amine in particular the concrete example of such an emergent (or “mock”) quantum theory in the
Lotka-Volterra system. In general, we investigate the possibility of implementing the mathematical
formalism of quantum mechanics on classical systems, and what would be the conditions for using
such an approach. We start from a standard description of a classical system via Hamilton-Jacobi
(HJ) equation and reduce it to an effective Schrodinger-type equation, with a (mock) Planck con-
stant Y , which is system-dependent. The condition for this is that the so-called quantum potential
VQ, which is state-dependent, is cancelled out by some additional term in the HJ equation. We
consider this additional term to provide for the coupling of the classical system under consideration
to the ‘environment’. We assume that a classical system could cancel out the VQ term (at least
approximately) by fine tuning to the environment. This might provide a mechanism for establishing
a stable, stationary states in (complex) adaptive systems, such as biological systems. In this context
we emphasize the state dependent nature of the mock quantum dynamics and we also introduce the
new concept of the mock quantum, state dependent, statistical field theory. We also discuss some
universal features of the quantum-to-classical as well as the mock-quantum-to-classical transition
found in the turbulent phase of the hydrodynamic formulation of our proposal. In this way we
reframe the concept of decoherence into the concept of ‘quantum turbulence’, i.e. that the transi-
tion between quantum and classical could be defined in analogy to the transition from laminar to
turbulent flow in hydrodynamics.

I. INTRODUCTION

The idea that new physics [1] such as quantum theory has a fundamental role to play in living systems is a fascinating
one, and has recently captured the imagination of many physicists working in the new field of “quantum biology”; for
a review and also for a critical view of this endeavor consult [2], for example. But we note here that this is typically
related to already established quantum phenomena — just applied to biological systems. However, recently there has
been a growing interest in using the equations of quantum mechanics for the explanation of experimental observations
in nominally classical systems such as those found in neuroscience, psychology, economics etc — sometimes the
observed data do not conform with the laws of classical probability, but rather with quantum-like statistics [3, 4]. This
is the case when the underlying system is not necessarily quantum in its nature, but its behaviour could be interpreted
or predicted in the probabilistic sense using the mathematical formulation borrowed from quantum mechanics. In
this paper we extend our previous work [5] on the emergent (“mock,” or analog) quantum theory in complex adaptive
systems as a new viewpoint on the question whether or not new physics, such as quantum-like dynamics, could play
an important role in the domain of living systems.

The concept of emergence is well known in condensed matter physics [6]. In this paper we revisit the concept of
an emergent “quantum” framework (see also [7–10]) which fits in the general notion of emergence [11]. Based on
the unique properties of quantum systems [12], such as enhanced stability and computational ability, we argue for
an evolutionary advantage of the emergent “quantum” behavior in certain regimes, characterized by an emergent,
non-universal and system-dependent, or mock, Planck constant, Y . In particular, such non-classical stability and
adaptability, associated with this emergent quantum behavior, should be advantageous for complex adaptive systems.
The general relevance of quantum-like behavior in biology was conjectured a long time ago [13], and the relation
between non-linear dissipative systems and emergent quantum theory was explored more recently in [14]. Whereas
quantum phenomena have been advocated to be important in the context of living systems [2, 15], the usual concerns
regarding decoherence and the difficulty of scaling-up of quantum phenomena in macroscopic systems are still the
major conceptual obstacles to such discussions [15]. This provides one of our key reasons to explore emergent (mock)
quantum theory in this paper. Our main motivation is the ongoing experimental and theoretical work as well as the
ongoing critical discussion on the emergent quantum-like physics found in the context of fluid dynamics [8, 9]. In this
paper we provide a general discussion of mock quantum theory, but also examine it using a concrete example of the
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application of mock quantum theory to the Lotka-Volterra system. In this context we emphasize the state dependence
of the mock-quantum dynamics and we also introduce the new concept of a mock-quantum, state-dependent, statistical
field theory. We also discuss some universal “turbulent” aspects of the quantum-to-classical and mock-quantum-to-
classical transitions.

The paper is organized as follows: In Section II we review the construction of Ref. [5], and discuss various formula-
tions (pictures) of mock quantum theory in Section III. Section IV summarizes our main example, the Lotka-Volterra
system, and Section V examines the state-dependent dynamics of the mock quantum Lotka-Volterra system for two
species. Section VI is devoted to the issue of stochasticity in our mock quantum dynamics via a mock-quantum
statistical field theory. In Section VII we examine the robustness of the central aspect of our construction, the
mock-quantum potential, in the context of maximal variety in complex systems. Section VIII is devoted to a hydro-
dynamic formulation of mock quantum theory and some universal “turbulent” features of the quantum-to-classical
and mock-quantum-to-classical transitions. Finally, we present our conclusions in Section IX.

II. EMERGENT QUANTUM, OR “MOCK QUANTUM” THEORY

In this section, we summarize the construction of Ref. [5] that was motivated by certain fluid dynamics experiments
critically reviewed in [8, 9]. The major point of the following presentation is to demonstrate that a Hamiltonian classical
system can be written in a way that resembles the formulation of quantum theory, through the usage of wavefunction-
like variables defined on the phase-space of the considered classical system. The crucial difference between this
formulation of classical theory and the canonical Schrödinger equation of quantum theory, is the appearance of
certain non-linear and non-local terms. This motivates our proposal for an emergent (mock, or analog) quantum
theory in complex adaptive systems that might be advantageous for such systems from an evolutionary point of view,
by reconciling adaptability with stability in an optimal way, in the presence of a system-dependent environment that
cancels the said non-linear and non-local terms [16] and implies the emergence of an effective, linear Schrödinger
equation.

One way to visualize this is that in, say, a cellular environment, there exist oscillatory wave processes which get
tuned in to the classical particle-like dynamics of the cellular matter, so that the effective description is a “wave-
particle” collective entity the dynamics of which is described by an emergent Schrödinger equation, with an emergent
Planck constant. To describe this more precisely, in equations, we start with the Hamilton-Jacobi picture of classical
dynamics,

∂S

∂t
+H

(
Qi, Pi

def
=

∂S

∂Qi

)
= 0. (1)

The action S is defined by the canonical expression (Qi denotes the configuration variables and Pi their conjugate
momenta)

S =

∫
(PiQ̇i −H)dt. (2)

According to the Liouville theorem, for such a closed system the phase space volume is conserved (the volume density
of phase space being ρ)

∂ρ

∂t
+∇(ρv⃗) = 0, (3)

where the velocity v⃗ is defined as vi
def
= Q̇i, and in the single particle case v⃗ = ∇S

m

def
= P⃗

m . Following [17] we define the
following new variables

ψ
def
= ±√

ρ exp
(
i
S

Y

)
. (4)

The mock (or effective) Planck constant Y appears by dimensional arguments given this definition and the application-
specific dimension (physical units) of the action S. (For example, in the case of the Lotka-Volterra dynamics the
relevant action is dimensionless [18, 19], and thus analogous to the eikonal of wave optics.) The variable ψ in (4)
satisfies the following “ψ-equation” [17]

iY
∂ψ

∂t
= H

(
Qi,

Y
i

∂

∂Qi

)
ψ + VQ(ψ,ψ

∗)ψ. (5)
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There is also the complex conjugate equation for ψ∗. Note that in this expression VQ is the so-called “quantum”
potential of de-Broglie and Bohm [20–22], which depends on ψ and ψ∗ and stems from the kinetic term in the action.

In the case of the canonical (single particle) kinetic term
P 2

i

2m , the quantum potential is

VQ = − Y2

2m

∇2(
√
ρ)

√
ρ

. (6)

We will discuss a more general form of the quantum potential later in this paper. The above non-local and non-linear
dynamics generally evolves pure states into mixed states, and so is not coherent (and not unitary) in the sense of the
canonical linear “quantum” theory [17].

For a realistic complex system, such deterministic dynamics should be supplemented with an external source of
noise or other environmental factors not included in the model, η, in which case the stability analysis is generalized
from the deterministic to a stochastic analysis [23]. (For concepts of metastability and multi-stability that enrich the
dynamics of complex systems see [24]. The control of multi-stable systems is of great practical importance and it is
an active area of research [25].)

The mock quantum theory proposal then posits that it is advantageous for an adaptive complex system to develop
this new type of “quantum” stability and linearity and show how it can emerge if the environmental/stochastic source
η(ψ,ψ∗) cancels against the non-linear and non-local part of the “ψ-equation,” turning it thereby into an emergent and
effective Schrödinger equation. In the presence of such external/environmental noise term, η(ψ,ψ∗), the equation (5)
should be modified to

iY
∂ψ

∂t
= H

(
Qi,−iY

∂

∂Qi

)
ψ + VQ(ψ,ψ

∗)ψ + η(ψ,ψ∗)︸ ︷︷ ︸
≈0

, (7)

where we indicate that the VQ(ψ,ψ
∗)ψ and η(ψ,ψ∗) can be combined into one effective term which according to

our proposal cancels in a complex adaptive environment. Since such cancellation would be difficult to achieve if
η(ψ,ψ∗) were purely stochastic, one should expect the environment also to be adaptive. (As η(ψ,ψ∗) is expected to
contain a stochastic component, we will return to the consequences of imperfect cancellation in (7).) This is somewhat
reminiscent of the apparently observed de-Broglie-Bohm-like behavior of droplet “particles” guided atop a vibrating
“pilot-wave” ripple-tank of a classical fluid [8, 9]. The process by which mock-quantum framework emerges is in
essence the reverse of the decoherence approach to the quantum-to-classical transition [26], as the system as a whole
“re-coheres” in the presence of a “fine-tuned” η(ψ,ψ∗) to give a steady state non-equilibrium dynamics captured by
an effective Schrödinger equation and the associated Born rule for probabilities.

The above construction evidently relies on a “balancing act,” which might be a generic problem of mock quantum
theory, perhaps analogous to the generic problem of quantum theory in macroscopic systems, to wit, the problem
of decoherence. However, the cancellation between the quantum potential term and the environment does not have
to be perfect, and realistically never is. Such a noise term can be taken into account by using stochastic equations.
We will comment on the formalism that takes into account noise terms in Section VI of this paper. Until then we
proceed by assuming perfect cancellation in order to illustrate one of our main points, the state-dependent dynamics
of mock quantum theory. Nevertheless, one might ask what happens to the emergent Schrödinger equation under
imperfect cancellation in Eq. (7), i.e., by adding a perturbation to the mock Schrödinger equation. The natural
proposal here is that precisely such perturbations will lead to the “collapse” of the emergent “wavefunction” and
the actually observed values of measured quantities, with the probability distribution governed by the Born rule.
Perturbations in the (adaptive) noise would thereby be crucial for a dynamical “collapse” of the emergent Schrödinger
“wavefunction” along the lines of various proposals reviewed in [27]. (The crucial role of noise in the emergence of
classical behavior in the de-Broglie-Bohm interpretation of the canonical quantum theory is nicely summarized in
[21].) We will discuss the generic stochastic mock quantum dynamics in Section VI. In that section we will show that
stochastic mock-quantum dynamics is equivalent to a state-dependent statistical field theory.

A fundamental reason for the advantageous nature of emergent “quantum” theory might be found in the linear
structure of quantum theory, which is tightly related to the concept of of maximally symmetric Fisher information
[28, 29]. In an evolving environment the adaptive dynamics of complex systems would tend to adjust the whole system
(for competing reasons of adaptability and stability) so that an effective or mock-quantum theory emerges as

iY
∂ψ

∂t
= H

(
Qi,

Y
i

∂

∂Qi

)
ψ. (8)

(This emergent linear quantum evolution could be also motivated by the cellular automaton interpretation of quantum
theory developed in [14]; see also: [30–32].) Such mock quantum theory would be probabilistic and it would map the
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mock wave function to the observed phenomena via the mock Born rule |ψ|2. This expression should be understood as
a steady state distribution of states for the non-equilibrium dynamics of the underlying classical system. This picture
is also consistent with the experiments (whose validity is still critically discussed) on the emergent de-Broglie-Bohm
dynamics in fluid dynamics [8, 9]. Such mock Born rule would allow for the crucial interference of probabilities — one
of the hallmark signatures of mock-quantum behavior in complex adaptive systems - and it might be the underlying
reason for the recently observed usefulness of quantum probabilities in various complex classical systems [3, 4].

Let us close with a brief comment on the cancellation condition (7). Combined with (6), it implies

Y2

2m
(∇2√ρ) eiS/Y ≈ ± η(ψ,ψ∗), i.e.,

{
(∇2√ρ) ≈ 2m |η| /Y2,

(S/Y) ≈
(
2n+

{
1
0

})
π + 1

2i log(η/η
∗),

(9)

which provides external/environment noise η-driven constraints on Hamilton’s action, S, and the phase space volume
density, ρ — in addition to the dynamical equations (1) and (3), i.e., in addition to (5). A plausible interpretation
of this is that the external/environment noise, η, effectively selects, via this additional constraint, from among the
(classically continuous) distribution of possible states of the (Qi, Pi)-system: At such η-determined values of the action
and phase-space volume-density, (S, ρ), the dynamics of the (Qi, Pi)-system simplifies significantly: Eq. (7)→ (8).

III. QUANTUM, MOCK QUANTUM AND A COMPARISON WITH DE-BROGLIE-BOHM

In this section we present different (though equivalent) approaches to emergent (mock) quantum theory, which
should be useful to keep in mind as we proceed with our analysis in the rest of the paper. We concentrate on the
deterministic systems in this section, in order to make the general argument, and we postpone the discussion of
stochastic systems to Section VI. Perhaps the easiest way to think about mock quantum theory is by the following
parallel with the classical theory that runs as follows (we start with a textbook presentation [33] in order to establish
some basic notation).

Deterministic classical theory is well known to be defined via the variational principle (for simplicity, we showcase
one q variable, but a multivariable description is analogous — with but systematically replacing q → qi), requiring

δS = 0, where S
def
=

∫
pdq − H(q, p)dt

def
=

∫
L(q, q̇)dt is Hamilton’s action functional, H is the Hamiltonian, L the

Lagrangian, and q̇
def
= dq

dt . Note that S is a function of q: S(q). The vanishing variation of the action δS = 0 implies
the Euler-Lagrange equations:

δS = 0 → d

dt

(∂L
∂q̇

)
=
∂L

∂q
. (10)

(This Lagrange picture becomes the path integral picture in the context of mock quantum theory.) Note that the
Noether theorem (generally relating symmetries and conserved quantities) associated with the independence of physics
with respect to the time translation t → t + ϵ implies the Legendre-transform like relation between the Lagrangian
and the Hamiltonian. For if the Lagrangian does not implicitly depend on time, ∂L

∂t = 0, then

dL

dt
=
∂L

∂q

dq

dt
+
∂L

∂q̇

dq̇

dt
=

d

dt

(∂L
∂q̇

)
q̇ +

∂L

∂q̇

dq̇

dt
=

d

dt

(∂L
∂q̇
q̇
)
, (11)

where we have used the Lagrange equations of motion, d
dt (

∂L
∂q̇ ) =

∂L
∂q . By defining the momentum, p

def
= ∂L

∂q̇ , we get

the conserved Hamiltonian, dH
dt = 0: energy is conserved because of the symmetry of time translation — Noether’s

theorem. From the variation of the action written in terms of the Hamiltonian on phase space (q, p) we get Hamilton’s
equations and the Hamilton picture (which in the mock quantum case becomes the Born-Heisenberg-Jordan (matrix)
picture)

H
def
= pq̇ − L, δ

(∫
L
)
= δ

(∫
p dq −H(q, p)dt

)
= 0 → q̇ =

∂H

∂p
, ṗ = −∂H

∂q
. (12)

From the definition of the action we immediately get the Hamilton-Jacobi picture (which in the quantum case becomes
the Schrödinger picture/representation)

∂S

∂q
= p,

∂S

∂t
= −H

(
q, p

def
=
∂S

∂q

)
. (13)
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Note that the above partial derivatives are with respect to the final position and final time. These equations were the
starting point for our discussion in Section II. (However, we could have started from a different point of view, given
the fact that in quantum theory the Lagrangian picture becomes the path integral picture, the Hamiltonian picture
becomes the Born-Jordan-Heisenberg (matrix) picture, and the Hamilton-Jacobi picture becomes the Schrödinger
(wavefunction) picture.)

Now, our claim is that an emergent quantum dynamics is possible in a complex adaptive environment. Why would
that be the case? In what follows we argue that the robustness of the emergent quantum picture follows already from
the above variational principle.

This is easiest to see from the (mock) quantum variational principle (mock Schwinger’s variational principle) formally
as follows. The very definition of δ in the above summary of classical dynamics implies the existence of other “virtual”
trajectories. What the existence of the canonical quantum constant (ℏ) and the non-universal, system-dependent mock
Planck constant Y , imply is the following deformed dynamical equation (written with mock quantum theory in mind)
δS = iYδ. Thus, the Y → 0 limit recovers the above classical equation δS = 0, where the action S is still given via the
classical expression S =

∫
p dq −H dt =

∫
L dt. The non-universal, system-dependent, mock Planck constant Y still

carries the units of the action, and the variation derivative δ is the same on the both sides of the equation. Finally,
one picks as the constant of proportionality i because of the “democracy” between all paths, between an initial and
a final point. The classical path is selected by δS = 0, but a definition of δ requires considering virtual paths as
well. Thus, mock quantum theory brings back all virtual paths/histories of the (adaptive complex) system under
consideration and treats them all (including the classical one) on the same footing, provided the complex system is
in an adaptive environment that allows for such deformed dynamics.

The above (mock) quantum (Schwinger’s) variational principle δS = iYδ, immediately gives the fundamental
equations of quantum theory. Let us pick as a variation derivative, for example, the variation with respect to time t.
Then by applying the above formal equation to some functions ψ(q)

(δtS)ψ = (iYδt)ψ → Hψ = iYδtψ, (14)

where we have used that the time derivative of S with respect to the initial time is ∂S
∂t = H. (The lower limit in

the integral S =
∫
p dq −Hdt is responsible for this sign reversal.) Thus we obtain the mock Schrödinger equation.

Looking instead at the variation with respect to q (initial) yields

(δqS)ψ = (iYδq)ψ → pψ = −iYδqψ, (15)

because the partial derivative of S with respect to the initial q is ∂S
∂q = −p. In the Hamiltonian operator H one must

substitute H(q, p=−iYδq) and so the Schrödinger equation reads more precisely

H
(
q, p=−iYδq

)
ψ = iYδtψ. (16)

One may ask: why do we have the formal equation δS = iYδ? The answer is that this equation is equivalent to
Feynman’s path integral formulation of mock quantum theory. According to this formulation the expectation value
of any observable O is given by this expression (written in analogy with equilibrium statistical mechanics)

⟨O⟩ =
∫
Dq Oe

iS
Y∫

Dq e
iS
Y

. (17)

Now, this is a complex number, and its variation is zero

δ⟨O⟩ = 0 →
∫
Dq (δO + i

YO δS) e
iS
Y∫

Dq e
iS
Y

= 0. (18)

Therefore we have 〈(
δO +

i

Y
O δS

)〉
= 0 → iY⟨δO⟩ = ⟨O δS⟩, (19)

or by putting O = 1 we get our original (but more precise) formal version of the (mock) Schwinger variational principle
⟨δSO⟩ = iY⟨δO⟩, which we now understand as a differential form of the path integral. As we have already shown, this
in turn leads to the (mock) Schrödinger equation as well as the canonical expression for the momentum operator.
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Finally, the most general form of the path integral is the phase space one, from which the coordinate version of the
path integral comes about after integration over the momentum variables∫

DqDp eiS/Y
def
=

∫
DqDp e

i
Y

∫
(pdq−H(q,p)dt) →

∫
Dq e

i
Y

∫
L(q,q̇)dt. (20)

Once one has the (mock) Schrödinger equation (derived from the path integral) one can derive the Born-Heisenberg-
Jordan equations of motion — the Hamiltonian formulation of quantum theory. One can also derive the Born-
Heisenberg-Jordan equations of motion directly from the Schwinger variational principle, or from the path integral,
because the path integral is just the Green’s function for the Schrodinger operator iYδt −H. (The path integral also
follows from the emergent unitary evolution, ψ(t) = exp

(
− i

Y

∫
Hdt

)
ψ(0), implied by the mock Schrödinger equation.)

So, indeed, the analogue of the Hamilton-Jacobi formulation is the Schrödinger equation, the analogue of the
Hamilton formulation is the Born-Heisenberg-Jordan operatorial formulation, and the path integral is the analogue
of the Lagrangian formulation because S =

∫
Ldt is a Lorentz scalar and so this formulation is covariant (even

though this fact is not relevant for our current discussion). And all these different “pictures,” or representations, are
equivalent. In mock (analog, or emergent) quantum theory, one thereby retains the canonical quantum descriptions but
replaces the canonical, universal, Planck constant with an emergent, or analog, non-universal and system-dependent,
mock Planck constant, ℏ → Y . The Born rule and the corresponding interpretation of |ψ|2 for the emergent (mock)
quantum probability should thus be understood as a steady-state distribution for the non-equilibrium dynamics of
the underlying classical system in the presence of a complex adaptive environment that leads to such an emergent
quantum description.

In order to make a connection between the mock quantum description and the underlying classical dynamics let us
rewrite the (mock) Schrödinger equation in the polar decomposition (this is also the polar decomposition of the path
integral), as this rewriting will turn out to be particularly useful in the rest of the paper [20, 21]

ψ
def
= ±√

ρ eiS/Y , (21)

whereby the complex Schrödinger equation becomes a coupled system of two real equations, already given in the
previous section. The first one is the equation of continuity,

∂ρ

∂t
+∇·(ρv⃗) = 0, (22)

where the velocity v⃗ is defined as vi
def
= Q̇i, and in the single particle case v⃗ = ∇S

m

def
= P⃗

m . The second equation is the
de-Broglie-Bohm correction to the classical Hamilton-Jacobi equation

∂S

∂t
+H + VQ = 0, (23)

where VQ is the quantum potential. Whenever H = p2

2m + V (q) = ∇S2

2m + V (q), then VQ = − Y2

2m

∇2(
√
ρ)√

ρ is given

by direct computation. Note that the quantum potential is added to the classical Hamiltonian. These equations,
supplemented by the Schrödinger equation (because the quantum potential needs explicit wavefunctions that are
computed by solving the Schrödinger equation) provides a non-covariant rewriting of quantum theory in a particular
basis in which both the classical (particle) and the quantum (wave) variables appear.

Perhaps the easiest (as well as more general and illuminating way) to derive these equations is to use the density

matrix formalism (following [34]). In particular, let us start from the Schrödinger equation written for ρ
def
= |ψ⟩⟨ψ|

where (with Y = 1, for simplicity)

i
∂|ψ⟩
∂t

= H|ψ⟩, −i∂⟨ψ|
∂t

= ⟨ψ|H. (24)

The difference of the ⟨ψ|- and |ψ⟩-multiples of these two equations yields the analog of the Liouville equation in
classical theory, which can be written for the density on phase space, and similarly, in the case of quantum theory
one has for the density matrix operator ρ̂ (with a unit mock Planck constant, and a Hamiltonian operator Ĥ)

i
∂ρ̂

∂t
+ [ρ̂, Ĥ] = 0, (25)

where [ , ] is the usual commutator [ρ̂, Ĥ]
def
= ρ̂Ĥ − Ĥρ̂. Now, as pointed out in [34], the sum of the above multiples of

the Schrödinger equation and its conjugate implies:

i
(∂|ψ⟩
∂t

⟨ψ| − |ψ⟩∂⟨ψ|
∂t

)
= ρ̂Ĥ + Ĥρ̂. (26)
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The same polar decomposition

ρ̂
def
= R̂2, |ψ⟩ = R̂ Û , ⟨ψ| = Û† R̂, Û Û † = 1, (27)

then implies

i
(∂|ψ⟩
∂t

⟨ψ| − |ψ⟩∂⟨ψ|
∂t

)
def
= iR̂

(∂Û
∂t
Û† − Û

∂Û†

∂t

)
= ρ̂ Ĥ + Ĥ ρ̂. (28)

Finally, writing the unitary operator Û as

Û = eiŜ , Ŝ† = Ŝ, (29)

produces

R̂
∂Ŝ

∂t
R̂+

1

2
(ρ̂ Ĥ + Ĥ ρ̂) = 0, (30)

where if we assume that [R̂, ∂Ŝ∂t ] = 0, the above equation becomes the analog of what in classical physics is the already
cited Hamilton-Jacobi equation, which can be multiplied by the classical phase space density ρ̂ so that indeed

ρ
∂S

∂t
+ ρH = 0. (31)

In quantum theory a product of two Hermitian matrices has to be symmetrized (the Weyl ordering prescription) and
thus we have

ρ̂
∂S

∂t
+

1

2
(ρ̂Ĥ + Ĥρ̂) = 0, (32)

where we recognize the anticommutator (or the Jordan bracket) of the density matrix and the Hamiltonian. Note
that we could have as easily obtained

ρ̂1/2
∂Ŝ

∂t
+

1

2
(ρ̂1/2Ĥ + Ĥρ̂1/2) = 0. (33)

This second equation leads, for the case of the simple Hamiltonian H = p2/2m + V
def
= − Y2

2m∇2 + V to the already
quoted (6) expression for the quantum potential VQ (where we have restored Y)

VQ = ρ−1/2
(
− Y2

2m
∇2(ρ1/2)

)
. (34)

However, this shows the general expression for the quantum potential that we can use for Hamiltonians with a
non-canonical kinetic term, like the one we will encounter in the Lotka-Volterra system in the next section: In that
case, H = a(eQ −Q) + d(eP − P ), rendering the quantum potential for the Lotka-Volterra system, V LV

Q , be given by
the following formula

V LV
Q = ρ−1/2

[
d(eP − P )(ρ1/2)

]
, P = −iY∇. (35)

The de-Broglie-Bohm system of equations (22)–(23) is completely equivalent to the Schrödinger formulation (8).
Also, note that the (mock) quantum potential is added to the classical Hamiltonian. Thus, in mock, or analog, or
emergent, quantum theory rewritten à la de-Broglie-Bohm, one retains the usual de-Broglie-Bohm formalism but,
again, replaces the Planck constant with an emergent, or analog, non-universal and system-dependent, mock Planck
constant ℏ → Y .

In the context of de-Broglie-Bohm formalism there exists a claim that the Born rule |ψ|2 is emergent from the under-
lying non-equilibrium dynamics, as a steady-state distribution [21]. This is consistent with our proposed interpretation
of the emergent Born rule in the context of mock quantum theory.

In conclusion of this section, we note that simple, classical systems follow “classical trajectories,” between given
initial and final states. Such classical trajectories obey the least action principle. In contrast, a complex adaptive
system might have many available (and energetically equivalent) paths between given initial and final states, that are
also very sensitive to the environment of the complex adaptive system under consideration. The presence of many
trajectories of a complex adaptive system might be more effectively described using quantum measures represented
by an effective Schwinger variational principle, and an effective Feynman path integral, which opens the possibility for
an emergent quantum description of complex adaptive systems with an emergent, system-dependent, non-universal
Planck constant. This picture is also consistent with an empirical view that data describing complex systems do not
always conform with the laws of classical probability, but rather with quantum-like probability [3, 4]. Furthermore,
this viewpoint fits into a more general picture of quantum mechanics as quantum measure theory [35].
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IV. THE LOTKA-VOLTERRA SYSTEM

In this section we discuss our prime example: the Lotka-Volterra system. The deterministic Lotka-Volterra system
[18] specifies the number of species and how their populations interact and change in time. For the case of two species
with populations Ni(t), i = 1, 2 the Lotka-Volterra equations read [18, 19]

Ṅ1 = aN1 − bN1N2 , Ṅ2 = cN1N2 − dN2, (36)

where Ṅi denotes the time (t) derivative, a and d are the relevant auto-increase or auto-decrease parameters, b and c

denote the interaction strength between the species (a, b, c, d > 0) [18, 19]. The stationary (Ṅi = 0) population levels
Ni = qi, apart from the trivial (0,0), occur for q1 = d/c and q2 = a/b. It is known that the Lotka-Volterra system,
for small initial displacements from the equilibrium point (q1, q2), will oscillate with the frequency

ω =
√
ad. (37)

The Lotka-Volterra system (36) has a Hamiltonian, which can be written as follows [19]: First we introduce dimen-

sionless zi
def
= log(Ni/qi). Then equations (36) read as:

ż1 = a(1− ez2) , ż2 = d(ez1 − 1). (38)

A time invariant function H for the system (38), which has the property that

ż1 = −∂H
∂z2

, ż2 =
∂H

∂z1
, (39)

is the Lotka-Volterra Hamiltonian [19]:

H = a(ez2 − z2) + d(ez1 − z1). (40)

Identifying the canonical pair of variables as z1 = P , and z2 = Q, rewrites the Lotka-Volterra Hamiltonian [19]

H = a(eQ −Q) + d(eP − P ). (41)

The deterministic Lotka-Volterra equations are thereby rewritten as the canonical Hamilton equations:

Q̇ =
∂H

∂P
, Ṗ = −∂H

∂Q
, (42)

In the stationary case, the emergent quantum theory of Lotka-Volterra dynamics advocated in this work is charac-
terized by the emergent stationary Schrödinger equation

Hψn = Enψn, ψn(t) = exp
(
− i

Y
Ent

)
ψn(0), (43)

where En are the emergent eigenvalues of H and where n = 0, 1, 2.... Now, treating P and Q as small yields the
linearized approximation of the slow Lotka-Volterra dynamics, eQ ∼ 1 + Q + 1

2Q
2 and similarly eP ∼ 1 + P + 1

2P
2,

whereby the effective Lotka-Volterra dynamics becomes harmonic [19]:

H ∼ (a+ d) + 1
2 (aQ

2 + dP 2). (44)

The mock quantum theory is then mapped to the simple quantum-like harmonic oscillator with energy levels given
by the standard result for the “energy spectrum” (as we will discuss in the next section)

En = (a+ d) +Y
√
ad(n+ 1

2 ) = (a+ d) +Yω(n+ 1
2 ) , (45)

where Y is the unit of the Lotka-Volterra action. (The “energy” E, as well as the Hamiltonian H, have dimensions of
the inverse of time, like the coefficients a and d, whereas Q and P are dimensionless, implying that Y is dimensionless,

as a relative coefficient between commensurate constants: [Y ] = [a+d]

[
√
ad]

.) The corresponding “stationary wavefunctions”

ψn are given in terms of the appropriate Hermite polynomials. In this case all transition probabilities can be computed
exactly. In principle, the classical variables Q and P become the canonically normalized operators Q̂ and P̂ , obeying
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the canonical commutation relations [Q̂, P̂ ] = iY . For a given “quantum” state, this commutation relation in turn
implies the canonical indeterminacy relation between ∆Q and ∆P . Therefore in the emergent “quantum” phase the
Lotka-Volterra variables Q and P and therefore z1 and z2, cannot be simultaneously measured with absolute precision
while preserving the state of the system. However, we emphasize that Y is system dependent and non-universal, and
thus this statement of the “mock indeterminacy principle” is also system-dependent and non-universal.

In the case of the above harmonic oscillator (H.O.) approximation, for the case of the stationary states with the
energy En, the quantum potential is simply given by [20]

V
(H.O.)
Q = Yω(n+ 1

2 )−
1
2ωQ

2. (46)

This follows from the exact solution of the “mock Schrödinger equation,” which involves the standard Hermite
polynomials. The time dependent form of the “mock-quantum potential” in our situation can be also easily inferred
from the explicit solution of the canonical quantum harmonic oscillator [20]

V
(H.O.)
Q (t) = −ω

2

(
Q−A cos(ωt)

)2
+ 1

2Yω. (47)

This expression represents the time-dependent “holistic” response of the environment in our proposal, i.e. it determines

the negative of the “environmental” term η. (Recall that ψ V
(H.O.)
Q (t)+η → 0, is a necessary criterion for the emergence

of effective mock quantum theory, in this case, in the harmonic oscillator approximation of the deterministic Lotka-
Volterra dynamics in a suitable adaptive environment that allows for an emergent mock quantum description.)

Note that for the general Hamiltonian we have[
a(eQ −Q) + d(eP̂ − P̂ )

]
ψn = Enψn, P̂ = −iY∇. (48)

In this stationary Schrödinger equation the position Q and the momentum P enter on the same footing, so the
equation should be factorizable, at least for the ground state. We will comment on this in the following section.

Alternatively, we could write the de-Broglie-Bohm dynamics for this “mock qantum” Lotka-Volterra system and
examine its behavior (by using, in general, numerical simulations, because of the non-local and “holistic” nature of
the “quantum” potential.) That is the subject of the next section of this paper.

V. THE MOCK QUANTUM POTENTIAL AND THE LOTKA-VOLTERRA SYSTEM

In this section we apply de-Broglie-Bohm formalism to the mock quantum (MQ) Lotka-Volterra (LV) system for two
species in order to illustrate the state-dependent nature of the mock quantum dynamics. First, we note that according
to Section III in which we have summarized the de-Broglie-Bohm formalism the classical Hamiltonian is shifted by
the “mock quantum” potential VQ which depends on the form of the Hamiltonian as well as the eigenfunctions of the
Hamiltonian, but it is essentially controlled by the momentum (kinetic, or inertial) part of the Hamiltonian.

A. Quadratic approximation

Let us start with the quadratic approximation. In that case the LV Hamiltonian is quadratic

H2 = 1
2

(
aQ2 + dP 2

)
= 1

2

(
az22 + dz21

)
= 1

2

(
a
(
log(N2/q2)

)2
+ d

(
log(N1/q1)

)2)
. (49)

The vacuum state of this quadratic Hamiltonian is a Gaussian

H2ψ0 = 0 → ψ0 = A exp(−BQ2), (50)

where the constants are fixed by the (square) normalizability of the mock vacuum wavefunction ψ0 as usual. The

proper normalization here is: ψ0 = A exp(−y2/2), with A4 = mω/(πY) and y = x
√
mω/Y for the linear harmonic

oscillator (LHO) Hamiltonian H = p2/2m +mω2x2/2. Thus the quantum potential (described in Section III for a
Hamiltonian with a canonical 1

2P
2 kinetic term)

VQ = ψ0
−1

[
g∇2(ψ0)

]
= 1

2Y
√
ad− 1

2

√
adQ2, (51)
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is quadratic in Q. (Here, g stands for − Y2

2m , where Y is the dimensionless mock Planck constant appropriate for the

LV dynamics, and ω =
√
ad.) The constant term represents the “vacuum energy.” The de-Broglie-Bohm Hamiltonian

is the sum of the original quadratic Hamiltonian H2 and VQ and the Hamilton’s equations are still linear

Q̇ =
∂(H2 + VQ)

∂P
= dP, Ṗ = −∂(H2 + VQ)

∂Q
=

(
−a+ 1

2

√
ad

)
Q. (52)

We just have to substitute P = log(N1/q1) and Q = log(N2/q2) to get the mock-quantum LV equations in this
approximation. Next we look at the higher order wavefunctions for the harmonic oscillator, ψn, given by Hermite
polynomials. For example, the first excited state is:

ψ1 = A1Q exp(−BQ2), (53)

or more precisely: ψ1 = A
√
2y exp(−y2/2), again with A4 = mω/(πY) and y = x

√
mω/Y . Then we have the following

quantum potential that comes from the first excited state in the harmonic approximation

V
(1)
Q = ψ1

−1
[
p∇2(ψ1)

]
= 3

2Y
√
ad− 1

2

√
adQ2, (54)

as expected, given the discussion from the previous section. Similarly we have for the second excited state

ψ2 = A2(CQ
2 − 1) exp(−BQ2), (55)

or more concretely, ψ2 = A 1√
2
(2y2 − 1) exp(−y2/2), again with A4 = mω/(πY) and y = x

√
mω/Y . Formally, we have

the following quantum potential for the second excited state

V
(2)
Q = ψ2

−1[p∇2(ψ2)] =
5

2
Y
√
ad− 1

2

√
adQ2, (56)

where Q = log(N2/q2), so that we get a quadratic expression, once again.

In the harmonic approximation and for each harmonic eigenstate, we have in general that ∇2ψn ∝ ψn, producing

the simple V
(n)
Q = VQ(ψn) computed from (6), and plotted in Figure 1 for a few lowest-energy states. In turn,

the quantum potential computed from a general state (always representable as a linear combination of eigenstates),
necessarily diverges at multiple poles; see Figure 2 for a few sample sketches. In fact, this behavior stems from the
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FIG. 1: The “quantum potential,” VQ(ψn) as defined in (6), plotted for a few lowest-energy states

definitions following standard quantum mechanics, with ρΨ
def
= |Ψ|2:

H
def
= − Y2

2m
∇2 + V (Q) ⇔ VQ(ψ)

def
=

1
√
ρΨ

(
− Y2

2m
∇2√ρΨ

)
=

1
√
ρΨ

([
H − V (Q)

]√
ρΨ

)
. (57)

Thus, when computed from any H-eigenfunction, Hψn = Enψn, it is immediate that VQ(ψn) = En−V (Q). In fact,
this holds generally — provided the “quantum potential” is (re)defined following (57):

H̃
def
= K(P ) + V (Q) ⇔ ṼQ(Ψ)

def
=

1
√
ρΨ

(
K(P )

√
ρΨ

)
=

1
√
ρΨ

([
H̃ − V (Q)

]√
ρΨ

)
, (58)

so H̃ψ̃n = Enψ̃n ⇒ ṼQ(ψ̃n) = En − V (Q). (59)
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FIG. 2: The “quantum potential,” VQ(Ψ) as defined in (6), plotted for a few linear combinations of lowest-energy states,
illustrated here for Ψ = ψ0+ψ3, Ψ = ψ0+ψ3+ψ4 and Ψ = ψ0+ψ3+ψ4+ψ7, in terms of harmonic eigenstates, ψn.

We have also used that the H- and H̃-eigenstates, ψn and ψ̃n, are standing waves and have a constant phase (they have
no probability current). For the case of the Lotka-Volterra Hamiltonian (41), the corresponding quantum potential

should be defined as VQ,LV (Ψ)
def
= 1√

ρΨ
d(eP−P )√ρΨ, whereupon the result (59) follows immediately.

This implies the following general statement: In the “landscape” of possible states of the system, i.e., their prob-
ability distributions, ρΨ, of a system with the Hamiltonian H, the (appropriately defined) quantum potential VQ(Ψ)
merely changes the overall energy at eigenstates of H, but radically alters the potential (and so the dynamics) of the
system away from those H-eigenstates.

The most important point is that, generically, we are led to a state-dependent dynamics and a new hierarchy of LV
models, because the quantum potential, in general, changes with the mock quantum state. This is consistent with
some global expectations in quantum biology [15]. The robust predictions of mock quantum theory are the vacuum
“energy” and the quantization of “energy” levels together with an emergent superposition of states and the Born
rule for probabilities consistent with the superposition principle. This discussion could be applied in other related
situations [36].

B. Vacuum of the full MQ LV theory

As promised, let us also examine the vacuum state of the full LV Hamiltonian

HLV = a
(
eQ −Q

)
+ d

(
eP − P

)
, (60)

where P = −iY∂Q. By Taylor’s theorem, eP f(Q) = e−iY∂Qf(Q) = f(Q− iY), which implies an analytic continuation
of the a priori real variable Q. We seek an eigenfunction of HLV in the exponential form for convenience:

ĤLV e
f(Q) =

[
a(eQ −Q) + d(eP̂ − P̂ )

]
ef(Q),

= a eQ+f(Q) − aQef(Q) + d ef(Q−iY) + iYd (∂Qf(Q)) ef(Q) = E ef(Q).
(61)

To insure the last equality for all Q, we compare terms that are functionally alike and conclude that the function
f(Q) must satisfy the conditions:

functional: f(Q− iY) = Q+ f(Q) + h, (62)

differential: iY d (∂Qf(Q)) = aQ+ E, (63)

for some constant h, so that

ĤLV e
f(Q) = a eQ+f(Q) − aQef(Q) + d eQ+f(Q)+h + iYd (∂Qf(Q)) ef(Q), (64)

= (a+ d eh)eQ+f(Q) + E ef(Q), (65)

so that one must also require

consistency: a+ d eh = 0. (66)
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Now, both (62) and (63) imply that f(Q) must be a quadratic function, f(Q) = − (Q−Q0)
2

2σ2 + iφ. Expanding (62)
with this Ansatz and equating like terms in Q implies that

σ =
√
iY , Q0 = −

(
h+

iY
2

)
, and f(Q) =

i

2Y

[
Q+

(
h+

iY
2

)]2
+ iφ, (67)

where h, φ remain free so far. The differential condition (63) then requires

iYd
( i
Y

[
Q+

(
h+

iY
2

)])
= −d

[
Q+

(
h+

iY
2

)]
!
= aQ+ E, (68)

where “
!
=” denotes a required equality, so that

d
!
= −a, and E = −d

(
h+

iY
2

)
= a

(
h+

iY
2

)
. (69)

Finally, (66) becomes a(1− eh) = 0, which implies h = hn = 2niπ, and so E = En = ia(Y/2+2nπ) for n ∈ Z.

To summarize, we have computed

HLV ψn(Q) = En ψn(Q), En = ia
(1
2
Y+2nπ

)
, (70)

which required restricting d = −a in HLV — and so would impose an (unrealistic) condition on the LV system.
Furthermore, the so-obtained eigenfunctions,

ψn(Q) = exp
{ i

2Y

[
Q+ i

(
2nπ+

1

2
Y
)]2

+ iφ
}
,

= exp
{
−
(1
2
+
2nπ

Y

)
Q
}

exp
{ i

2Y
Q2 − i

[(√Y
8
+

2nπ√
2Y

)2

− φ
]}

, n ∈ Z
(71)

are clearly not square-integrable: the real exponential factor diverges for Q = log(N2/q2) → −∞, i.e., for N2 → 0. In
turn, the standard (quadratic approximation) quantum potentials computed from (71),

VQ[ψn(Q)] = −1

2
dY2 ∂Q

2|ψn(Q)|
|ψn(Q)|

= −1

8
d(4nπ +Y)2, (72)

are simple n-dependent constants. The “LV-exact” quantum potentials computed from (71)

V LV
Q [ψn(Q)] = d

[eP̂−P̂ ]|ψn(Q)|
|ψn(Q)|

=
1

2
d
(
2e

iY
2 − i(4nπ +Y)

)
= −ae

iY
2 + iaEn, (73)

are also n-dependent, but complex constants, typically encoding dissipation.

The functions in the sequence (71) may perhaps be thought of as the initial (λ = 0) perturbative solutions (presumed
to be analytic functions of λ) of the non-linear extension[

HQ
LV

def
= a

(
eQ −Q

)
+ d

(
eP̂−P̂

)
+ λ d

(
(eP̂−P̂ )|Ψn(Q;λ)|

)
|Ψn(Q;λ)|︸ ︷︷ ︸
VQ[Ψ(Q;λ)]

]
Ψn(Q;λ) = En(λ)Ψn(Q;λ), (74a)

Ψn(Q;λ) =
∑
k

λkΨ(k)

n (Q), En(λ) =
∑
k

λkE(k)

n . (74b)

The excited states of the full mock LV system might be hard to write explicitly, but that does not change the fact
that the mock LV dynamics is generically state-dependent. This is one of the most important points of the above
discussion. This state dependent nature of the mock quantum LV dynamics should be contrasted with the state
dependent dynamics of classical non-linear systems [36]. The full mock quantum LV equations, written in terms of
the original N variables, change with the mock quantum state, which is the central new feature of our discussion (and
which fits into the discussion of [15] and references therein).
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VI. STOCHASTIC DYNAMICS AND MOCK QUANTUM STATISTICAL FIELD THEORY

As advertised in Section II, now we discuss the issue of imperfect cancellation between the quantum potential and
the state-dependent environment, by considering more realistic stochastic dynamics. We will show that stochastic
dynamics can be easily incorporated in our formalism and that in general, stochastic mock quantum dynamics leads
to a state-dependent statistical field theory.

It is well known that the stochastic LV dynamics (described by the Langevin equations) can be converted into
statistical field theory; see for example [37]. In this section we examine the mock-quantum version of statistical field
theory. Let us denote N1 and N2 in the LV system as ϕi, where ϕi (functions of time t) satisfy the Langevin equation
[37]

λ−1∂tϕi = Fi[ϕi] + ξ, (75)

where ξ is the Langevin noise with the following noise correlator

⟨ξ(t) ξ(t′)⟩ = λ−1N [ϕi] δ(t− t′). (76)

(In the simplest case N = 1, and F is defined from the deterministic system of LV equations. Also, Fi[ϕi]
def
= − δH(ϕi)

δϕi
,

whereH is in general the Landau-Ginzburg (Hamiltonian) functional.) The trick is now to write the following partition
function

Z =

∫
Dξ P (ξ)

∫
Dϕi δ(λ

−1∂tϕi − Fi[ϕi]− ξ), (77)

where the Langevin noise is assumed to have a Gaussian distribution

P (ξ) ∼ exp
(
−
∫

dt
ξ2

2kN

)
. (78)

Then by using the identity

δ(x) =
1

2π

∫
Dϕ̃j exp(iϕ̃jx), (79)

we obtain the following partition function (after the appropriate Wick rotation in the complex plane)

Z ∼
∫

Dξ P (ξ) e−
∫
dtϕjξ

∫
Dϕj Dϕ̃je

−
∫
dtϕ̃j(λ

−1∂tϕj−Fj [ϕj ]). (80)

Finally, we perform the Gaussian integration over ξ to obtain

Z ∼
∫

Dϕj Dϕ̃j e
−J(ϕj ,ϕ̃j), (81)

where the effective action J of this statistical field theory reads as

J(ϕj , ϕ̃j) =

∫
dt ϕ̃j

(
λ−1∂tϕj − Fj [ϕj ]−

k

2
N [ϕj ]ϕ̃j

)
. (82)

Now, the difference between the canonical statistical field theory, and the mock quantum version of statistical field
theory, is in the form of F : It follows from our previous section that F changes (by an addition of the term generated
from the state dependent quantum potential) between the classical and mock quantum form of the LV equations. In
particular, in the mock quantum (MQ) case

Fi[ϕi]
def
= −δH(ϕi)

δϕi
→ FMQ

i [ϕi]
def
= −δH(ϕi) + δVQ(ϕi)

δϕi
. (83)

Thus the mock quantum statistical field theory is defined by the following mock quantum partition function

ZMQ ∼
∫

Dϕj Dϕ̃j e
−JMQ(ϕj ,ϕ̃j), (84)
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where the effective action JMQ of this mock quantum (and state-dependent !) statistical field theory reads as

JMQ(ϕj , ϕ̃j) =

∫
dt ϕ̃j

(
λ−1∂tϕj − FMQ

j [ϕj ]−
k

2
N [ϕj ]ϕ̃j

)
. (85)

Such state-dependent statistical field theory is one way of including the external/environment noise in our the
context of mock-quantum theory. Thus the cancellation/balancing between the state-dependent quantum potential
VQ(ψ,ψ

†) and the state-dependent environment term η(ψ,ψ†) does not have to be perfect, and their non-vanishing
remnant can be included using the above formalism.

VII. WHY VQ?: COMPLEXITY, VARIETY AND MOCK QUANTUM THEORY

In the preceding discussion one of the most important ingredients was the mock quantum potential VQ. The
inclusion of VQ gives crucial new results even in the quadratic (harmonic) approximation of the mock quantum LV
model: a) first, one gets a nonzero vacuum energy, and b) one gets discrete “energy” states. Also, in general, one has
interference between different states. Even in the quadratic limit these two features (as well as interference) should be
observed in real-world applications (for example in the context of the Wilson-Cowan model, which is a computational
neuroscience model which describes dynamics of populations of interacting neurons [36]), if indeed mock quantum
theory is relevant for real complex adaptive systems. More fundamentally, the form of VQ is state dependent and thus
in mock quantum theory we have a realization of “state-dependent dynamics” (usually realized in classical, stochastic,
network dynamics [36]) but with crucial quantum-like features.

However, the astute reader might rightfully ask: What is the physical meaning of VQ and why would such a
non-classical potential appear in the classical dynamics of complex adaptive systems? (In particular, the LV model
might involve “rabbits and foxes” or “sharks and tuna” [18], and so it seems almost fantastic that a “mock quantum
potential” would have anything to do with such macroscopic systems.) In this section we want to shed light on this
very important question.

We will elucidate this question by using the recent work of Smolin [38] (originating with Barbour and Smolin
[39]) on the connection between complexity and variety and the quantum (Bohmian) potential. In some sense, the
quantum potential is (according to Smolin) a measure of the variety of a collection of similar subsystems of a given
system. (In his work [38] Smolin aims at interpreting the fundamental quantum potential and he attempts to derive
fundamental quantum theory with ultimate applications to cosmology. This is not our present aim. However, we will
use Smolin’s work to elucidate the emergence of mock quantum theory in classical complex adaptive systems in which
the adaptation of a system to the environment is crucial.)

Our reading of Smolin’s suggestion is as follows: the mock quantum potential is a measure of the variety of responses
a complex adaptive system has in a given environment. The principle of maximal variety leads to the expression for
the mock quantum potential that we used in previous sections.

Thus, in the context of “predator-pray” LV systems in a given environment, the principle of maximal variety of
adaptive response these systems have in their environments, could lead, in principle, to the mock quantum potential,
and mock quantum theory. In the case of these macroscopic systems the required time scale might be unrealistic for
observing the emerging mock quantum behavior, and the balancing between the mock quantum potential and the
environment might be impossible. However, the network dynamics of neurons (modeled by the Wilson-Cowan (WC)
model [36] related to the LV model) or the effective LV dynamics in cellular environments may well lead to more
realistic emergent mock quantum systems.

Here we summarize the derivation of the quantum potential from the principle of maximal variety as outlined in
Smolin’s papers [38] (see also [39]). First Smolin defines the concept of variety following Barbour: “The variety of a
system of relations, V, is a measure of how easy it is to distinguish the neighbourhood of every element of a system
from that of every other.” (Note that what is assumed here is that there are “many interacting classical systems,”
which is appropriate in the case of mock quantum theory.)

The elements of the system, might be particles or other classical entities, and relations (or relational observables
Xij) between these elements: for example, particles and their relative distances. Smolin also defines the view of the
i-th element, which is what element i may “know” via relational observables Xij about the rest of the system. The
view is denoted by Vi(Xij). Also, the distinctiveness of two elements, i and j is a measure of the differences between
the views of i and j:

Iij
def
= |Vi − Vj |2, (86)
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and it acts as a natural metric on the set of subsystems (two systems are close if they have similar views). Then the
variety is defined to measure the distinguishability of all the elements (the total number being N) from each other

V =
1

N(N − 1)

∑
i̸=j

Iij =
1

N(N − 1)

∑
i̸=j

|Vi − Vj |2. (87)

Smolin [38] then looks at a continuous form of this expression, by introducing the probability density ρ and a
fundamental cut-off determined in terms of the inverse of the probability density. Essentially Smolin [38] replaces the
above discrete formula with a continuous form via the following dictionary:

1

N

∑
k

ϕ(xk) →
∫

ddz ρ(z)ϕ(z), (88)

as well as

1

N

∑
k

ϕ(xk+i, xk) →
∫

ddx ρ(z + x)ϕ(z + x, z). (89)

Then the continuous formula for the variety V involves the product of probability densities [38]

V →
∫

ddz ρ(z)

∫
ddx

∫
ddy ρ(z + x) ρ(z + y), (90)

which upon the Taylor expansion of ρ(z + x) and ρ(z + y) leads to the following result for the variety [38]

V →
∫

ddz ρ
(1
ρ
∂aρ

)2

+ ... (91)

which ultimately gives the quantum potential of the de-Broglie-Bohm type. Smolin [38] relates the potential energy
to this expression and claims that this quantum potential is the leading term that comes from maximal variety. He
then goes on to derive the Schrödinger equation from this principle of maximal variety [38].

This approach is eminently suitable for applications to complex adaptive systems, which are macroscopic classical
systems far from equilibrium, and one can thereby envision the application of the principle of maximal variety as
defined by Smolin and Barbour. The above derivation of the quantum potential then becomes applicable to complex
adaptive systems and thus makes our claim regarding the emergent quantum (mock quantum) description more robust.
One only needs to substitute the canonical Planck constant (set to one in the above discussion) with a non-universal
and system-dependent mock Planck constant Y . Thus, the mock quantum formulation has the required robustness,
at least on the level of theory. Note that the previous discussion is also consistent with an empirical view that data
describing complex systems do not always conform with the laws of classical probability, but rather with quantum-like
probability [3, 4], which is consistent with a more general picture of quantum mechanics as quantum measure theory
[35]. Nevertheless, it is crucial to find some experimental evidence for mock quantum dynamics. This brings us back
to the hydrodynamic example mentioned as one of the original motivations for our work [8, 9].

VIII. EMERGENT HYDRODYNAMICS: THE (MOCK) QUANTUM-CLASSICAL TRANSITION

Here we use the above discussion of “why VQ?” in order to point out a very useful hydrodynamic formulation of
Mock Quantum Theory, following the original insight of E. Madelung [40]. (As a reference for this discussion see [20].)
In this context (which connects our work to the ongoing discussions found in [8, 9]) we also discuss some universal
features of the canonical quantum-to-classical and also, mock-quantum-to-classical transitions.

Let us start with the de-Broglie-Bohm formulation of classical Hamilton-Jacobi equations that include VQ (for the

canonical classical Hamiltonian H = p⃗2

2m + V , with ∇S def
= p⃗ )

∂S

∂t
+

(∇S)2

2m
+ V + VQ = 0. (92)

Let us take the gradient of this de-Broglie-Bohm equation (act with ∇ from the left side)

∇
[∂S
∂t

+
(∇S)2

2m
+ V + VQ

]
= 0, (93)
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which can be rewritten as [ ∂
∂t

+
1

m
(∇S · ∇)

]
∇S = −∇[V + VQ]. (94)

Now, let us use v⃗
def
= ∇S

m (because in our case p⃗ = mv⃗) to rewrite the previous equation as

∂v⃗

∂t
+ (v⃗ · ∇)v⃗ = − 1

m
∇[V + VQ]. (95)

This looks like Euler’s equation of classical hydrodynamics (with the extra “quantum force” provided by the gradient
of the quantum potential −∇VQ), where the other, continuity equation, is given by the conservation of probability

(remember, ψ =
√
ρ eiS/Y)

∂ρ

∂t
+∇(ρv⃗) = 0. (96)

This produces the (mock) quantum Euler equation,

∂vi
∂t

+ (v⃗ · ∇)vi = − 1

m
∂iV − 1

m
∂iVQ, (97)

to be compared with the classical Euler equation that includes the pressure p term (with the fluid density mρ),

∂vi
∂t

+ (v⃗ · ∇)vi = − 1

m
∂iV − 1

mρ
∂j(p δij). (98)

Such “(mock) quantum hydrodynamics” is defined by the continuity equation ∂ρ
∂t + ∇(ρv⃗) = 0 and the “(mock)

quantum Euler” equation

∂vi
∂t

+ (v⃗ · ∇)vi = − 1

m
∂iV − 1

mρ
∂jσij , (99)

where the “(mock) quantum” stress-tensor σij reads

σij
def
= −Y2ρ

4m
∂i∂j log ρ. (100)

Once again, as in our previous discussions, in the case of Mock Quantum Theory, we have the same hydrodynamic
formulation known from canonical quantum theory, in which the Planck constant is replaced by an effective, mock
Planck constant.

We stress the crucial role of the (mock) quantum stress-tensor or, equivalently, the (mock) quantum potential. The
classical limit corresponds to turning off the (mock) quantum stress-tensor term, which leads to the Euler equation-
like limit of “(mock) quantum hydrodynamics.” Alternatively, the mock quantum dynamics is induced by turning on
the (mock) quantum stress-tensor, by placing the classical system in a very particular environment that is effectively
modeled by the (mock) quantum stress-tensor or, equivalently, (mock) quantum potential. In what follows, we argue
that in the limit of the “turbulent” phase of the above mock quantum hydrodynamics one may identify the observable
effects of the quantum-to-classical and mock-quantum-to-classical transitions.

The following observations are in order: The discussion in the previous section relates the (mock) quantum potential
VQ to the principle of maximal variety (and thus maximal variety of adaptations of the system under consideration to
its environment), which then leads to the above “mock quantum” stress tensor, and thus to the above hydrodynamic
formulation. Note also: ρ measures probability, and the logarithm of probability is entropy by the Boltzmann formula,
whereupon the (mock) quantum stress tensor is related to the second derivative of entropy, which for maximally
symmetric (Fisher) metric in the space of probabilities [28, 29], is given by the robust features of the Gaussian
distribution that is related to the Fisher metric. This again confirms the robustness of the above hydrodynamic
formulation and also, robustness of Mock Quantum theory, which emerges from the maximal variety of adaptation of
a complex system to its environment, by the discussion in this and the previous section.

This hydrodynamic formulation should be related to the ongoing discussion on the validity of the actual microfluidics
experiments that might be illustrative of an emergent “quantum” behavior in macroscopic systems [8, 9]. The most
natural interpretation of these experiments (assuming their ultimate validity) is in terms of emergent or mock quantum
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theory. The mathematical models used to describe these phenomena could be used in different contexts (such as the
area of complex adaptive systems), but the models used in [9] seem to be fine-tuned and perhaps they are not as
useful in the context of biology. However, our claim that the same (Mock Quantum) outcomes that are claimed to
be observed in these experiments [9] should be realized in complex adaptive biological systems, but more generically,
given the above argument regarding the emergence of the (mock) quantum potential from the principle of maximal
variety, which is particularly well suited for such systems.

Closing this section, let us make an important observation regarding the universality of the quantum-to-classical
and mock-quantum-classical transitions which also relies on the central role of the mock quantum stress-tensor or the
mock quantum potential. The following discussion also illustrates the crucial distinction between the classical and
the mock-quantum dynamics in the hydrodynamic formulation.

It has been suggested by Leggett [7] that in macroscopic quantum systems one might have to deal with many
entangled objects (not, say, the pairwise entanglement found in superconductors, for example), and that for a critical
number of entangled objects, one might have a situation analogous to the turbulent phase of fluid dynamics, where
above the critical Reynolds number (the ratio of the non-linear (v⃗ · ∇)vi and the viscous term in the Navier-Stokes
equations) one encounters a very different (turbulent) physics behavior as opposed to the physics found below the
critical Reynolds number.

Obviously in the above discussion of “quantum hydrodynamics” one could consider a (mock) “quantum Reynolds
number,” the ratio of the non-linear term (v⃗ · ∇)vi and the relevant term that depends on the (mock) quantum stress
tensor σij , so that above a critical number (in the phase where the non-linear term (v⃗ · ∇)vi dominates over the
Y- (or ℏ-)dependent quantum stress tensor term) one gets “(mock) quantum-to-classical turbulence” characterized
by a non-trivial (for example, Kolmogorov-like [41]) scaling of correlations functions of “velocities” vi. The same
statement would be true for mock quantum theory in which the Planck constant is replaced by the effective (mock)
Planck constant.

In particular, we could apply the Kolmogorov insight [41] for the flow of “energy” v2 (where v ∼ ∇S/m, that is,
the effective velocity is the gradient of the phase of the wavefunction)

v2/t ∼ ϵ→ v ∼ (ϵ l)1/3, (101)

where we have used the scaling v ∼ l/t, with t denoting the time evolution variable and l the characteristic spatial
scale. In that “turbulent” regime the effective “velocity,” and thus S (that is, (mock) quantum phases) become
random fields with the following two-point correlator, as implied by the above scaling

⟨v(l) v(0)⟩ ∼
〈
(∇S/m)(l) (∇S/m)(0)

〉
∼ (ϵl)2/3 → ⟨S(l)S(0)⟩ ∼ (ϵ̃ l)8/3. (102)

This would be a universal feature of the quantum-to-classical and also of the mock-quantum-classical transition that
could, in principle, be observed experimentally. Note that in this context the quantum limit corresponds to the
“laminar flow,” whereas the classical dynamics corresponds to the “turbulent flow” of the gradient of the phase of the
wavefunction.

IX. CONCLUSION

In this paper we have elaborated on the proposal of [5] that was motivated by certain fluid dynamics experiments
reviewed in [8, 9]. It is still an open question whether such experiments (if, indeed, reproducible) can be repeated in
the context of living systems. Nevertheless, we have herein explored the concept of emergent quantum-like theory in
complex adaptive systems. In particular, we have examined the concrete example of emergent (or mock) quantum
theory in the Lotka-Volterra system. In this context, we have emphasized the state-dependent nature of the mock
quantum dynamics and we have introduced the new concept of mock-quantum, state-dependent, statistical field
theory. We have also discussed some universal features of the quantum-classical as well as the mock-quantum-classical
transition found in the “turbulent” phase of the hydrodynamic formulation of our proposal. Mock quantum theory
might justify a purely empirical view that data describing complex systems do not always conform with the laws of
classical probability, but rather with quantum-like probability [3, 4].

We note that oscillatory phenomena (of the kind used in [8, 9]) are ubiquitous in biology, both at the tissue and at
cellular levels [42], and are essential for the functioning of biological systems. It is then tempting to conjecture that
by investigating such oscillations, a potential evidence for the necessity and emergence of mock-quantum stability can
be demonstrated. While real biological systems might be too complicated to analyze, a simplified synthetic regulatory
cell or an auto-catalytic chemical process, in which the nature of these oscillations can be controlled, could be a
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platform for investigating the relevance of our proposal [43]. What we propose as a test of our theoretical discussion
should essentially be seen as a direct analogue of the recent quantum-like fluid dynamics experiments [8, 9], however,
to be conducted in the context of synthetic biology.

The formal quantization of the Lotka-Volterra system (using the usual Planck constant ℏ) has been discussed
previously in the literature [44]. However, that discussion is unrelated to the central point of this work regarding the
emergence of an effective quantum theory in complex adaptive systems. We could also compare our proposal to the
approach to quantization known as stochastic quantization [45], and state that such developments (even though they
are made in a completely different context of quantum foundations) are illustrative of our claim that mock quantum
dynamics is achievable in macroscopic complex adaptive systems.

The “mock quantum theory” proposal can be intuitively understood as a new type of non-classical adaptive stability
in biological systems, but should be clearly distinguished from the arguments that canonical quantum physics is
relevant in biological systems [46]. Our effective, mock-quantum theory comes with a new fundamental deformation
parameter (e.g., the size of the action of the Lotka-Volterra models) that is emergent and so distinguishable from
the canonical fundamental quantum theory, which usually suffers (due to decoherence) in competition with realistic
thermal and noisy biological environments. The original article on mock quantum theory [5] only started the study of
these emergent, mock-quantum phenomena [47], and we have aimed herein to explain in more detail the robustness
of this proposal as well as its various implications.

A central point of our present work is the state-dependence of the dynamics and a new hierarchy of models (such
as the LV model), given the fact that the quantum potential changes with general mock-quantum states, and which is
consistent with some general arguments in “quantum biology” [15]. One intuition regarding the possible relevance of
the mock-quantum proposal in complex adaptive systems is the competition between stability and adaptability. Even
though it is fair to say that classical stochastic complex systems are not completely understood, one insight regarding
them is that they are neither too chaotic nor too ordered, but that they exist at some kind of a “criticality” [48].
Quantum-like fluctuations generically suppress chaos, but they increase computability (intuitively, given the path
integral formulation of quantum dynamics [33], quantum computers are exponentially enhanced classical computers)
and thus one would expect, at least very naively, that in emergent quantum (or mock quantum) complex adaptive
systems, chaos is suppressed. Their “quantum-like nature” might therefore enhance stability and, also from the
information-theoretic point of view and because of enhanced computability, such systems might be more adaptable.
Thus quantum-like effects might be utilized by evolution for the reasons of enhanced stability and adaptability. Still,
we should remember that standard quantum theory will always face problems of decoherence and difficulty of scaling-
up in generic macroscopic systems and that mock quantum theory, while evading decoherence, seems to face the
issue of cancelling/balancing of the system under consideration to its complex adaptive (and, in general, stochastic)
environment. We hope to explore some of these fascinating issues in our future work.
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