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1 INTRODUCTION  

The data for calibration of a WDS model is usually 
collected from a series of field tests at strategic loca-
tions within the network, in which pressure heads 
are recorded (de Schaetzen 2000). The accuracy of 
calibration is dependant on the quality and quantity 
of the collected data. Therefore, selection of appro-
priate locations, called sampling design (SD), has 
been a challenge among researchers and practition-
ers especially in recent years (Kapelan et al. 2005a). 

Determination of optimal sampling design loca-
tions is usually done by evaluating the trade-off be-
tween calibrated model accuracy and the cost of 
sampling design (typically surrogated by the number 
of sampling devices used). Model accuracy is usual-
ly evaluated using some norms of the parameter or 
the prediction covariance matrix which, in turn, is 
calculated from the relevant Jacobian matrix (Bush 
& Uber 1998).  

A newly developed model by Kapelan et al. 
(2003) presented a deterministic multi-objective ge-
netic algorithm (MOGA) for SD with the aim of cal-
ibration of WDS models. In the deterministic ap-
proach, elements of the Jacobian matrix are 
calculated prior to the optimisation model run by as-
suming the model parameter values. This obviously 
is prone to errors as this kind of information is not 
readily available. The methodology developed and 
presented here is trying to overcome this limitation 

by assuming that each calibration parameter has un-
certain value following some pre-defined probability 
density function. 

The assumption of uncertainty in parameters has 
recently been addressed by a number of researchers 
in water resources problems (Wu et al. 2006, Kape-
lan et al. 2005b). Kapelan et al. (2005b) applied the 
sampling-based technique using Latin hybercube 
(LH) to deal with uncertainty in parameters. Wu et 
al. (2006) compared Monte Carlo simple genetic al-
gorithm (MCSGA) with noisy genetic algorithm 
(NGA) in groundwater sampling network design. 
They confirmed that NGA can be used as a useful 
surrogate of MCSGA. However, this approach could 
still be computationally demanding. 

One solution to alleviate this difficulty is to apply 
meta-models. In a recently developed one, Broad et 
al. (2005) proposed it as an artificial neural network 
(ANN) substituting for a complex simulation model 
of WDS design, in which ANN were trained offline. 
Yan & Minsker (2006) also developed an adaptive 
neural network –single objective genetic algorithm 
model for groundwater remediation design. They 
saved around 90 percent of the simulation model 
calls with no loss in accuracy of optimal solutions. 

In this paper, a MOGA-ANN algorithm has been 
developed for the sampling design of a WDS model. 
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2 OPTIMAL SAMPLING DESIGN 

The current SD is carried out under the following as-
sumptions: (1) the type of predicted variables, which 
include nodal pressure, pipe flows or both, is as-
sumed to be only nodal pressure head; (2) Both nod-
al demands and pipe roughness coefficients are con-
sidered as calibration parameters; (3) the steady-
state WDS hydraulic model is calibrated under ex-
tended period simulation. 

The stochastic SD problem is formulated and 
solved here as a two-objective optimisation problem 
under calibration parameter uncertainty. The objec-
tives are to maximise the calibrated model accuracy 
and to minimise number of sampling devices as a 
surrogate of sampling design cost.  

To quantify the calibrated model prediction accu-
racy, a first-order second-moment (FOSM) model is 
used to approximate both parameter covariance ma-
trix and prediction covariance matrix as follows 
(Bush & Uber 1998, Kapelan et al. 2005a): 
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Where s=standard deviation of measurement de-
vices; and J =Jacobian matrix of derivatives 

ki ay  /  ( ao NkNi ,...,1;,...,1  ), y =vector of pre-
dicted variables in locations of interest, a =vector of 
calibration parameters, oN =number of measurement 
data in both temporal and spatial domains according 
to measurement locations of interest, aN =number of 
calibration parameters; zJ =Jacobian matrix of de-
rivatives ki az  /  ( az NkNi ,...,1;,...,1  ); z=vector 
of zN model predictions of interest, and zN =number 
of model predictions of interest in both temporal and 
spatial domains according to all potential locations 
of pressure logger installation. The value of the ith 
diagonal element in matrix zCov  indicates the un-
certainty of ith model prediction. Therefore, the 
model prediction uncertainty is presented as the av-
erage of all element prediction uncertainties: 
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Since the prediction uncertainty is calculated with 
the assumption of definite calibration parameter val-
ues, the above formula (deterministic approach) can 
be prone to errors as this kind of information is not 
definitely? available before model calibration. To 
remove this limitation, each calibration parameter is 
assumed here to have uncertain value following 
some pre-defined probability density function as fol-
lows: (1) uncertain pipe roughness coefficient pa-
rameters follow a uniform probability density func-
tion (PDF) with lower and upper bounds equal to 
30% of the deterministic value; (2) uncertain nodal 

demand parameters follow a Gaussian PDF with co-
efficient of variation (CV) equal to 0.2. 

To deal with the uncertainty of calibration param-
eter values, noisy fitness function is used here. It has 
been shown to perform well without sampling a 
large number of uncertain values (Wu et al. 2006, 
Gopalakrishnan et al. 2001). Therefore, the first ob-
jective value is defined as the average of normalised 
(relative) traces of model prediction covariance ma-
trices, each of which is constructed from randomly 
generated sample of calibration parameter values: 





kN

j
j

j
ml

k F

F

N
fMax

1 1

,1
1

1
  (4) 

Where kN =number of sets of samples; j
mlF ,1 =the 

value of model uncertainty for ideal state where all 
potential measurement locations are monitored. This 
type of calculating the first objective value is called 
‘full’ fitness model henceforth. To do so, kN  sets of 
uncertain parameter values are randomly generated 
using LH sampling technique and associated PDFs. 
The noisy objective value is then calculated by aver-
aging the relative accuracies obtained of running kN  
runs of the deterministic SD model. The value of kN  
is set to 500 samples that is sufficient for the noisy 
function based on the performed sensitivity analysis 
(not shown here). 

The second objective value addresses the total 
cost of sampling. As a surrogate, the number of 
pressure loggers is introduced as an indicator of 
sampling cost. Therefore, normalized number of 
pressure loggers (percentage) is the second objective 
function. It is presented as follows with its associat-
ed constraint: 

mlp NNFMin 2   (5) 

maxmin
ppp NNN   (6) 

Where pN =number of measurement devices; 

mlN =number of potential nodes for measurement; 
min
pN , max

pN = minimum required and maximum 
number of measurement devices, respectively. 

3 METHODOLOGY 

The objectives and constraint defined by (4)-(6) in-
dicate a two-objective optimisation problem under 
uncertainty. However, the calculation of the full fit-
ness model objective (i.e. the model with large num-
ber of samples in which the accuracy objective func-
tion defined in equation (4) is calculated) involves 
repetitive calculations of Jacobian matrices, which is 
usually time-consuming. To resolve the computa-
tional time issue, the optimisation problem is solved 
by using a multi-objective genetic algorithm and 
adaptive neural networks (MOGA-ANN). Each GA 



chromosome is coded as a potential sampling design 
solution and its fitness is evaluated initially by using 
the full fitness model. Later on, during the GA 
search process, the full fitness model is progressive-
ly replaced with the periodically (re)trained neural 
network meta-model where (re)training is done us-
ing the data collected by the full model. The ANN is 
retrained after a pre-specified number of objective 
function evaluations by the full model. The detailed 
flowchart of MOGA-ANN is shown in Figure 2. 

3.1 Multi-objective genetic Algorithm 

In this study, a multi-objective evolutionary algo-
rithm known as non-dominated sorting genetic algo-
rithm II (NSGA-II), developed by Deb et al. (2002), 
is used. NSGA-II alleviates all following difficulties 
of previous MOGAs: (1) long computational com-
plexity (2) non-elitism approach (3) The need for 
specification of a sharing parameter. The selection 
operator in NSGA-II combines the parent and off-
spring populations in a single population and then 
selects the best solutions with respect to fitness and 
spread criteria. NSGA-II can better converge near 
the true Pareto-optimal front and can better spread 
solutions through it. More details of this approach 
can be found in the relevant reference. 

Integer value coding is used for the encoding of 
each chromosome. The number of genes equals the 
maximum number of measurement devices ( max

pN ), 
each of which represents the position of one pressure 
logger in WDS. A gene with zero value indicates no 
measurement device is available. When using inte-
ger encoding, two or more genes may take the same 
integer-value values, indicating more than one pres-
sure logger should be installed on the same location. 
These solutions will be rejected by MOGA due to an 
increase in cost and no increase in accuracy (Kape-
lan 2002). 

3.2 Artificial Neural Network (ANN) 

The ANN is used here as a replacement to a full fit-
ness evaluation model used when estimating the 

model accuracy objective with the idea of making 
significant computational time savings. However, 
note that ANN predictions are only approximate and 
therefore prone to errors in evaluations of objective 
value. To resolve this drawback, some strategies 
have been proposed to sample solutions and calcu-
late relevant objective value with full model. Also, 
the ANNs are periodically retrained within the algo-
rithm progress to improve their prediction accuracy. 

Figure 1 shows the architecture of the proposed 
ANN. As can be seen, a two-layer neural network 
including input, a hidden and an output layer is as-
sumed. Input data are the potential pressure meas-
urement locations represented by a relevant integer 
value. Output layer, which has one neuron, is the 
value of the prediction accuracy objective function 
defined in equation (4). The second objective func-
tion value, i.e. the number of measurement locations, 
is directly calculated and there is no need to consider 
it as additional output neuron. In addition, back 
propagation Levenberg-Marquardt algorithm was 
used as an ANN training algorithm (Lingireddy & 
Ormsbee 1998). 

3.3 Main loop 

A flowchart of the proposed MOGA-ANN method is 
shown in Figure 2. As can be seen, the method is es-
sentially an NSGAII search method which makes 
use of the artificial neural network and the caching 
technique. The search process starts by creating the 
random initial population and evaluating the fitness 
of each chromosome by using the full model. The 
data obtained (both chromosome values and the ob-
jective function values) is then stored in the cache 
with the idea of preventing unnecessary, i.e. costly, 
repetitive fitness evaluations. Note that cache is up-
dated continuously during the search process, i.e. 
every time chromosome fitness is evaluated using 
the full model. 

 

 

 
Figure1. ANN Architecture 
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Figure 2. MOGA-ANN Flowchart 

 
 
The main loop of the algorithm starts with the 

creation of the offspring population using the 
NSGA-II selection, crossover, and mutation opera-
tors. In the first few generations, chromosome fit-
ness is estimated using the full model only to pre-

pare enough training data for the ANN. Once the 
ANN is trained for the first time, evaluation of the 
objective function values is done by using both the 
ANN and the full model. At first, objective values 
of all chromosomes in the offspring population are 



evaluated using the ANN. Then the offspring 
chromosomes are compared to the ones previously 
stored in the cache. If the offspring chromosome is 
found in the cache then its accuracy objective val-
ue (approximated by the ANN) is replaced with the 
corresponding value from the cache (estimated 
previously by using the full model).  

To improve the algorithm convergence, a 
(small) number of chromosomes in the offspring 
population is selected and re-evaluated by using 
the full model (if it was previously evaluated by 
the ANN model). The chromosomes selected are 
the ones present in the best NF Pareto (sub)fronts, 
i.e. subpopulations of the offspring population. 
Obviously, a trade-off exists here - the larger the 
NF the better from the search accuracy point of 
view but also the worse from the computational ef-
fort point of view. In the case study shown here, 
the optimal value of NF is determined by perform-
ing the relevant sensitivity analysis.  

Once the offspring population is created by us-
ing the above procedure, it is combined with the 
parent population into a single one. The next gen-
eration population is then created by using the 
standard NSGA-II approach. At this point an addi-
tional check is made and if a chromosome is iden-
tified with a fitness value estimated by the ANN, 
its fitness is re-evaluated by using the full model. 
This is necessary to ensure the good algorithm 
convergence and it typically involves a small num-
ber of chromosomes. The above search process 
continues until some GA convergence criterion is 
met (e.g. the pre-specified number of generations). 

As an alternative, to calculate objective value of 
model prediction accuracy in the uncertain envi-
ronment, an MCS-based model is adopted to com-
pare the results of the optimal sampling locations 
obtained using noisy objective value to the ones 
obtained using the MCS method. In the MCS-
based model, an equivalent deterministic sampling 
design optimisation problem (i.e. maximisation of 
normalised prediction uncertainty defined by (3)) 
is solved for a number of randomly generated cali-
bration model parameter samples. Based on sensi-
tivity analysis performed, 1000 samples are good 
enough for MCS model whose statistics sufficient-
ly converge to a unique value. Optimal sampling 
locations under uncertainty are then determined by 
identifying the most frequently selected sampling 
locations in these optimisation runs. 

4 CASE STUDY 

The above methodology is tested and verified on a 
literature case study of the Anytown network 
(Kapelan et al 2003, Ormsbee 1989). The purpose 
on this case study is to show the capability of the 

model in decreasing computational effort to get op-
timal solutions. 

Figure 3 shows the layout of Anytown network. 
The input data has been taken from Ormsbee 
(1989). Sampling design is performed with respect 
to calibration parameters of 5 grouped pipe rough-
ness coefficients and 4 grouped nodal demands i.e. 
the total of aN =9. All of the network nodes are 
considered as potential nodes for measurement ex-
cept for the reservoir and tank nodes, i.e. mlN =16. 
Full Jacobian matrix mlJ  is obtained using all po-
tential measurement locations and loading condi-
tions ON =128 (16 nodes for 8 loading conditions). 
The standard deviation of all pressure loggers is 
assumed to be equal to s=0.1m. 

 

 
Figure 3. Layout of case study network  

5 RESULTS AND DISCUSSION 

MOGA model settings were determined after a 
limited number of trial runs with different initial 
populations. These parameters used are as follows: 
population size of 50 chromosomes, binary tour-
nament selection operator, mutation with the prob-
ability of 0.25 and one point crossover with the 
probability of 0.9. All MOGA and MOGA-ANN 
runs were performed for 500 generations. 

The number of best ranked Pareto-(sub)fronts, 
i.e. subpopulations NF was investigated here by 
performing the sensitivity analysis. The same 
methodology was used to determine the optimal 
number of ANN’s hidden neurons. The criterion 
for comparing different settings is the search mod-
el reliability denoted here as the percentage of Pa-
reto optimal front points obtained by using the 
MOGA-ANN model when compared to the full-
fitness evaluation based MOGA model. This per-
centage has been averaged over 20 MOGA runs 
with different random initial populations to dimin-
ish the effect of different search starting points. 
Figure 4 shows the model reliability with different 
number of best fronts and different number of hid-
den neurons. As it can be seen, the reliability of 
100% is obtained for NF =3 and the optimal num-
ber of hidden neurons is 20. The ANN is trained 
for the first time after 5 generations of full fitness 
evaluations, and continuously retrained after every 



1000 objective function evaluations by the full 
model (the figure obtained by the sensitivity analy-
sis not shown here). 
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Figure 4. Model reliability for 20 runs with random initial 
populations; NF=Number of best suboptimal fronts in off-
spring population, in which the objective value is calculated 
by full fitness model 

 
After setting the above parameters for the pro-

posed model, the solution of MOGA-ANN as well 
as MCS-based model were obtained as Pareto op-
timal fronts shown in Figure 5. Note that for each 
point on the front, there is a set of optimal loca-
tions for installing measurement devices (details 
presented in Table 1). It can be observed that, 
when increasing the number of optimal measure-
ment locations to more than 6 or 7 nodes, there is 
no great improvement in prediction accuracy. 
Therefore, this point can be introduced as a cost-
effective point with regard to one of the selection 
criteria (Kapelan et al. 2005b). 

In Table 1, in addition to the optimal solutions 
of MOGA-ANN, the percentage of selected sam-
pling locations in the MCS-based model is shown 
for a given number of monitoring locations. As can 
be seen, the most frequently selected sampling lo-
cations in MCS-based model almost always corre-
spond to the optimal ones in MOGA-ANN. Of 
course, there are some discrepancies too, in partic-
ular in the cases of 3, 4 and 6 monitoring locations. 
This occurs because of different approaches used 
in the two methods when dealing with uncertainty. 
Nevertheless, 97 percent of solutions matched 
show the similarity in the results obtained using 
the above two stochastic approaches. 

Figure 6 shows the comparison of the number 
of the actual accuracy function evaluations using 
the full model, the cache and the ANNs approxi-
mations as the MOGA-ANN search progresses. It 
can be seen that only 12% of chromosomes are 

evaluated by using the full model. Most of these 
evaluations occurred in the first five generations of 
the MOGA-ANN run when the initial ANN train-
ing data is collected. After that, the proportion of 
the full model evaluations is decreasing in the fa-
vour of two other means of estimating the solution 
fitness. The percentage of objective values re-
trieved from the cache is 25%.  
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Figure5. Pareto optimal fronts 

 
Table 2 shows the comparison of computational 

time for different sampling design methodologies 
(MOGA model with all full model fitness evalua-
tions, the MOGA-ANN model and the MCS mod-
el). As it can be seen, the MOGA-ANN method is 
nearly 9 times faster than the MOGA method 
based on full model fitness evaluations. 

6 CONCLUSIONS 

This work proposes an adaptive neural network 
multiobjective genetic algorithm called MOGA-
ANN to determine optimal sampling locations un-
der parameter uncertainty in a WDS for the pur-
pose of its hydraulic model calibration. The ANN 
is adaptively retrained during the search process. 
The caching technique was also introduced to effi-
ciently retrieve previously evaluated solutions. 

To deal with the uncertainty, noisy fitness func-
tion was used in the MOGA-ANN method. Anoth-
er approach of handling this uncertainty is by using 
the MCS method. The two methods produced dif-
ferent sets of solutions due to the algorithmic dif-
ferences. Still, a large proportion of solutions ob-
tained by the two methods were identical. 

 

  
 
 
 
 
 



Table 1. Pareto optimal solutions in MOGA-ANN and percentage of selected sampling locations in MCS-based model 

F2 f1 

  Network nodes 

  20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

0.13 0.188 
Solution 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

percentage 0 1 11 2 35 3 2 35 5 0 64 22 2 4 3 10 

0.19 0.303 
Solution 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 

percentage 0 0 6 1 53 6 1 43 38 17 75 24 1 3 7 25 

0.25 0.436 
Solution 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 

percentage 0 0 0 1 58 9 0 69 38 43 89 11 0 1 17 62 

0.31 0.568 
Solution 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 

percentage 0 0 0 1 81 9 1 87 33 73 93 2 0 0 38 81 

0.38 0.672 
Solution 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 

percentage 0 0 1 1 95 17 2 96 43 91 98 2 0 0 62 92 

0.44 0.744 
Solution 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 

percentage 4 0 5 4 100 34 6 98 54 95 99 9 0 2 92 98 

0.50 0.785 
Solution 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 

percentage 9 0 10 12 100 43 23 99 59 96 100 44 1 7 98 100 

0.56 0.825 
Solution 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 

percentage 10 0 18 22 100 60 39 99 69 96 100 74 2 13 99 100 

0.63 0.866 
Solution 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 

percentage 11 0 26 29 100 76 57 100 82 97 100 92 3 28 100 100 

0.69 0.897 
Solution 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 

percentage 11 0 42 39 100 84 74 100 91 97 100 99 8 53 100 100 

0.75 0.926 
Solution 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 

percentage 12 0 63 57 100 90 86 100 97 97 100 100 20 79 100 100 

0.81 0.952 
Solution 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 

percentage 14 1 78 81 100 93 94 100 99 97 100 100 46 95 100 100 

0.88 0.974 
Solution 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

percentage 16 6 97 97 100 99 99 100 100 98 100 100 87 100 100 100 

0.94 0.989 
Solution 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

percentage 24 76 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
 
“1” means pressure logger should be installed in the node and “0” means no pressure logger is required in the node 
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Table 2. Comparison of computational effort to achieve optimal solutions among the models 
Model Type Time (minutes) The number of deterministic pre-

diction accuracy calculation calls 
MOGA 80 12500000 
MOGA-ANN  9 1475000 
MCS-based 160 25000000 

*The number of deterministic prediction accuracy calculation calls for MOGA and MCS-based model is equal to NpopNgenNk, where 
Npop is GA population size (50 here) and Ngen is the number of GA generation before convergence (500 here) and Nk is the number 

of samples  
 

The results obtained show that large computa-
tional savings (90% reduction in CPU time) can be 
achieved by using the MOGA-ANN when com-
pared to the full-model based MOGA or the MCS 
model without significant decrease in the final so-
lution accuracy. This finding can be useful in de-
creasing the computational effort of optimization 
models with time-consuming fitness evaluations. 
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