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A B S T R A C T   

Urban flooding is a major problem for cities around the world, with significant socio-economic consequences. 
Conventional real-time flood forecasting models rely on continuous time-series data and often have limited 
accuracy, especially for longer lead times than 2 hrs. This study proposes a novel event-based decision support 
algorithm for real-time flood forecasting using event-based data identification, event-based dataset generation, 
and a real-time decision tree flowchart using machine learning models. The results of applying the framework to 
a real-world case study demonstrate higher accuracy in forecasting water level rise, especially for longer lead 
times (e.g., 2–3 hrs), compared to traditional models. The proposed framework reduces root mean square error 
by 50%, increases accuracy of flood forecasting by 50%, and improves normalised Nash–Sutcliffe error by 20%. 
The proposed event-based dataset framework can significantly enhance the accuracy of flood forecasting, 
reducing the occurrences of both false alarms and flood missing and improving emergency response systems.   

Software and data availability  

- Programming language: MATLAB 2021b using Machine learning and 
deep learning toolbox.  

- Hardware requirement: Any computer with windows 10 and newer, 
any intel or AMD x86-64 processor, 4 GB minimum RAM, 8 GB 
minimum storage, no specific graphics card.  

- Written code: 72 KB Modular code contains main file with 5 function 
files, available at github.com/FarzadPiadeh21452390/Event-based- 
platform.git  

- Dataset: Ruislip water level data, Heathrow, Iver Heath, and RAF 
Northolt rainfall data (London, UK) used in this study. Real-time data 
are available and can be directly extracted by using an application 
programming interface (API) provided by the UK Environment 
Agency up to the last 28 days. Long-term historic data can also be 
available as csv file format in “environment.data.gov.uk/flood- 
monitoring” free of charge for research purposes by the UK Envi
ronment Agency upon request. 

1. Introduction 

Urban flooding is one of the most devastating natural disasters, and 
its impacts on economic, population, and property loss can be exacer
bated by climate change (Xie et al., 2017). However, the use of real-time 
urban flood forecasting (RTUFF) models can help mitigate these impacts 
effectively by providing early warning for emergency response, early 
action, and contingency planning (Ahmed et al., 2021). Urban flooding 
can be described as a temporary overland flow in urban areas, including 
pluvial, fluvial, coastal, flash, groundwater, and urban drainage systems 
(UDS) flooding (Hamil, 2011). UDS flooding is a complex process that 
happens when excess water escapes from the UDS in one or more parts of 
the system (Chen et al., 2018). This type of flooding can be caused by a 
variety of factors, such as high-intensity rainfall, surface runoff in 
densely built urban areas, and lack of drainage capacity. The conse
quences of UDS flooding can have a significant impact on sustainability, 
including economic and human losses, business interruption, and 
damage to urban infrastructure (Piadeh et al., 2022b). 

Urban flooding is a complex process that can be simulated and 
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forecasted using physically based models (PBM) or RTUFF models based 
on time-series artificial neural networks (ANN) and machine learning 
(ML) (Zakaria et al., 2021). In recent years, the use of RTUFF models has 
gained significant attention from researchers due to the limitations of 
PBM, such as the high demand for data and the need to adopt a physi
cally consistent model structure. PBM models in RTUFF are typically 
restricted to limited-dimensional spaces within human cognitive ca
pacity and existing scientific knowledge of modelling in this field (Lin 
et al., 2021). Compared to PBM, ANN/ML models have been found to 
offer several advantages, including hyper-flexibility, the ability to 
require limited data for model parameters, and computational efficiency 
(Razavi et al., 2022). These advantages make ANN/ML models suitable 
for modelling complex mappings of real-time urban flood forecasting 
(RTUFF) with any form of correlations and dimensionality embedded in 
the dataset. (Razavi et al., 2021). In particular, computationally efficient 
ML models that require less and smaller types of data could play a 
crucial role in emergency planning and the real-time operation of urban 
flood early warning systems. These models can be retrained quickly after 
each flood occurrence, providing more accurate and timely forecasting 
in a very short time window e.g., few seconds, which can help decision 
makers implement proper structural and non-structural solutions, such 
as flood awareness, flood direction, or evacuation (Piadeh et al., 2023). 

While there have been efforts to improve the interpretability of ML 
models to help stakeholders understand which factors are most influ
ential in the decision-making process, it is important to acknowledge 
that achieving clear and understandable explanations from ANNs still 
remains a significant challenge. These models are often interpreted as 
black box simulations, which can limit their interpretability. Further
more, while sensitivity analysis aids in comprehending the influence of 
input variations on model predictions and uncertainty analysis quan
tifies the potential range of outcomes due to input uncertainty, these 
analyses alone may not offer the desired level of flexibility for applica
tions involving highly complex and dynamic rainfall or flood data 
(Razavi et al., 2021; Saltelli et al., 2021). This can lead to a reduction in 
the trust and preference of decision makers to fully rely on these models. 

Furthermore, the developed models have mainly focused on flood 
susceptibility, forecasting of surface runoff discharging into UDS, flood 
inundation, flood risk analysis, and flooding alarm systems UDS and a few 
models have been developed for water level forecasting in combined 
sewer systems or stormwater collections systems (Luo et al., 2022). 
Various types of feed-forward neural networks (FFNN), including 
single-layer and multi-layer, have been employed as a surrogate for 
physically based models in hydraulic and hydrological modelling (Li 
et al., 2023; Piadeh et al., 2022a). Additionally, weak learner data mining 
models have been used for alarm-based flood occurrence detection (Pia
deh et al., 2022b). Recurrent neural networks, particularly those with 
long short-term memory (LSTM), have been shown to improve flood 
forecasting performance by capturing temporal behaviour through extra 
memory (Nanda et al., 2019). While LSTMs have been primarily used for 
rainfall forecasting and satellite-based deep learning (Adikari et al., 
2021), Nonlinear Auto-Regressive eXogenous (NARX) is also introduced 
as a recurrent neural network forecasting model which is suitable for 
multivariate time series data (Chang et al., 2014; Nanda et al., 2019; 
Huang et al., 2021). However, one major challenge is the accuracy of 
flood forecast at various lead times (i.e., the flood forecast period which is 
defined as the latency between the real/current timestep, and flood 
forecast timestep). More specifically, the accuracy of these models for 
long lead times, such as several hours, is quite limiting although it can be 
acceptable for short lead time e.g., less than 1 hr. For example, accurately 
forecasted water levels are limited to approximately 120min (Mounce 
et al., 2014; Garofalo et al., 2017; Abou Rjeily et al., 2018), which hinders 
generating acceptable key performance indicators (KPIs) and results in a 
low rate of Nash-Sutcliffe model efficiency coefficient (NSE) and a high 
range of root mean square error (RMSE) (Zhang et al., 2018). 

The accuracy of flood forecasting models may be hindered by the 
database used for model development, which typically requires long- 

term records of rainfall and flood events, specifically water levels in 
UDS. These time-series data are usually continuous and include a large 
number of observations from non-flood conditions, or dry weather pe
riods, which can lead to bias in model development (Piadeh et al., 2021). 
While these models use different definitions of flood events to evaluate 
performance, they inevitably require the entire database, including both 
dry and wet weather periods (the latter of which can be further divided 
into flood and non-flood events), for training and validation. Despite the 
focus on developing advanced or hybrid models, there is often a lack of 
attention given to classifying the database based on possible events, such 
as accurate identifying flood and non-flood events. 

This may be attributed to the absence of a comprehensive and clear 
definition for identifying a flood event. Darabi et al. (2020) noted that 
there has been no universally accepted definition for flood event iden
tification in the concept of RTUFF. ButlerDigman et al. (2018) 
mentioned that differentiating between the degree and extent of inter
action between different events is complex and requires further inves
tigation. Some studies have categorised time-series test data, training 
and validation data were excluded, based on specific time windows, 
such as using annual separation of databases as an individual event (Lv 
et al., 2020; Alizadeh et al., 2021). Alternatively, a few studies have 
classified flood events based on rainfall characteristics. For example, 
Adikari et al. (2021) used a three-class chamber flow by considering 
annual peak runoff and runoff threshold, and Lin et al. (2021) intro
duced flood events based on rainfall duration and return period. How
ever, all of these research works demonstrate that there is no 
comprehensive framework for flood event identification and relevant 
database preparation, including event identification or event-based 
dataset generation for the RTUFF modelling. They also noted that 
while training models with distinguishing between flood and non-flood 
events would be ideal, defining accurate flood events and manipulating 
relevant data may still be challenging. 

The objective of this study is to introduce a novel event-based de
cision support algorithm for developing RTUFF models using popular 
time-series ML methods including NARX and FFNN. The framework 
aims to create ML models that are trained on an event-based dataset. 
These models are used based on decision support system for real-time 
forecasting. The main aim of the present study is to provide more ac
curate forecasting water level in the longest lead time in comparison to 
current conventional RTUFF. This higher accuracy is crucial for real 
early warning systems, as both false alarms and missed flooding events 
can have significant consequences for stakeholders, particularly the 
public, local authorities, and relevant emergency response systems. 
False alarms can lead to a loss of confidence in the early warning system 
and may result in reduced sensitivity to future warnings, while missed 
flooding events can result in a lack of effective response, thereby dis
rupting trust between the public and local governments. As such, the 
proposed event-based dataset framework should be capable of accu
rately forecasting water level rise and flooding in the UDS in real-time, 
with longer lead times exceeding 2 hrs in comparison with currently 
available models. This can significantly improve the accuracy of flood 
forecasting, reducing both false alarms and missed events, and 
improving emergency response systems. 

2. Methodology 

A flooding event in the UDS is typically defined as the rise of water 
level in the drainage system that exceeds its capacity, causing water to 
overflow into flood plain areas and urban surfaces such as streets, pave
ments, and buildings (SEPA, 2021). Flooding in UDS can occur along any 
waterway, including urban rivers, channels, canals, and conduits that can 
be included in the present methodology. Besides, the proposed framework 
has the capability to incorporate various time-series data, including but 
not limited to, rainfall, air temperature, air moisture, wind speed, and 
wind direction, based on the level of complexity required by the devel
oped model (Piadeh et al., 2022a). Also, various sources of rainfall data, 
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such as IoT-based rainfall network monitoring stations, real-time data 
from radar stations, and data extracted from satellite productions may be 
available. In addition, numerous specifications of urban catchments, 
including land use, soil moisture, and infiltration rate, may also be 
accessible (Szeląg et al., 2022). However, this study utilises a limited set of 
selected data from one rainfall monitoring station and one water level 
gauging station, as these are the most commonly used devices for 
measuring rainfall and water level in hydrological practices (ButlerDig
man et al., 2018). The primary reason for this is that the proposed 
framework aims to provide a generalised model that requires a minimum 
amount of data, making it applicable to other similar cases where data 
availability may be limited to a single set of rainfall and water level data. 
Finally, the presented framework focuses on temporal modelling of flood 
forecasts at a point e.g., gauging station of water level in the UDS. How
ever, the framework can be utilised for several points. The proposed 
framework, as illustrated in Fig. 1, comprises four key steps: (1) collecting 
historical and real-time data, (2) generating an event-based dataset, (3) 
developing event-based ML models, and (4) assessing the model perfor
mance by real-time operation. 

The continuous time-series data is utilised to distinguish between dry 
weather flow, target events (i.e., any water level rise due to rainfall 
occurrence), and depletion events (i.e., UDS flow rate declining after 
rainfall occurrence until water level returns to the base flow). Based on 
the data classification described in Section 2.1, new time-series datasets 
are generated in Step 2 using a new algorithm outlined in Section 2.2. In 
Step 3, the new databases generated from the original database (i.e., 
target dataset and depletion dataset in Fig. 1) are used to develop a real- 
time flood forecasting platform based on an event-based decision sup
port algorithm and pre-trained ML models demonstrated in Section 2.3. 
Finally, the pre-trained platform is tested with new, unseen original data 
in a real-time simulation, and its performance is evaluated based on the 
description in Section 2.4. 

2.1. Step 1: Event-based pre-processing 

2.1.1. Event identification method 
All the collected data is first analysed to identify any missing rainfall 

or water level data, which are then imputed using copula-based 

regression recommended by Ben Aissia et al. (2017). For preparing 
data from weather and gauging stations, events of rainfall and runoff 
(denoted here to as water level in UDS) need to be first identified 
temporally. This can be carried out based on the classification of rainfall 
(dry or wet weather) and water level in the UDS classified under five 
states (S1–S5) as shown in Fig. 2a (inspired from Piadeh et al., 2021): (S1- 
dry weather) with no rainfall and trivial/no change in the water level; 
(S2- dry weather) with no rainfall but an increase in the water level due 
to several reasons such as sanitary sewage discharged into combined 
sewerage (diurnal pattern of wastewater), leakage/exfiltration, or 
infiltration; (S3- wet weather) with rainfall without an increase in the 
water level due to either evaporation or infiltration into the soil and 
hence no surface runoff or discharge into the UDS; (S4- wet and dry 
weather) with rainfall resulting in an increase in the water level with a 
lag time; (S5- dry weather) with no rainfall and decrease in the water 
level back to S1 (base flow). 

Among these five states, S4 is considered here as the target event that 
can result in flooding (S4.2) or only rising water level without exceeding 
the full capacity of the UDS (S4.1) as shown in Fig. 2a. The risk of the UDS 
flooding is defined here as any rising water level due to rainfall occur
rence. This is because while S4.2 can only result in flooding (high flood 
risk), the UDS can manage to convey any excessive rainfall and surface 
runoff without flooding, i.e., S4.1, which is classified as a low risk of 
further flooding. Target events are initiated by the occurrence of rainfall 
and concluded using the curvature method (Hamil, 2011). Specifically, 
when rainfall ceases and the water level begins to decline, the inflection 
point is identified as the endpoint situated between the recession curve 
and the depletion curve in the falling limb of the water level hydrograph 
(see Fig. 2b). Details of described algorithm are provided in pseudo-code 
Algorithm A1 in the appendix. 

Although all of the generated data and the mentioned data classifi
cation will be utilised for real-time flood forecasting in the UDS (see 
Section 2.3 and the event-based decision support algorithm), only a 
portion of the data is selected for the training and validation of the ML 
models. The selected data is then saved in two separate databases: (1) 
matrix dataset including time-series data of water level depletion events 
(i.e. S5 in Fig. 2a) as n samples with m elements, in which n is the 
number of identified depletion events and m is timesteps of each 

Fig. 1. The proposed framework of the event-based ML modelling for real-time urban flood forecasting.  
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depletion event. This dataset is used to develop ML models which are 
responsible for water level forecasting in depletion situations. (2) 
different time-series dataset generated for developing time-series ML 
models which are responsible for water level forecasting in target event 
situations. The methodology of this database is described in next section. 

2.1.2. Event-based time-series dataset generation 
Time-series ML models usually require uninterrupted continuous 

time-series data for their training and validation. However, the output of 
the previous section includes various identified target events that 
occurred at different temporal timesteps and on different days or hours 

Fig. 2. Schematic representation of rainfall-runoff: (a) five-state classification of rainfall and the water level in UDS, (b) typical target events with tempo
ral boundaries. 
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Fig. 3. The four stages involved in generating an event-based time-series dataset: Stage 1) arranging all identified events in a consecutive manner; Stage 2) adding 
earlier timestep data to the beginning of each event; Stage 3) synthesising new data through nonlinear regression to extend the water level of the end point of each 
event until reaching the start point of the following event; and Stage 4) analysing the cross-correlation between water level and rainfall data in the newly gener
ated dataset. 
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of the day. Thus, this study introduces a novel event-based time-series 
dataset generation method for preparing the dataset used for water level 
forecasting in target event situations. This method involves creating 
datasets based on the identified target events (i.e., S4 in Fig. 2a) for each 
lead time of interest (P). In other words, for each P-timesteps ahead of 
forecasting, this method is repeated to generate the proper dataset. The 
method involves four iterative stages proposed in Fig. 3 to generate the 
required dataset used for developing forecasting models with the desired 
timesteps ahead. These stages are defined and updated based on two key 
parameters: P and the lag time (C), which is the highest coefficient of the 
cross-correlation between rainfall and water level data as shown in 
Fig. 3 or Eq. (1). 

CC =

∑n

1
[[x(i) − x] × [[y(i − C) − y]]]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

1
[x(i) − x]

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

1
[y(i − C) − y]

2
√ (1)  

where CC is the cross-correlation coefficient at the Cth lag time, which 
results in the highest coefficient, x and y are the two sets of data, n is the 
size of each dataset. 

In Stage 1, the identified target events (rainfall and water level) are 
arranged in a continuous time-series in the order of their temporal 
occurrence. In Stage 2, the time-series dataset is extended by adding 
data from earlier time steps in the original database to the beginning of 
each event to ensure sufficient data for training the ML model. The 
number of earlier timesteps (DA) added to the start of each event is 

calculated using Eq. (2), which depends on three factors: the best lag 
time corresponding to the highest cross-correlation between rainfall and 
water level in the entire original database (C), the time difference be
tween the start of the rainfall event and the onset of water level rise in an 
event (Idxu), and lead time of interest (P). To train ML models for 
forecasting the first instance of water level rising in a time series (e.g., Fi 
in TEi event as shown in Stage 2 of Fig. 3), data from the preceding P 
time steps is necessary. For example, if the goal is to forecast water level 
rising four-time steps into the future, data from preceding four-timesteps 
need to be used. If some of the preceding-timestep data (i.e., Idxui) are 
available from Stage 1, the remaining data (DAi) are collected from the 
historic database to be used as the database for training ML models. 

DA = C + P − Idxu (2) 

To ensure that the ML model understands the nature of the event 
data completely, including water level decreasing until the inflection 
point (Fei in Stage 3 of Fig. 3 for TEi, for instance), it is necessary to add 
all available data to the training procedure of the ML model. However, 
these data can only be used for forecasting up to P time steps ahead. 
Furthermore, between the last water level measured in event i (see Fei in 
Fig. 3 Stage 3) and the initial water level of extended event i+1(Fsi+1 in 
Fig. 3 Stage 2 and 3) that need to be filled in consistently. To address this 
issue, new data can be synthesised through nonlinear regression using a 
simple spline infilling method in Stage 3 (Jones et al., 2015). The start 
and end points for the spline infilling method are defined as the last 
water level measured in event i (see Fei in Fig. 3 Stage 3) and the initial 

Fig. 4. Structure of the proposed ML models: (a) E-NARX used for water level forecasting of target events, (b) FFNN used for water level forecasting of deple
tion events. 

F. Piadeh et al.                                                                                                                                                                                                                                  



Environmental Modelling and Software 167 (2023) 105772

7

water level of extended event i+1 (Fsi+1 in Fig. 3 Stage 2 and 3), 
respectively and the number of timesteps added to the end of each event 
is equal to P. 

Finally, Stage 4 includes analysing the cross-correlation between 
water level and rainfall of the new dataset and comparing the best lag 
time (i.e., the highest coefficient) of the new dataset (C*) with the 
previous lag time (C). If they are different, a new C is assigned to be 
equal to C*, and Stages 2–4 are repeated until C* converges to C. 

2.2. Step 2: Model development and decision tree of real-time forecasting 

Two types of commonly-used ML models were developed in MATLAB 
software tool 2021a for water level forecasting. The nonlinear autore
gressive network with exogenous inputs (hereafter E-NARX) model was 

used for water level forecasting of target events (S4), while the FFNN 
model was used for water level forecasting of depletion states (S5). 
Regardless of dry weather situations (S1 to S3), conventional RTUFF 
models have been employed to forecast both S4 and S5 states in other 
research works which are usually complicated and time-consuming. 
Therefore, a simple high speed FFNN model is selected here to take 
part of responsibility from E-NARX forecasting i.e., S5 states that usually 
have decreasing pattern of water level and does not require a RNN 
model (See Fig. 2a). In previous studies, conventional RTUFF models, 
particularly complicated RNN models, have been utilised to forecast 
both S4 and S5 states (See these states in Fig. 2a), which can be time- 
consuming and require more computational efforts. However, in the 
present study, a simple, high-speed FFNN is selected to forecast S5 states, 
which typically exhibit a decreasing pattern of water level (as shown in 
Fig. 2a), thereby conserving computational efforts and time. 

E-NARX and FFNN were chosen for their wide use in previous 

hydrological applications, as demonstrated in introduction. The NARX 
model was trained using historical records of rainfall and water level 
data from the generated time-series dataset introduced in the previous 
section, while the FFNN model was trained using historical records of 
water level data from a matrix dataset of all depletion events. Depletion 
events occur when there is no rainfall within a certain period of time or 
is passed away time of concentration of the UDS catchment area. In such 
events, the water level reduction is not affected by rainfall (eighter has 
zero or non-zero values) and therefore, the rainfall data can be removed 
from the database of the FFNN modelling. Both models were structured 
as two hidden 5-neuron layers and are trained using the Levenberg- 
Marquardt method for the training process, with mean square error 
and 10 epochs adjusted for training failure. The detailed structure of 
both models is shown in Fig. 4 and Eq. (3).  

where Y(t+P) is the forecasted water level at timestep t+i; X and Y are 
measured rainfall and water level at timestep t and preceding ones, 
respectively; CP* as delay factor corresponds to the best time lag that 
maximises the cross-correlation coefficient between rainfall and water 
level data for the Pth generated dataset (as described in Stage 4 of Fig. 3); 
vP as feedback factor represents that maximises the auto-correlation 
coefficient in the water level data of the Pth generated dataset. Method 
of delay factor and feedback factor calculation are inspired as previous 
several works (Mounce et al., 2014; Chang et al., 2014; Abou Rjeily 
et al., 2018; Nanda et al., 2019; Huang et al., 2021). The original 
database was divided into three parts: 70% for calibration, 15% for 
validation, and 15% for test processes (more details will be discussed in 
Section 3 – case study). All the models were developed on a laptop 
equipped with an Intel i7-6700 HQ CPU @ 2.60 GHz and 16 GB RAM 
Memory. 

Fig. 5. Event-based decision support flowchart for real-time operation and flood forecasting in UDS.  

Y(t + P) =

{
f
[
Y(t), Y(t − 1), …, Y(t − vP), X(t), X(t − 1), …, X

(
t − C∗

P

)]
for NARX model

f [Y(t), Y(t − 1), …, Y(t − vP)] for FFNN model
(3)   
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This study introduced an event-based decision tree flowchart as a 
novel online platform for real-time operation of the UDS and flood 
forecasting, as depicted in Fig. 5. This platform operates based on the 
event identification method presented in Section 2.1 and pre-trained ML 
models. While the data resources were divided into training and vali
dation sets for ML modelling, unseen test data were used to simulate 
real-time operation only. For this purpose, the proposed decision tree 
analyses the test data. If S1, S2, or S3, indicating dry or wet weather 
conditions without any water level rise, is recognised, the estimation of 
water level in real-time flood forecasting involves the use of nonlinear 
regression techniques applied to previously captured water levels for 
desired forecasting time steps. This method is recommended when sig
nificant water level changes are not expected or causal factors are ex
pected to remain constant (Chen et al., 2023). Historical trends of water 
level data are used to project the water level at the next time step and 
sequentially extended up to P time steps ahead. The number of historical 
data points used for nonlinear regression is determined by the catchment 
time of concentration, which represents the time it takes for water to 
travel from the furthest point of the catchment to the UDS. The accuracy 
and reliability of water level estimates can be enhanced by selecting the 
appropriate number of historical data points and considering the time of 
concentration. This improvement can lead to more effective flood 
management and mitigation strategies. For identifying the two other 
states, i.e., S4 or S5, the event-based identification method described in 
Section 2.2 is applied. After specifying the state, the associated 
pre-trained ML model is used to estimate the water level for any fore
casting lead time of interest. 

2.3. Step 3: Performance assessment for real-time operation 

The developed decision support algorithm, which includes a decision 
support flowchart and pretrained ML models, is tested using new unseen 
data in a simulated real-time operation. The model performance is 
evaluated using three widely used KPIs, namely, RMSE, NNSE, and ac
curacy of flood forecasting, as defined in Eqs. (4)–(6). 

RMSE (mm) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Yi − Ypi

)2

n

√
√
√
√
√

(4)  

where n is the total number of forecasted data, Yi is the ith measurement 
data, and Ypi is the corresponding ith forecast data. 

NNSE (%) = 1 −
1

1 +

⎛

⎜
⎝

∑n

i=1
(Yi−Ypi)

2

∑n

i=1
(Yi−Yi)

2

⎞

⎟
⎠

(5)  

where NNSE is the normalised Nash–Sutcliffe model efficiency coeffi
cient with an optimal value of 1.0 and a range between 0.0 and 1.0, and 
Yi is the mean of measurement data. 

Accuracy (%) = 100 ×
TP + TN

FP + FN + TP + TN
(6)  

where accuracy is the ratio of the total number of true forecasts for 
flooding to the total number of forecasts with an optimal value of 100% 
and a range between 0.0 and 100%, TP is the number of true positive 
forecasts (correctly detected flood conditions), TN is the number of true 
negative forecasts (correctly detected non-flood conditions), FP is the 
number of false positive forecasts (wrongly indicates flooding for non- 
flood conditions), FN is the number of false negative forecasts 
(wrongly missed flood conditions). 

It is important to note that even though the results are obtained in a 
simulated continuously real-time operation without any data manipu
lation, they are organised based on different states (S1 to S5), as illus
trated in Fig. 6 (following the approach of Piadeh et al., 2021). This 
organisation facilitates a more comprehensive, in-depth, and detailed 
discussion of the results. 

The real-time platform developed in this study was also subjected to 
sensitivity and uncertainty analyses (inspired by Meles et al., 2021; 
Razavi et al., 2021; Saltelli et al., 2021). The analyses focused on four 
following types of analysis: (1) sensitivity analysis of the hyper
parameters of the developed models, including delay factors (range of 
input rainfall data for each training iteration), feedback factors (range of 
water level data for each training iteration), layers, nodes, and random 
training seed; (2) performance of the proposed model in forecasting 
water levels for different events, such as S1 to S5; (3) uncertainty analysis 
of performance on different sizes of the training dataset; and (4) per
formance of the proposed model based on different rainfall character
istics, such as intensity and duration. Relative RMSE increase and 
relative error (RE) as defined in Eqs. (8) and (9) were utilised for these 
analyses. 

Reltaive RMSE increase (%) =
RMSEinitial

RMSEnew
× 100 (7) 

Fig. 6. Schematic presentation of classification of dataset used for training and test (performance assessment) of the proposed decision support algorithm.  
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Where RMSEinitial is the obtained RMSE for the developed model and 
RMSEnew is new obtained RMSE of developed model for sensitivity 
analysis. 

Relative error (%) =
Ypi

Yi
× 100 (8)  

Fig. 7. Geographical location of the pilot study: (a) location of case study catchment and monitoring stations, (b) layout of Ruislip UDS and catchment, (c) cross- 
correlation between water level at Ruislip gauging station and selected three rainfall stations. 

Fig. 8. Coefficient enhancement and lag time reduction for event-based datasets for lead time equal to (a) 1-timestep ahead, (b) 4-timestep ahead, (c) 8-timestep 
ahead, (d) 12-timestep ahead. 
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3. Results and discussion 

The results of the proposed methodology for real-time water level 
forecasting at the gauging station of a real-world case study are pre
sented for the unseen original test data. For better discussion, it is 
compared with the conventional NARX model (referred to as C-NARX 
hereafter), as previously explored by several research works including 
Nanda et al. (2016) and Abou Rjeily et al. (2018). The C-NARX model is 
developed using the database comprising all wet and dry periods with 
the characteristics described for the E-NARX model in the previous 
section, including training and validation. The performance assessment 
of water level and flood forecasting is carried out for four lead times 
namely, the next 15-min timestep ahead (t+1), 1-hr timestep ahead 
(t+4), 2-hrs timestep ahead (t+8), and 3-hrs timestep ahead (t+12). 

3.1. Study area and collected data 

The Ruislip urban catchment, as shown in Fig. 7a, which is charac
terised by a high frequency of fluvial flooding in the Ruislip neigh
bourhoods, has been selected as a real-world pilot study. This catchment 
area is located in the London Borough of Hillingdon and drives the Colne 
catchment surface runoff from south Hertfordshire to a tributary of the 
River Thames in England. Covering an area of 13 km2, the catchment 
area consists mainly of open channels and passes away from densely 
populated urban areas, with open space parks (see Fig. 7b). The Ruislip 
gauging station, located at the outlet of the Ruislip UDS in the river Pinn, 
is responsible for measuring and recording water levels. This gauging 
station is one of the 55 installed in the Colne catchment area. An ul
trasonic IoT-based depth monitor system has been used to record the 
real-time time-series of water level every 15min at the station since 2009 
(DEFRA, 2022). In this case, it is assumed that urban flooding is likely to 
occur in the Ruislip UDS when the water level at the gauging station 

Fig. 9. Performance indicators of the NARX models for (a) RMSE, (b) NNSE, (c) accuracy of flood forecasting, (d) computational time.  
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exceeds 850 mm. This threshold value is based on data collected from 
DEFRA in 2022 and is used to indicate the potential onset of urban 
flooding in the study area. Rainfall is also measured in the pilot study 
area using IoT-based tipping bucket method every 15min at Heathrow, 
Iver Heath, and RAF Northolt rain gauge stations, as shown in Fig. 7a. 
The selection of these rain gauge stations is based on the direction of the 
prevailing wind in the pilot study area (i.e., southwest). Among these 
three rainfall stations, RAF Northolt was selected for model develop
ment based on its higher cross-correlation with Ruislip UDS, using the 
method employed by several research works including Abou Rjeily et al. 
(2018), and Nanda et al. (2019), as shown in Fig. 7c. The entire database 
includes 365,233 data samples for both rainfall and water level, with 
15-min time intervals and a continuous duration of 12 years 
(2009–2021), which are accessible through the application program
ming interface of the UK Environment Agency (DEFRA, 2022). 

3.2. Cross-correlation and delays in the dataset creation 

Fig. 8 illustrates the trend of improvement and convergence in the 
coefficients and lag times obtained from the cross-correlation analysis of 
the generated event-based datasets using the method proposed in sec
tion 2.2. This part only demonstrates effect of generating event-based 
dataset on the rainfall and water level data used only for training and 
validation processes. Raw data is completely used for testing the 

framework without any manipulation. Initially, the cross-correlation 
coefficient between rainfall and water level data of the entire database 
(including wet and dry periods) was relatively low at 0.30, as also shown 
in Fig. 7c for the RAF Northolt station. However, the coefficient 
increased and converged after a few iterations of updating the time- 
series event-based datasets. The converged coefficients ranged from 
0.53 to 0.65 for the four lead times, i.e., 1, 4, 8, and 12 timesteps, cor
responding to 15min, 1hr, 2 h s, and 3 h s of forecasting, respectively. 
Additionally, the lag times were reduced from 10 timesteps in the 
original database to 4 or 5 timesteps in the converged event-based 
datasets. These enhancements in the coefficient and reduction in lag 
time indicate that the event-based dataset generation process can pro
vide better correlation between rainfall and water level data by 
removing irrelevant or less relevant data from the datasets. 

3.3. Model performance of real-time forecasting for target events 

The results of the evaluation of the C-NARX and proposed E-NARX 
models on all target events (S4 in Fig. 2) are presented in Fig. 9. Addi
tionally, Fig. 10 provides a visual comparison of the forecasted water 
level of both C-NARX and E-NARX models with the corresponding ob
servations. The E-NARX model exhibits better performance compared to 
the C-NARX model in all four indicators and lead times, as illustrated in 
Fig. 9. The models’ performance in forecasting one timestep ahead (i.e., 

Fig. 10. Comparison of measured with the forecasted water levels by C-NARX model (left) and the E-NARX model (right) for four lead times: (a–b) 1-timestep ahead, 
(c–d) 4-timestep ahead, (e–f) 8-timestep ahead, (g–h) 12-timestep ahead. 

F. Piadeh et al.                                                                                                                                                                                                                                  



Environmental Modelling and Software 167 (2023) 105772

12

15-min) is satisfactory with low RMSE, high NNSE, and high accuracy of 
flood forecasting, although the event-based C-NARX model slightly 
outperforms the conventional model. However, for longer forecasting 
horizons (i.e., four or more timesteps), there is a considerable difference 
between the two models. Specifically, the E-NARX model performance 
gradually declines, but it still outperforms the C-NARX model 
significantly. 

While different climatic and geographical conditions make it chal
lenging to compare these results with other studies, the C-NARX is 
relatively confirmed with similar studies developed by NARX models. 
Several studies have reported the performance of NARX models for flood 
forecasting. For instance, Nanda et al. (2019) reported NSE values of 0.9, 
0.8, and 0.7 for 1, 4, and 8-timestep ahead of forecasting, respectively, 
which are relatively similar to the results obtained in this study for the 
corresponding lead times. Abou Rjeily et al. (2018) and Chang et al. 
(2014) reported NSE values above 0.9 for one 15-min timestep ahead. 
However, Chang et al. (2014) observed a drop in the NSE performance of 
their NARX models to 0.67 for 60min forecasting (equivalent to 4-time
step forecasting in this study) and thus limited their work to only 60min 
lead time. Moreover, Nanda et al. (2016) reported a false alarm ratio of 
around 30–50% for their improved NARX model for 1 to 3-timestep 
ahead. While this study measures the accuracy of flood forecasting 
instead of false alarm ratio, it is worth noting that the developed E-NARX 
model also shows good performance in terms of false alarm ratio. 

The results demonstrate that the C-NARX model is unable to provide 
accurate forecasts of water levels beyond 8-timestep ahead during heavy 
rainfall events. In contrast, the event-based model produces relatively 
acceptable forecasts at all lead times, as indicated by the spikes in 
Fig. 10. The failure of the C-NARX model is particularly evident for lead 
times of 8 and 12 timesteps. While the performance indicators of the E- 
NARX model decrease slightly for longer lead times (4–12 timesteps), 

they are still significantly better than those of the C-NARX model and fall 
within acceptable ranges (i.e., 92%–82% for NNSE, 63–100 mm for 
RMSE, and 77%–53% for accuracy of flood forecasting in Fig. 9). 
However, the accuracy of flood forecasting for the C-NARX model was 
deemed unacceptable for longer lead times, particularly for 8 and 12- 
timesteps ahead. 

Besides, The E-NARX model exhibits a much faster computation time 
than the C-NARX model, taking less than 20 s for each lead time in the 
test data (as shown in Fig. 9d). The comparison of computational times 
shows that the E-NARX model can be trained and tested approximately 
20 times faster than the C-NARX model. This can be attributed to the 
framework’s ability to remove unnecessary data (i.e., dry periods and 
non-flood events) from the database, resulting in less data to analyse. 
While this faster computation time is not surprising, it is a notable 
advantage, particularly in real-time applications where model retraining 
time is critical, especially for model development in multiple stations 
using big data analysis, which would typically be time-consuming. 

The performance of the developed NARX models is further analysed 
by categorising water levels into three main classes: low depth, high 
depth, and flooding. These classes are defined as follows: low water level 
corresponds to water levels below 300 mm, high water level corresponds 
to water levels between 300 mm and 850 mm, and the flood threshold 
corresponds to water levels above 850 mm. The flood threshold is 
determined based on the specifications of the UDS conduit, while the 
values of the other two classes are determined based on a 2-class clus
tering using the K-nearest neighbourhood (KNN) method, as described 
by Rahman et al. (2021). Fig. 11 depicts a scatter plot of the model 
forecasts versus measurements with corresponding RMSE for each class 
and lead time. For forecasting the low water level in 1 and 4-timestep 
ahead, the RMSE of both models is relatively similar. However, in the 
next two lead times (i.e., 8-timestep ahead and 12-timestep ahead), the 

Fig. 11. Scatter plot of forecasted water levels vs corresponding measurements for various time leads and water level classes for (a)–(d) the C-NARX model, and (e)– 
(h) the E-NARX model. 
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C-NARX model outperforms the E-NARX model with a slightly better 
RMSE (i.e., 51.89 mm versus 55.16 mm and 55.40 versus 67.68 mm, 
respectively). 

In contrast, the RMSE for high depth and flood threshold is signifi
cantly worse in the C-NARX model compared to the event-based model. 
Specifically, the RMSE for flooding in the C-NARX model is almost 10 
times worse than the RMSE for low depth in all lead times, while in the 
E-NARX model, the RMSE for both low depth and flood thresholds is 
only worsened by a factor of two to three. The poor performance of the 
C-NARX model in high depth and flood threshold further confirms its 
unsuitability for moderate to heavy rainfall periods. Moreover, the re
sults indicate that although the E-NARX model performance is affected 
during higher flood events, the forecasting inaccuracy can be quite 
tolerable compared to the C-NARX model. This finding can be attributed 
to the event-based dataset ability to significantly improve the model 
forecasting performance during heavy rainfalls and flooding. 

The aforementioned results are further supported by comparing the 
scatter plots of model forecasts versus measurements between the two 
models along the 1:1 line (see Fig. 11). Specifically, for low depth data, 

the event-based models with larger lead times exhibit slightly more 
overestimated forecasts. Conversely, the forecasts generated by the C- 
NARX model are gradually shifted towards the underestimation area 
from low depth to flooding data and are markedly underestimated, 
particularly for high depth and flood classes for large lead times (see 
Fig. 11a–d). As a result, nearly all forecasted C-NARX water levels for 
flooding data are underestimated. Moreover, the flooding water levels 
are significantly shifted to this area but with a more uniform pattern. 
Furthermore, while both NARX models can be used for relatively 
acceptable performance indicators for the three classes of water level for 
1-timestep ahead forecasting, the E-NARX model is more reliable for 
larger lead times, particularly for flood data with a better distribution of 
results around the 1:1 line. 

The performance of the developed NARX models is further evaluated 
by investigating their ability to forecast water levels during three 
selected flood events with distinct hydrological specifications. The re
sults are shown in Fig. 12, and a summary of key hydrological features of 
the selected events can be found in Table A1 in the appendix. Both 
models can provide relatively acceptable forecasts when water level 
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Fig. 12. Water level forecasting of the C-NARX model (left) and the E-NARX model (right) for (a)–(b) event example 1, (c)–(d) event example 2, (e)–(f) event 
example 3. 
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variation is smooth (i.e., event example 1) or for short lead times (i.e., 1- 
timestep ahead). However, the C-NARX model fails to provide accurate 
forecasts for longer lead times, whereas the E-NARX model can provide 
more reliable forecasts for multi-depth peaks in event example 2 and 
more accurate forecasts for the sudden rise of water level in event 
example 3. 

However, the event-based model exhibits a minor lag time when 
tracking the measured water level, which occurs after the first peak (low 
depth) and before the second peak (high depth) in event example 2. 
Additionally, the E-NARX model is capable of responding to peak values 
faster than the C-NARX model, particularly for longer lead times (i.e., 8 
and 12-timesteps ahead). The E-NARX model also appears to be more 
sensitive to slight variations (e.g., event example 2), whereas the C- 
NARX model seems to have a time-lag issue in responding adequately to 
incoming storms. These findings suggest that the E-NARX model pos
sesses better memory and cognitive capabilities, enabling it to learn 
flood events effectively during the training phase and overcome the 
time-lag issue associated with incoming rainfalls and tracking water 
levels in the UDS. 

3.4. Model performance real-time forecasting for non-flood events 

To assess the performance of the water level forecasting models in 
the UDS during other events (i.e., S1 to S3 and S5 in Fig. 2a), real-time 
forecasting was conducted for these events and compared with the C- 
NARX model. The evaluation covers two categories: (1) States S1 to S3, 
which account for 70% of the non-target events data, and (2) depletion 
events, i.e., S5, which account for the remaining 30% of the non-target 
events data. Fig. 13 presents a scatter plot of the forecasted water 
depth versus the corresponding measurements for both models (i.e., C- 
NARX and the proposed FFNN) at the Ruislip gauging station. The plots 
show considerable scatter around the 1:1 slope line (red) for smaller lead 
times (i.e., 1 and 4 timesteps ahead), although the forecasts are more 
frequently underestimated, particularly for larger lead times (i.e., 8 and 
12 timesteps ahead). 

The results also indicate that the RMSE for the depletion events (S5) 
varies between 11.62 mm for 1-timestep ahead and 55.22 mm for 12- 
timesteps ahead in the conventional model, which is much worse than 
the corresponding values for the proposed model, ranging from only 
4.23 mm for 1-timestep ahead to 24.15 mm for 12-timesteps ahead. This 
demonstrates that the RMSE of the depletion flow is significantly 
improved by using the pretrained FFNN model, whereas the conven
tional model is largely impacted by other non-flood events. In longer 
lead times, the conventional model tends to underestimate measured 
water levels because it is trained on a large number of S1 to S3 events in 
which the water level is less than 200 mm. Alternatively, the real-time 
platform could perfectly forecast S1 to S3 by simply using non-linear 
interpolation, whereas the FFNN model can forecast more complicated 
situations such as the depletion state. 

3.5. Sensitivity analysis of real-time platform 

The performance of the proposed real-time platform was previously 
analysed based on different states of water level. To gain a better un
derstanding of the hyperparameters used for the models, sensitivity 
analysis was conducted, and the results are shown in Fig. 14. The lag 
times used for rainfall data (based on the proposed method in Section 
2.1.2) and water level data (recommended by literature described in 
section 2.2) were found to be the best parameters, as seen in Fig. 14a and 
b. Although the delay factor showed more flexibility and less sensitivity 
to variation, the feedback increasing resulted in an increase in RMSE 
immediately. This increase was observed for longer timesteps ahead of 
forecasting, mainly because adding unnecessary input data in the form 
of time-series data during the training process may mislead the model in 
understanding the true nature of both target and depletion events, 
particularly when the model tries to forecast the water level for longer 
timesteps. 

Furthermore, as previously mentioned, the developed ML models 
were structured with 2 5-node hidden layers based on recommendations 
from similar research studies (see Section 2.2 and Abou Rjeily et al., 

Fig. 13. Scatter plot of forecasted water levels vs corresponding measurements for various lead times and water level classes for (a)–(d) the C-NARX model, and (e)– 
(h) real-time platform i.e., nonlinear interpolation for S1 to S3 and the FFNN for S5 (See Fig. 2a for defined states). 
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2018; Nanda et al., 2019 for reference). However, these numbers were 
tested as shown in Fig. 14c. While increasing layers and nodes is ex
pected to increase the efficiency of the models, it was observed that 
RMSE did not significantly increase (less than 5% for the best-performed 
model) with more complex models beyond 2 layers and 5 nodes for each 
layer. When comparing this result with the computational time listed for 
all developed models in Table A2 in the Appendix, it is evident that 
computation time can increase up to 20% for the best-performed model 
if the model is structured with more layers than proposed, while RMSE 
decrease significantly. This can be important for a specifically real-time 
early warning systems which may need to retrain regularly to keep 
themselves up to date. Although training time for the model is negligible 
in this case study, as a general concept, this point should be considered 
for similar research studies. 

To assess the impact of the dataset used for the training processes of 
the proposed model, multiple models were trained and tested with five 
different initial seeds. The results of these experiments are presented in 
Figure A1. The findings indicate that there is less than a 5% difference in 
both RMS and NNSE between the model with the minimum and 

maximum performance, respectively. This suggests that the proposed 
model is robust and is not highly dependent on the initial random seed 
used for the training process. This is a desirable characteristic for ML 
models as it indicates that the model is able to generalise well to new 
data and is not overly sensitive to small variations in the training 
process. 

The models were also evaluated for different dataset sizes to assess 
their sensitivity to the size of the dataset. As depicted in Fig. 15, the 
models were able to be trained with a reduced size of the dataset of up to 
75% of the total available training dataset while maintaining an RMSE 
above 90%. In other words, the models were able to perform well, 
maintain their accuracy with this range of training dataset size, and 
resist to be impacted of dataset reduction. However, it was observed that 
with further reduction in dataset size, the models adapted themselves 
and their accuracy decreased in a near-linear behavior. Finally, for 
datasets less than 35%, the models completely failed to perform (yielded 
to the dataset reduction), and the RMSE increased significantly. This 
finding is significant because although the models were developed in a 
relatively simple structure, such savings can be useful when applied to 

Fig. 14. Sensitivity analysis on hyperparameters of model tuning (a) delay factors, (b) feedback factors, (c) layers and nodes (See Fig. 4 for defined parameters).  
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wider applications such as UDS networks. This can conserve energy costs 
and reduce wasted time for constantly retraining in the context of early 
warning systems. 

The models were also evaluated for different rainfall intensity and 
duration, as presented in Fig. 16. To better understand the results, all 
rainfall events were classified into four groups using a 2-class clustering 
KNN method (as described by Rahman et al., 2021): (group 1) low in
tensity and short duration, (group 2) low intensity but long duration, 
(group 3) high intensity and short duration, and (group 4) high intensity 
and long duration. The results indicate that the relative error (RE) varies 
differently for each group (Fig. 16a vs 16j). Specifically, the RE of group 
1 uniformly increases from 1-timestep to 12-timestep, while this 
parameter dispersed for group 3. This suggests that the model struggles 
to understand the nature of sudden rainfall (light blue dots in Fig. 16j) 
where high-intensity rainfall occurs during a short duration, resulting in 
imperfect forecasts of associated water level rising. In contrast, for group 
3, the model shows more stability mainly due to the long duration which 
provides the model with the opportunity to comprehend the intensity of 
the rainfall. Even for higher intensity rainfall, the associated water level 
rising is distributed gradually during a long duration (yellow dots in 
Fig. 16j), resulting in the model’s improved understanding of the rainfall 
event. This finding is further confirmed when the second group of 
rainfall is observed. While the RE was initially shaped as a horizontal 
cylinder (red dots in Fig. 16a), it gradually shifted to a triangular shape 
in Fig. 16j, where again the model had more RE for rainfall events with 
shorter duration. Therefore, it seems that the duration of rainfall has a 
greater impact on model accuracy compared to rainfall intensity. 

To expand on the previous point, heatmap figures in Fig. 16 
demonstrate the impact of different characteristics of rainfall on the 
performance of the model. The figures again approved that the RE of the 
To elaborate on the previous point, the heatmap figures in Fig. 16 show 
how different rainfall characteristics affect the model’s performance. 
The figures confirm that the model’s error (RE) increases with shorter 
rainfall duration. More specifically, when looking at rainfall intensity 
(Fig. 16b vs 16k), the RE growth mostly expands vertically, whereas for 
rainfall duration (Fig. 16c vs 16l), the RE growth rate shrinks horizon
tally. These observations suggest that the model is more sensitive to 
different rainfall durations, as the density of the RE rate has a lower 
growth rate for longer rainfall durations. However, the model may not 
be perfectly sensitive to low-intensity rainfall events, particularly for 
longer forecast horizons such as 12-timesteps ahead, as seen in the 
reduction of the RE for high-intensity rainfall events. Moreover, the 
reduction of the RE for rainfall events with longer durations indicates 
that the model may be more sensitive to rainfall events with shorter 
durations. These findings offer valuable insights into the limitations of 

the model, which can help in developing better forecasting models for 
flood risk management and early warning systems. 

4. Conclusions 

The paper presents a new RTUFF framework that utilises an event 
identification method, event-based generated dataset, and event-based 
ML-based forecasting. The proposed framework in this study focuses 
on forecasting water level rise in UDS with greater accuracy than the C- 
NARX model, particularly for longer lead times of forecasting exceeding 
120min. A novel approach is presented for flood event identification, 
which distinguishes between different events in the dataset and gener
ates associated event-based datasets that can significantly enhance the 
performance of the introduced decision tree-based real-time flood 
forecasting platform, compared to the widely used conventional NARX 
model. The following key findings were noted from the pilot study:  

- The proposed models generate different datasets based on different 
identified events for event-based model training, improving the ac
curacy of flood forecasting in target events.  

- The E-NARX model significantly increases the accuracy of flood 
forecasting, with an accuracy of 91% for one timestep ahead of 
forecasting (15min) and maintained an acceptable accuracy of 77% 
for 1hr ahead and 53% for 3 hrs later.  

- The FFNN model outperforms the C-NARX model, especially for 
depletion events. C-NARX suffers from the majority of under
estimated forecasts, whereas RMSE dropped 50% and 60% for the 
longest timestep (i.e., 3 hrs ahead) of dry weather and depletion 
events, respectively.  

- The proposed model significantly improves all KPIs, especially for 
larger lead times of 2 hrs–3 hrs ahead (i.e., 92%–82% for NNSE, 
63–100 mm for RMSE, and 77%–53% for accuracy of flood fore
casting and computational time).  

- The high performance of the proposed model in forecasting both 
high depth and flood threshold makes it appropriate for moderate to 
heavy rainfalls, while the accuracy of flood forecasting in the con
ventional model was almost unacceptable for longer lead times.  

- model is more sensitive to rainfall duration than rainfall intensity. 
Specifically, the model appears to be more sensitive to low intensity 
rainfall events with shorter durations, which are considered to be 
critical types of target events. 

The proposed platform enables the development of a faster and more 
accurate flood forecasting model for UDS, which can be trained based on 
a smaller yet more accurate dataset. The proposed real-time flood 

Fig. 15. Uncertainty analysis of performed models based on size of training data (a) cumulative RMSE increase, (b) Relative RMSE loss.  
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forecasting framework successfully distinguishes between different 
events, such as dry weather flow, non-effective rainfall events, target 
events, and depletion events, and provides accurate estimations of water 
levels in UDS based on non-linear regression, using the FFNN and E- 

NARX models. The proposed platform is defined as a simple yet more 
efficient system, and the results demonstrate the advantages of using 
event-based data pre-processing and multiple strategies in utilising ML- 
based models. The proposed event-based dataset framework’s higher 

Fig. 16. Relative error based on rainfall intensity and duration: (Left) scatter plot of test data, (middle) heatmap of rainfall intensity, (Right) heatmap of rainfall 
duration, (a–c) 1-timestep ahead, (d–f) 4-timestep ahead, (g–i) 8-timestep ahead, (j–l) 12-timestep ahead. 
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accuracy is of paramount importance for early warning systems, as false 
alarms and missed flooding events can have significant impacts on 
stakeholders, especially the public, local authorities, and relevant 
emergency response systems. False alarms may undermine confidence in 
the early warning system and lead to reduced responsiveness to future 
warnings, whereas missed flooding events may cause an ineffective 
response, leading to a loss of trust between the public and local gov
ernments. The proposed event-based dataset framework could accu
rately forecast water level rise and flooding in the UDS in real-time, with 
longer lead times exceeding 2 h s compared to currently available 
models. This can significantly enhance the accuracy of flood forecasting, 
decrease the occurrences of both false alarms and missed events, and 
improve emergency response systems. 

Although the proposed real-time flood forecasting platform has 
shown promising results in comparison to other models, further vali
dations by other time-series RTUFF models are required. Moreover, it is 
worth noting that this model was tested solely on the UDS of the pilot 
study, and its applicability to other settings, such as river basins and 
reservoir basins, would need further validation. Additionally, while the 
proposed real-time flood forecasting framework demonstrated high ac
curacy, further improvements in KPIs for longer lead times and also 
Rainfall events characterised by low intensity and short duration. This 
could involve adjusting or removing unnecessary data in the dataset 
during model development or incorporating more sophisticated data 
mining techniques to improve the data-driven model. 
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