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Abstract 

This paper presents and compares two approaches, stochastic and deterministic sampling 
design, for the purpose of calibrating water distribution system model. Both approaches 
use a multi-objective genetic algorithm known as NSGA-II to identify the whole Pareto- 
optimal front of optimal solutions. The relevant objective functions are to maximize the 
calibrated model accuracy and to minimize the number of sampling devices as a 
surrogate of sampling design cost. In the deterministic approach, optimal solutions are 
identified based on the assumed values for calibration parameters. However, the 
uncertainty of calibration parameters is taken into account in the stochastic approach with 
some pre-defined probability density functions. Two different stochastic approaches, 
including noisy fitness function and Monte Carlo simulation, are considered in this study. 
The efficacy of considering stochastic sampling design rather than deterministic one is 
assessed by evaluating their objective functions in the simulation of 10000 sampling 
design problems, each of which is constructed with randomly generated calibration 
parameters. The stochastic approach is first test on an artificial case study. Then it is 
applied to a real world water distribution system known as Mahalat model in the central 
part of Iran. The results of comparison show significant improvements in optimal 
solutions when using stochastic approaches of sampling design. 
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Introduction 

Sampling design (SD) for calibration of water distribution system (WDS) models is 
defined as finding the best locations for installing measurement devices. The collected 
data from field tests will be used later on for calibration of WDS model (deSchaetzen et 
al. 2000). The calibration of WDS model is to adjust model parameters so that measured 
and predicted variables match reasonably. SD problem has been addressed by a number 
of researchers and practitioners in the last decade (Bush and Uber 1998; Lansey et al. 
2001; Kapelan et al. 2003). 
When performing SD procedure for the purpose of model calibration, precise values of 
calibration parameters are unavailable since they will be identified after calibration 
procedure. Since the access to such precise values is impossible at the time of SD, these 
values must be estimated based on proposed approximate relationships or manuals. Some 
researchers such as Bush and Uber (1998) and Kapelan et al. (2003) used assumed 
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(estimated) values for these parameters. Since SD objective values are associated with the 
assumption of definite calibration parameter values, they can be prone to errors as this 
kind of information is not definitely available before model calibration. Lansey et al. 
(2001) proposed a loop, in which model calibration and SD procedures are repeatedly 
performed to correct the parameters and SD method. A more comprehensive approach 
which is used here is to consider uncertainty for these parameters. Therefore, each 
calibration parameter is assumed here to have uncertain value following some pre- 
defined probability density function (PDF). In the following sections, two stochastic 
methodologies of SD are first described. Then it is applied to an artificial case study. 
Finally the stochastic methodology is applied to a real case study and compared to 
deterministic approach developed by Kapelan et al. (2003). 

 
Problem formulation 

The objective of the SD here is to find a set of optimal pressure measurement locations 
with the aim of calibrating accurately the WDS hydraulic model. The stochastic SD 
problem is formulated and solved as a two-objective optimization problem under 
parameter uncertainty. The two objectives are to maximize the calibrated model accuracy 
and to minimize the number of sampling devices as a surrogate of sampling design cost. 
A trade-off between the two objectives is identified for decision making. 

 

Prediction and measurement variables are assumed to be only nodal pressure heads. As a 
result, if a set of Nl measurement devices with the standard deviation of s are installed in 
Nl measurement locations of WDS, the variance of predicted variables, denoting 
prediction uncertainty and obtained by these measurement locations, is estimated as 
follows (Bush & Uber 1998, Lansey et al. 2001, Kapelan et al. 2005): 

Cov  = s 2.(J TJ)−1 

 
 
 
 

 
(1) 

 

Cov z = J z .Cova .JT (2) 

where J =Jacobian matrix of derivatives yi / ak ( i = 1,..., No ; k = 1,..., Na ), y =vector of 
No  pressure predicted variables in locations of interest, in which pressure loggers are 
installed, a =vector of calibration parameters, No=number of observations, i.e. 
measurement data in both spatial and temporal domains (e.g. if there are Nt temporal time 
steps for each of Nl monitoring locations, then No=Nt·Nl), Na =number of calibration 
parameters, J z =Jacobian  matrix  of  derivatives zi / ak ( i = 1,..., Nz ; k = 1,..., Na ); 
z=vector of Nz pressure prediction variables of interest in both spatial and temporal 
domains. Here spatial domain of Nz is referred to all nodes of WDS. To aggregate the 
model prediction uncertainty, normalized (relative) prediction accuracy is defined as 
follows (Kapelan et al. 2003; Bush and Uber 1998): 
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where 
 
f1,ml =the  value  of  model  uncertainty  for  ideal  state  where  all  potential 

measurement locations are monitored. To deal with the uncertainty of calibration 
parameter values, noisy fitness function is used here (Wu et al. 2006). Therefore, the first 
objective value is defined as the maximization of average of normalized (relative) traces 
of model prediction covariance matrices, each of which is constructed from randomly 
generated sample of calibration parameter values: 

1  Nk  f j 

Maximize F1 = 
k 

  1,ml  
1 

(5) 

where Nk =number of sets of samples and superscript j refers to jth sampling set. This 
type of calculating the first objective value is called ‘full’ fitness model henceforth. The 
second objective value addresses the total cost of sampling. Therefore, normalized 
number of pressure loggers (percentage) as a surrogate of SD cost is assumed as the 
second objective value and which defined as follows: 

Minimize F2 = Nl  Nml 

N min  N  N max 

(6) 

(7) 
l l l 

where Nml =number of potential nodes for measurement; 
 

N min , N max = minimum and 
maximum number of measurement devices required, respectively. 

 
Multiobjective genetic algorithm (MOGA) 

The optimization method which is suited for solving such problems is genetic algorithm 
(Golberg 1989). As we have two-objective optimization problem, non-dominated sorting 
genetic algorithm II (NSGAII) developed by Deb et al. (2002) are considered here to be 
the solver of the optimization problem. 

 
Case #1: Anytown WDS 

The first case study is a hypothetical case study known in the literature as “Anytown” 
WDS model. Figure 1 shows the layout of Anytown network. The input data has been 
taken from Ormsbee (1989). Sampling design is performed with respect to calibration 
parameters of 5 grouped pipe roughness coefficients and/or 4 grouped nodal demands. 
All of the network nodes are considered as potential nodes for measurement except for 
the reservoir and tank nodes, i.e. Nml =16. Full Jacobian matrix Jml is obtained using all 
potential measurement locations and loading conditions. The standard deviation of all 
pressure loggers is assumed to be equal to s=0.1m. 

 
 
 
 

 
3 

f 

N 



 

 

i f 

 (  Ave − f ) 

i 

 

 
50 

 
Figure 1. Layout of Anytown case study 

Two different approaches for dealing with the uncertainty are as follows: (1) Monte Carlo 
simulation (MCS) approach; (2) Noisy genetic algorithm (NGA) approach (Wu et al. 
2006). The number of samples from calibration parameters and method of sampling 
should be selected in both approaches. For the first sampling technique, conventional 
Monte Carlo (MC) sampling technique is considered in which a pre-specified number of 
equally likely samples of calibration parameters are randomly sampled across a region of 
the model parameter space. For the second sampling technique, Latin Hypercube (LH) 
technique is considered in which a pre-specified number of samples are randomly 
sampled across each region made by dividing equally the model parameter space. 

 
To identify the appropriate number of randomly generated samples in both sampling 
techniques, a test of sensitivity analysis is performed first for both approaches of MCS 
and NGA. Thus, the proper number of samples is identified once the statistics of the 
output converge to unique values (Pasha and Lansey 2005). In MCS approach, the output 
of stochastic model would be model accuracy objective functions resulted from genetic 
algorithm optimization. However, in NGA approach, the average of model accuracy 
objective functions for each possible solution before solving an optimization model can 
be assumed as the output. The statistics are assumed as average and standard deviation of 
the output. Therefore, the following steps are done for assessing the convergence of the 
statistics in stochastic model: 

In the MCS approach, (1) randomly generated parameter values of interest are sampled 
based on a pre-specified probability density function (PDF) for either MC or LH 
sampling technique. All parameters are assumed to be uncorrelated. (2) The optimization 
problem (MOGA) of SD model is solved for each realization of model parameters. The 
model accuracy objective functions for Pareto-optimal front are then calculated ( f1 ). (3) 
The average and standard deviation of the model accuracy objective functions are 
calculated for each corresponding point on Pareto-optimal front for all previous 
stochastic runs as follows: 

k 
Avek =  1, j
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where f k = model accuracy objective function for kth point on Pareto-optimal front and 

jth  MOGA  SD  run  corresponding  to  jth  parameter  sampling  set; Avek and 
STDk =Average and Standard deviation of model accuracy objective function for kth 
point on Pareto-optimal front for all i times of MOGA SD runs respectively. (4) Then, the 
average and standard deviation of all points on Pareto-optimal front are averaged out as 
follows: m  Avek 
X =   i  

k =1 

(10) 
m  STDk 

S =   i  

k =1 

(11) 

where X i and Si =average and standard deviation of model accuracy objective function 
for all points on Pareto-optimal front and all i times of MOGA SD runs respectively; 
m =number of points on Pareto-optimal front. (5) Steps 2, 3 and 4 are repeated for pre- 
specified number of runs. It is assumed that the stochastic runs in this study are 1000 
times. (6) The above mentioned steps (steps 1 through 5) are performed for 5 random 
seeds. Finally, the error of average and standard deviation for each number of samples are 
calculated as follows: 

 

 
 

errorave,i = 
n
 

 
 

error = 

(12) 
 

 
(13) 

STDev,i n 

where 
 

 

X j = average of ith samples in jth random seeds; 
 

 

j 
1000 

= average of 1000th 
samples (the last sample) in jth random seed; n =number of random seed; S j = the 
standard deviation of ith samples in jth random seeds; 
1000th samples (the last sample) in jth random seed. 

j 
1000 = the standard deviation of 

In the NGA approach, the process of the assessment is somewhat different. As the output 
of the NGA approach emerge from the average of model accuracy objective function 
obtained by stochastic parameters, it does not need to be evaluated after obtaining the 
optimal solution i.e., solving MOGA optimization problem. Therefore, any typical 
Pareto-optimal solution can be assessed. The steps required for the assessment are the 
same as the ones in MCS approach. The only difference is in step 2 in which only model 
accuracy objective functions for typical Pareto-optimal front are calculated. 

Here, based on the above methodology, only the absolute error of the average and 
standard deviation of the output for NGA approach are show in Figures 2 and 3 
respectively. As can be seen, LH sampling technique outperforms MC sampling 
technique in both average and standard deviation criteria especially in the earlier number 
of samples. Considering the aforementioned assumption in MCS approach for selecting 
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the proper number of samples, LH sampling technique is selected. Furthermore, number 
of 200 samples is enough to achieve a solution with converged statistics. 
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Figure 2. Absolute error of average corresponding to the number of samples for MC and 
LH sampling technique in the NGA approach 
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Figure 3. Absolute error of standard deviation corresponding to the number of samples 
for MC and LH sampling technique in the NGA approach 

 
To perform the two stochastic SD models in this section, the following assumptions are 
made about uncertain parameters and loading conditions: (1) The calibration parameters 
are assumed to be both nodal demands and pipe roughness coefficients; (2) uncertain pipe 
roughness coefficient parameters follow a uniform probability density function (PDF) 
with lower and upper bounds equal to 30% of the deterministic value; (3) uncertain nodal 
demand parameters follow a Gaussian PDF with coefficient of variation (CV) equal to 
0.2; (4) The hydraulic model is simulated for EPS steady state conditions (8 multipliers). 

 
Considering the above mentioned assumptions for MOGA model and stochastic setting, 
the Pareto-optimal fronts are obtained by using the two stochastic models. In MCS-based 
model, optimal locations are determined by identifying the most frequently selected 

 
6 

 
 

 
 

A
bs

ol
ut

e 
Er

ro
r o

f A
ve

ra
ge

 
A

bs
ol

ut
e 

Er
ro

r 
of

 S
ta

nd
ar

d 
D

ev
ia

tio
n 



 

 

sampling locations in all deterministic runs with random calibration parameters. Results 
of Pareto optimal solutions show that the most frequently selected sampling locations in 
MCS-based model in most cases correspond to the optimal ones in NGA. 

 
To compare the solutions of two stochastic models, the Pareto optimal solutions are then 
applied to 10000 randomly generated parameter sets. Figure 4 shows the Pareto optimal 
fronts of two stochastic SD models. The uncertainty of points is shown as the error bars 
based on the 95% confidence intervals in 10000 parameters realizations. The points also 
indicate the mean value. As can be seen, the uncertainty of points decreases once the 
number of monitoring nodes increases. Although the overall trend of both stochastic 
models including the mean value and 95% confidence intervals is somewhat similar to 
each to other, NGA outperforms MCS in some points especially for 2 monitoring nodes. 
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Figure 4. Pareto optimal front for both stochastic SD models including the uncertainty of 
points on the estimated Pareto optimal front. 

 
The following can be noted: (1) Compared to the deterministic SD, the mean value of 
uncertainty (standard deviation) in predicting nodal pressure has significantly increased 
in the stochastic SD. While the uncertainty is less than 0.2 m for all number of 
monitoring locations in the relevant deterministic SD model, this value is more than 0.2 
m for all number of monitoring locations in the stochastic SD model. (2) The value of 
uncertainty in pressure prediction can be better estimated for each number of monitoring 
nodes when SD is analyzed under uncertainty. This value would be in a calculated range 
for optimal measurement locations considering the uncertainty of calibration parameters. 
For instance, the error (uncertainty) in pressure corresponding to 4 optimal measurement 
locations is estimated to be between 0.494 m and 0.847 m based on NGA SD analysis. 
(3) The variation of the uncertainty is dramatically considerable in a few number of 
monitoring nodes rather than more number of monitoring locations. This may happen 
because the optimal measurement locations with a few numbers are more sensitive to the 
changes of calibration parameters. (4) Except for number of monitoring nodes of 2, there 
is no much difference between the two stochastic SD solutions. 

 
Case #2: Mahalat WDS 
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The proposed stochastic SD is here applied to Mahalat WDS to verify the capability of 
the proposed algorithm in a real world WDS case. The city of Mahalat is located in the 
central part of Iran. The WDS covers approximately 46 km2, with a population of around 
160,000. The city is somewhat steep slope with the lowest point of 1584 meters while the 
highest one is 1900 meters. Model demands are predominantly domestic with some 
commercial users. An EPANET hydraulic model (Rossman 2000) was constructed 
including 1814 pipes, 1771 junctions, 2 tanks, and six PRVs based on the available data. 
Finally, the skeletonized WDN model was made of 237 pipes and 195 junctions, which is 
shown in Figure 5. The WDS is supplied by gravity from three wells and two service 
tanks (reservoirs) around the city. The position of the water supply sources is shown in 
Figure 5. The average water demand is 158.9 L/S. The water is pumped into the system 
with a constant rate. The tanks store and balance the fluctuations of water daily 
consumption (Sadra-Negar 2005). 

 

Figure 5. Skeletonized Mahalat WDS model 
 

Further, it is assumed that the WDN model are calibrated for Na =7 groups. Although 
there are a large number of pipes (237), number of parameter calibration groups is 
assumed to be small number because (1) model prediction error will increase if number 
of calibration parameters increase (2) it was shown that the computational time for 
running the model will exponentially be enlarged. Grouping was done by dividing the 
range of HW pipe roughness coefficients into a 7 distinctive ranges. After estimating HW 
pipe roughness coefficients, their variations were between 78 and 155. Therefore, they 
have been classified as the ranges of (78, 90], (90,100], …, (130,140] and (140,155]. 
Then, the average of the HW pipe roughness coefficients in each rang (group) was 
considered as the representative roughness coefficient of all pipes in that group. In 
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addition, the model is calibrated for only normal demand loading condition. Note that the 
standard deviation of all pressure loggers is assumed to be equal to s=1.0 m. 

 
Since the number of calibration parameters is equal to 7 ( Na =7), a minimum number of 
measurement devices Nmin constraint equal to 7 is introduced to ensure that the obtained 
sampling design solution will lead to, at least an over-determined calibration problem. In 
addition, the whole nodes of the network are considered as potential measurement 
locations (195 nodes). However, the maximum number of 50 (Nmax=50) is introduced as 
SD budget limit, i.e. around 25 percent of the potential nodes. 

MOGA model settings were determined after a limited number of trial runs with different 
initial populations. The following parameters setting have been used for the model: 
population size of 200 chromosomes, binary tournament selection operator, mutation 
with the probability of 0.05 and one point crossover with the probability of 0.8. All 
MOGA runs were performed for 8000 generations. Furthermore, the following 
assumptions are made about uncertain parameters (1) The calibration parameters are 
assumed to be only pipe roughness coefficients; (2) uncertain grouped pipe roughness 
coefficients follow a uniform probability density function (PDF) with lower and upper 
bounds equal to 30% of the deterministic value; (3) uncertain nodal demand follow a 
Gaussian PDF with coefficient of variation (CV) equal to 0.3. 

The Pareto optimal solutions are obtained by performing two SD models including a 
stochastic model and a deterministic model. The stochastic models are NGA MOGA SD 
model (henceforth known as NGA) which is based on noisy fitness function. The 
deterministic model is standard MOGA SD model (henceforth known as MOGA). To 
make a better comparison among the solutions of three aforementioned methodologies, 
they are simulated in an identical uncertain environment. To do so, a total of 10000 SD 
model simulations were used to estimate the average of relevant accuracy for Pareto 
optimal solutions. In each SD model simulation, a different set of calibration parameter 
values was created randomly assuming the uncertainty of parameters as described above. 

Figure 6 shows the average of relative accuracy for the three Pareto optimal solutions. 
This improvement of stochastic SD verifies the superiority of stochastic SD over 
deterministic SD under uncertainty. It also shows that the solutions obtained by 
deterministic SD can lead into an average 10% error and maximum 17% error rather than 
ideal SD, i.e. stochastic SD. 

 
Conclusion 

Two stochastic sampling design approaches and one deterministic approach were 
developed and compared in this paper. All approaches use a multi-objective genetic 
algorithm known as NSGA-II to identify the whole Pareto-optimal front of optimal 
solutions. In the deterministic approach, optimal solutions are identified based on the 
assumed values for calibration parameters. However, the uncertainty of calibration 
parameters is taken into account in the stochastic approach with some pre-defined 
probability density functions. First it was applied on an artificial case study. The 
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stochastic trade-off of the two objective values shows the usefulness of confidence 
intervals for prediction accuracy of each number of optimal monitoring locations. Then, 
the comparison of stochastic and deterministic approaches in real WDS shows that the 
stochastic approach outperforms the deterministic approach especially in large WDS, 
which can better find optimal measurement locations in uncertain environment of 
parameters. 
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Figure 6. Comparison of stochastic SD and deterministic SD in Malahat WDS model 
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