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Abstract. The Spiking Neural Networks (SNNs) are biologically more
realistic than other types of Artificial Neural Networks (ANNs), but they
have been much less utilised in applications. When comparing the two
types of NNs, the SNNs are considered to be of lower latency, more
hardware-friendly and energy-efficient, and suitable for running on portable
devices with weak computing performance. In this paper we aim to use
an SNN for the task of classifying Chinese character images, and test its
performance. The network utilises inhibitory synapses for the purpose of
using unsupervised learning. The learning algorithm is a derivative of the
traditional Spike-timing-dependent Plasticity (STDP) learning rule. The
input images are first pre-processed by traditional methods (OpenCV).
Different hyperparameters configurations are tested reaching an optimal
configuration and a classification accuracy rate of 93%.

1 Introduction

Spiking Neural Networks (SNNs) are widely used in computer vision, pattern
recognition and other related problems [1, 2, 3]. However, implementing SNNs
for image classification is more challenging than the traditional Artificial Neural
Networks (such as Convolutional NNs) as they rely on a more complicated model
of the neuron, which can simulate biological neurons more realistically [4, 5].
Hence, a question remains about the comparsions between the two types of NNs,
regarding power efficiency, applicability (say for different lighting conditions),
speed, needed computational resources and similar.

In many image classification studies, MNIST dataset is used to verify the
classification accuracy of the algorithms [6], and serves as a benchmark for per-
formance of various algorithms in machine learning. The MNIST dataset is a set
of handwritten images of Arabic numerals 0-9 created by LeCun et al. [7]. In
Diehl et al. work [8], for instance, MNIST dataset is used to train a SNN with
(STDP) learning rule and lateral inhibition in an unsupervised way. Therefore
we have chosen to use this type of approach and implement it on the case of
Chinese characters classification.

In this work we aim to classify a specific set of eight Chinese characters, which
have the meanings: up, down, left, right, forward, backward, exit, entrance
(see Table 1). We generate our dataset, as described in the next section, and
implement image preprocessing pipeline using the OpenCV library. We develop



Chinese
Character 上 下 左 右 前 后 出 入

English
translation up down left right forward backward exit entrance

Table 1: A selection of eight Chinese characters and their English translations.

a SNN, similar to one described in [8], with well defined learning rules as in
reference [8], and implement an unsupervised learning process. The network is
trained, tested and analysed using different hyperparameter configurations, in
order to assess the optimal number of neurons in each layer, and how the number
of pixels of the input image is affecting the classification accuracy.

2 Data set creation and Image pre-processing

Since we could not identify a suitable, publicly available dataset of handwritten
Chinese characters which would be equivalent to the MNIST dataset, hence we
have created a partial dataset. We did that by starting from a set of images of
the handwritten characters (Table 1). Then we have performed several image
processing tasks, specifically rotate all images for random angles, then perform
three different degrees of dilation and erosion operations, and finally zoom to
the specified size. In summary, for each Chinese character, we start from 13 font
types, then have 20 different rotation angles, and 3 (dilated, eroded and original
one) transformations. This is in total 780 images for each character, so for all
characters, the whole data set consists of 6,240 (780x8) images.

Regarding the pre-processing part, it serves the purpose of greatly simplify-
ing the data by eliminating irrelevant information in the images and enhancing
the detectability of the information so that the SNN can accurately complete the
classification task. The pre-processing algorithm pipeline performs median fil-
tering and smoothing on the image to reduce the influence of background noise,
then it operates on the pixel values of the image and quantises all the pixel values
in the image to two values. The third step is to binarise the image. In the fourth
step, the opening operation is performed to eliminate further the texture that
may appear on the text pattern. Finally, the removal of irrelevant background
and image scaling functions are applied.

3 SNN Model

The SNN model used in this study was proposed by Diehl et al. [8] and it
is based on unsupervised learning using STDP. They proposed one network
architecture and four learning rules performing classification training and result
evaluation on the network using the MNIST data set. Due to the similarity
of task types, this study adapts this network’s topology, but then investigates
a range of hyperparameters (such as different numbers of neurons), and then
performs training for the Chinese character data set, and finally test the accuracy
of the classification results.



Fig. 1: The SNN topology. The full (blue) lines represent excitatory feed forward
connections, and broken (red) lines are inhibitory recurrent connections.

3.1 Topology

The SNN used here has the characteristics of a competitive network (CN) where
neurons in the output layer can laterally inhibit each other, and they are in
constant competition. Most of the learning methods of CNs can discover the
salient features of the input sample using unsupervised or self-organized learning,
which are in general closer to the brain network model than supervised learning.
The configuration of the SNN consists of two layers, see Fig. 1. The first one is
the input layer with a number of neurons corresponding to the grayscale input
image’s pixels (N neurons for N pixels in the input image, e.g. N = 2500 for
50×50 pixel image). Each neuron encodes a pixel into a Poisson type fixed spike
sequence (Details in Results Section), which simulates the generation mode of
the neuron’s spiking as the input information for the next layer. The rate of the
Poisson spike sequence is proportional to the gray level of the pixel. The second
layer is the output layer, consisting of M neurons, where one or more neurons
will eventually represent each character.

The connectivity map is the following: (a) input layer to output layer - all to
all (Fig. 1, blue lines), excitatory synapses, (b) output layer to output layer - all
to all (without self-connections, Fig. 1, red lines) with inhibitory synapses. This
kind of connection provides the effect of lateral inhibition generating competi-
tion between output neurons. The neuron model in this network is the Leaky
Integrate-and-Fire (LIF), and the model for the synapses is the Conductance
Based (COBA) model, described in [9]. The training process applies only to the
synapses between input and output layer (blue/full lines in Fig. 1). The weights
of the inhibitory synapses (red/broken lines) are fixed, and do not change in the
training process. The maximum conductance of the inhibitory synapses is set
to 10 nS to ensure that the lateral inhibition is neither too weak nor too strong.
The value of 10 nS was chosen empirically.



3.2 The Learning Rule

The network combines synaptic plasticity and threshold plasticity to achieve
competitive learning. For the synaptic plasticity we use a variation of the STDP
learning rule. A synapse Sji between presynaptic neuron i and postsynaptic neu-
ron j updates whenever any of these two neurons spike. When the postsynaptic
neuron (j) spikes at the moment t, the weight update formula is [8, 10]:

∆w = ηpost(xpre − xtar)(wmax − w)µ (1)

where ηpost is the learning rate, w is the synaptic weight, wmax is the maximum
weigh, and µ determines the degree of the weight dependence [8]. The term xpre

is the spike timing factor for the presynaptic neuron i spikes before t. Whenever i
spikes at tnewi , we update the valueKi ← Ki·exp(−(tnewi −toldi ))/τ)+1, where toldi

is the time of the previous spike of the neuron i (we also update toldi ← tnewi ) [10].
When the postsynaptic neuron spikes at t, we have xpre = Ki ·exp(−(t−toldi )/τ).
The xtar is some target presynaptic trace value, which lowers the synaptic weight
and consequently reduces the impact of weak synapses.

When the neuron i spikes at t, the weight update formula is [8, 10]:

∆w = −ηprexpostw
µ , (2)

where ηpre is the learning rate for the synaptic depression, and xpost is the
postsynaptic neuron j trace, generated similarly as explained for xpre.

In addition, we also use threshold voltage plasticity learning. Specifically,
the membrane potential threshold of each output neuron depends not only on
vthres, but also on a factor θ. θ is similar to the concept of the trace introduced
above. Each time a neuron emits a spike, θ is increased by a fixed value, and
decays exponentially during the rest of time. Therefore, the more one neuron
fires, the higher its threshold, making it more difficult for the neuron to fire the
next spike in quick succession. This mechanism imitates neuron’s adaptation to
the sustained input current, and effectively limits the firing frequency.

4 Results

The network is trained with 50x50 pixel resolution pre-processed images. For
the output layer, the number of neurons varies from 100 to 625. Considering
400 neurons for the output layer, the network has 1 million excitatory synapses
linking the input with the output layer, and 159,600 inhibitory synapses linking
each output neuron with each other (400x399=159,600). Each image is pre-
sented to the network for 350ms with a delay of 150ms between two samples.
At the beginning of training, the number of spikes emitted by each output layer
neuron is irregular (random in time). As the training progresses, each neuron’s
receptive field gradually learns a fixed input pattern, showing a certain regular-
ity. Only a few specific neurons emit dense spikes, and the remaining neurons
hardly emit any spikes. This phenomenon can be established by observing the
synaptic weights distribution after training, shown in Fig. 2a. In the weight



(a) (b) (c)

Fig. 2: (a) Weight matrix for N = 400 output neurons, presented in 20×20 = 400
blocks, each block has 50×50 = 2500 weights for the synapses between the input
neurons and one output neuron. Some weights blocks resemble input characters.
Training set: 5000 images, (b) Confusion matrix for predictions. (c) Accuracy
with different number of images in the training set.

matrix obtained by using 5,000 pictures to train the network, each square repre-
sents connections to an output layer neuron, and it is composed of the weights
of the synapses to 2,500 input neurons.

To test the network, each output neuron needs to be assigned a label. This
is an intermediate step, which could be classified as a ”supervised” process and
comes after the unsupervised learning phase has created distinctive outputs for
each input image. In the process of assigning labels the weights and adaptive
thresholds generated after training are fixed and the network is set, then the
testing set images are sequentially input to the network.

Assuming the number of training samples is 5,000, a 5000x400 spike matrix
can be obtained. Each column represents the firing response of the corresponding
neuron to the training images, and each image represents one of the eight Chinese
characters. Therefore, by averaging the number of spikes generated by each
type of Chinese character, the category with the most significant average value
represents the category of the neuron. After each output neuron was assigned
with one of the eight labels, we tested the network on a set of 1,000 symbols not
previously seen by the network. We have achieved 92.85% accuracy when the
training set had 5,000 symbols.

The confusion matrix of the prediction result is shown in Fig. 2b. Index 0
to 7 in the matrix correspond to the 8 Chinese characters. Analysing the results,
the characters ‘左’ and ‘右’ (indices 3 and 4), are similar. The character ‘后’ also
has a certain similarity with the character ‘左’ and ‘右’. We can observe that the
character 4 has been correctly predicted in 89% of cases, but in 6.2% of cases it is
labelled as character 0 and 3.6% as the character 5. For character 5, it is correctly
predicted in 85% of cases, wrongly predicted in 4.2% as character 0 and 9.1% as
character 4. Therefore, these characters are prone to some small classification
errors due to similar shapes, shown in the confusion matrix. After increasing the
number of images in the training set, we found that this mismatch rate dropped
sharply, indicating that for some neurons that generate strong firing response for



Neurons number 100 225 324 400 625

Accuracy(%) 87 89.8 91.7 92.85 93.04

Table 2: Accuracy with different output layer sizes

the ‘上’ image, their weight matrices are not trained enough. Fig. 2c shows how
the accuracy of classification task increases as the number of training set images
increases. We have observed that when the number of images is above 5,000, the
classification accuracy of the network tends to a stable level, which is around
93%. We have also investigated the effect of the network hyperparameters on the
classification results. Table 2 shows how the number of output neurons affects
the accuracy of the classification. For M = 100 output neurons we already have
accuracy of 87%, and increasing the number of output neurons (and synapses)
six fold (i.e. to M = 625), the accuracy increases for about 6%.

5 Conclusions

This paper introduces a SNNmodel for the Chinese character image classification
task, based on unsupervised learning STDP. The process of developing the model
consisted of three main tasks: creating a Chinese character dataset, designing a
pre-processing pipeline, and building, training and testing an SNN. The Network
hyperparameters (e.g. number of neurons) were tested, reaching an optimal
configuration with 50x50 input size images and a 400-neuron output layer. The
maximun performance was achieved when the network is trained with minimum
5,000 samples (or about 600-700 per character), reaching an accuracy of ∼93%.
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