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Abstract 

Background: Accurate identification of end-diastolic and end-systolic frames in 

echocardiographic cine loops is important, yet challenging, for human experts. Manual 

frame selection is subject to uncertainty, affecting crucial clinical measurements, such 

as myocardial strain. Therefore, the ability to automatically detect frames of interest is 

highly desirable. 

Methods: We have developed deep neural networks, trained and tested on multi-centre 

patient data, for the accurate identification of end-diastolic and end-systolic frames in 

apical four-chamber 2D multibeat cine loop recordings of arbitrary length. Seven 

experienced cardiologist experts independently labelled the frames of interest, thereby 

providing infallible annotations, allowing for observer variability measurements. 

Results: When compared with the ground-truth, our model shows an average frame 

difference of -0.09±1.10 and 0.11±1.29 frames for end-diastolic and end-systolic 
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frames, respectively. When applied to patient datasets from a different clinical site, to 

which the model was blind during its development, average frame differences of -

1.34±3.27 and -0.31±3.37 frames were obtained for both frames of interest. All 

detection errors fall within the range of inter-observer variability. 

Conclusions: The proposed automated model can identify multiple end-systolic and 

end-diastolic frames in echocardiographic videos of arbitrary length with performance 

indistinguishable from that of human experts, but with significantly shorter processing 

time. 
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1. Introduction 

Assessment of Left ventricular (LV) function is of principal importance during an 

echocardiographic examination and is crucial for accurate patient evaluation. 

Echocardiography continues to be the most common technique in clinical practice for 

the quantification of LV function markers; such as ejection fraction (EF) and global 

longitudinal strain (GLS) [1]. Measurements usually relate to time points, such as end-

diastole (ED) and end-systole (ES). Therefore, accurate detection of the end of the LV 

systole and diastole phases constitutes a critical step in any echocardiographic exam. 

 

 

 



1.1. The need for fully automated systems 

The importance of accurate identification of ED and ES frames was recently 

demonstrated by Mada et al. [2]. An error of just two to three frames in detecting ES 

elicits an approximate 10% difference in segmental ES strain. Furthermore, the 

sensitivity of frame selection is greater in relation to the left bundle branch block. As 

highlighted by Amundsen [3], the consequence of misidentification of ED and ES 

frames can be extensive; impairing concordance between observers in both research and 

clinical practice. Therefore, automated methods for the resolution of accurate ED and 

ES phase detection could greatly contribute to improving the consistency of 

echocardiographic quantification. 

The process of identifying ED and ES frames in video data is manually performed by 

trained clinicians via on-screen visual selection. ED frames can be determined using 

cues such as mitral valve closure, ECG R-wave and maximum LV volume. Whereas ES 

frames are commonly defined by mitral valve opening, minimal LV volume, aortic 

valve closure, or the end of the ECG T-wave. However, due to subtle frame-on-frame 

spatial differences, and complex temporal relationships virtually invisible to the human 

eye, manual detection presents a significant barrier to consistent diagnosis due to intra- 

and inter-observer variability lacking reproducibility and precision [4].  

We previously identified the medial disagreement between accredited and experienced 

experts as 3 frames [5] when performing manual identification. Therefore, reliable and 

reproducible methods for ED and ES frame detection would allow for the development 

of fully automated techniques. Thus, meeting the objective of accurate quantification of 



LV function, in addition to automated calculation of EF and stroke volume, GLS and 

wall thickening. 

 

1.2. Value of independence from ECG 

Often, cardiac timing is determined through analysis of an accompanying ECG signal 

during an echocardiogram exam. Despite providing information enabling the 

computation of some clinically important parameters, such as temporal intervals from 

the R-wave peaks, ECG recordings require the connection of multiple cables which is 

time-consuming and, at times, inconvenient. In an era when highly portable scanners 

can be used to undertake focused studies lasting just a few minutes [6], the capacity of 

detecting cardiac timing events, independent from the ECG signal, has potential. Such 

as integration with automated technology on handheld devices. 

Recent studies have attempted to address this problem. In the absence of ECG signal, 

tissue Doppler data has been used to estimate cardiac cycle length [7] or detect ED 

frames [8]. Machine learning approaches have also been applied to automatically detect 

ED and ES frames from 2D echocardiography images (B-mode). This includes 

manifold learning [9], speckle tracking [10], correlation-based frame-to-frame deviation 

measures [11,12], nonlinear filtering and boundary detection techniques [13]. 

More recently, studies have focused on deep learning approaches, such as convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs). Deep residual recurrent 

neural networks were applied to phase detection in apical-4-chamber (A4C) 

echocardiograms [14]. A major limitation of this study is the proposed model only 

accepts videos with a fixed length of frames, containing just one cardiac cycle. 



Presumably, this approach necessitates pre-processing of the input image sequence to 

isolate a single heartbeat.  

The same authors later reported on combining CNN and RNN modules to detect frames 

of interest [15]. Although varying length inputs (22-59 frames) were used, again their 

results indicate the videos contained just one cardiac cycle. It is assumed this variation 

in length was probably due to different frame and heart rates. A summary of all 

accuracies from previously reported studies, compared with those of our developed 

models, is provided in the results section. 

In addition, 3D CNNs have been applied for the extraction of spatial-temporal features 

from A4C and apical-2-chamber (A2C) echocardiographic videos [16]. While the study 

states the model was trained on variable length sequences, the feasibility of the model 

was demonstrated only on a pair of detected ED/ES frames in each video with the QRS-

complex in the accompanying ECG signal being used to detect an additional ED frame 

for the videos starting in systole phase; thereby providing ground-truth for a full cardiac 

cycle (ED-ES-ED). 

 

1.3. Value of multibeat analysis 

In clinical practice, longer recordings would allow for probing of physiological 

reactions after intervention, where detecting a subtle change in the mean value of a 

clinical maker, amongst much larger background beat-to-beat variability, is essential. 

As stated, recent studies have failed to target the application of automated phase 

detection in arbitrarily long, uninterrupted echocardiogram recordings containing 

several full heartbeats. Clinically, it is necessary to monitor changes in crucial markers, 



such as EF or strain, from one examination to the next. Measurements taken from only 

one heartbeat may result in test-retest variability. Therefore, it would be impossible to 

reliably conclude whether a patient’s condition has deteriorated over time. Such 

variability and inaccuracy can be reduced by averaging measurements over several 

heartbeats, from the same acquisition. However, this is impractical when a proposed 

automated model is incapable of returning more than one single pair of ED/ES frame 

predictions. 

We previously reported on the issue of beat-to-beat variability in echocardiography and 

potential bias due to using a single measurement from a single heartbeat [17, 18, 19]. 

When random variability between heartbeats is large, clinicians use "clinical 

judgement" to select which value to report; largely unaware of the devastating 

consequences for subsequent use. The ability to acquire and automatically analyse many 

heartbeats within reasonable time constraints would permit clinical protocols to be 

developed for multi-beat measurements, hence reducing undesirable variability between 

clinical assessments. In such measurements, the exact time of ED and ES events for 

each heartbeat is required. 

 

1.4. Clinical deployability 

Without exception, all previously reported studies related to echocardiographic phase 

detection have used ‘private single-centre’ clinical datasets for model developments, in 

both training and testing sets. 

Experience shows the performance of models trained using a single dataset may reduce 

considerably when transferred from one clinical site to another and when applied to 



different equipment and protocols [20]. This limitation has proved prohibitive to the 

development of automated models becoming an acceptable mainstream methodology in 

daily clinical practice. Evaluating models on multi-centre clinical datasets naturally 

results in greater patient numbers, a wider range of groups, external validity and lower 

systematic bias. Thus, resulting in increased generalisability of the developed models in 

contrast to single-centre dataset studies. 

Additionally, the effectiveness of previous approaches is difficult to measure. This is, in 

part, due to an absence of publicly available benchmarks. Therefore, accurate 

interpretation of previously reported results from the literature, encompassing a wide 

range of accuracies, is not feasible since a direct comparison of the frame detection 

accuracy would require access to the same patient dataset. To date, no study has used 

and reported accuracies on a publicly available echocardiography dataset. 

 

1.5. Main contributions 

Considering the above, the main contributions of this research can be summarised as 

being the first study of its kind to: 

 investigate the feasibility of using a deep learning framework to detect ED and 

ES frames in echocardiographic videos of arbitrary length, containing several 

heartbeats 

 demonstrate the applicability of the developed framework by including several 

patient datasets from various clinical centres, where one dataset was used for 

model development and the others used for testing 



 use annotations (ground-truth) from several cardiologist experts, allowing for 

the examination of inter- and intra-observer variability 

 include performance reports on a publicly available dataset, thereby providing a 

benchmark for future studies 

 

2. Methodology 

2.1. Dataset, ethics and expert annotations 

Descriptions of the datasets used in this study is as follows, with a brief summary 

provided in Table 1. 

PACS-dataset 

A large random sample of echocardiographic studies from different patients performed 

between 2010 and 2020 was extracted from Imperial College Healthcare NHS Trust’s 

echocardiogram database. Ethical approval was obtained from the Health Regulatory 

Agency for the anonymised export of large quantities of imaging data. It was not 

necessary to approach patients individually for consent of data originally acquired for 

clinical purposes.  

The images were acquired during examinations performed by experienced 

echocardiographers, according to the standard protocols for using ultrasound equipment 

from GE and Philips manufacturers. Only studies with full patient demographic data, 

and without intravenous contrast administration, were included. Automated 

anonymisation was performed to remove the patient-identifiable information. A detailed 

description, including patient characteristics, can be found in Howard et al. [21]. 



A CNN model, previously developed in our research group to detect different 

echocardiographic views [22], was then used to identify and separate the A4C views. A 

total of 1,000 videos from different patients of varying lengths, containing 1-3 

heartbeats, were randomly selected. 

Two accredited and experienced cardiology experts manually selected ED and ES 

frames, each blinded to the judgment of the other. We developed a custom-made 

program closely replicating the interface of clinical echocardiography hardware. 

Operators visually inspected the cine loops by controlled animation using a trackball, or 

arrow keys. The operators were asked to pick ED and ES frames in the A4C view, as 

they would in preparation for a Biplane Simpson’s measurement in clinical practice. 

Selections were made in one or more sessions at their convenience and the time taken 

was recorded. Videos thought to show more than one view, or misclassified by the CNN 

as A4C, were excluded, resulting in 898 A4C videos which were then used to define the 

reference ground-truth ED and ES frames for model developments (both training and 

testing). 

Finally, the original DICOM-formatted image sequences were down sampled by cubic 

interpolation into a standardised size of 112×112 pixels. 

MultiBeat-dataset 

2D echocardiographic images were collected from 40 patients (18 males), with an age 

range of 27-80 years and a mean age of 59 years, who were referred for 

echocardiographic examination in the Echocardiography Department at St Mary’s 

Hospital, London. There were no selection criteria, and all patients were in sinus 



rhythm. The study was approved by the local ethics committee and written- informed 

consent was obtained from all patients. 

Standard transthoracic echocardiography was performed using a GE Vivid.i (GE 

Healthcare, London, United Kingdom) ultrasound machine equipped with a 1.5-3.6 

MHz transducer (3S-RS). For each subject, an A4C view was obtained in left lateral 

decubitus position as per standard clinical guidelines [23]. The operators performing the 

exam were instructed not to change any machine setting (e.g. sector, gain, depth, etc.) 

and the probe position during the acquisition period to obtain consistent data. The 

acquisition period was 20 seconds to make sure at least 10 cardiac cycles were present 

in all videos. The images were stored digitally for subsequent offline analysis. The ECG 

trace was present on all echocardiographic recordings. 

Using the same platform described for the PACS-dataset and in a similar process, five 

other accredited and experienced cardiology experts manually selected ED and ES 

frames, again each blinded to the judgment of the others. All videos were then renamed 

and provided to one operator in a random order for second analysis, no previous result 

was shown. Thus, the operator was blinded from their own previous frame selections. 

To maintain independence, the operators annotating the MultiBeat-dataset were 

different from those who labelled the PACS-dataset. 

Where an operator judged a beat to be of low quality, they declared it invalid and did 

not make a selection. Therefore, since the operators were blinded to each other and their 

own previous selections, there were heartbeats that were delineated on one or two 

viewings only by each operator. Only the heartbeats which had 6 delineations (540 in 

total) were used for testing the models. The location of the typical frames identified by 



the operators is plotted as red circular markers in Fig.3. DICOM-formatted image 

sequences were again down sampled by cubic interpolation into a standardised size of 

112×112 pixels. 

EchoNet-dataset 

This publicly available dataset [24] contains 10,030 A4C echocardiography videos from 

individuals who underwent imaging between 2016 and 2018 as part of routine clinical 

care at Stanford University Hospital. Each video has been cropped and masked to 

remove text and information outside of the scanning sector.  

The image sequences are provided with a dimension of 112×112 pixels. The videos are 

annotated by a registered sonographer. Although some videos may contain a couple of 

heartbeats, only one pair of ED/ES frames is labelled and were used as the reference 

ground-truth for testing the developed models (no training was performed using this 

dataset). A more detailed description of the EchoNet-dataset can be found in [25]. 

 

 

 

 

 

 

 

 



Table 1. A summary of the patient datasets used in this study. 

 

Dataset Name PACS-dataset MultiBeat-
dataset 

EchoNet-dataset 

 
Source 

Private 
NHS Trust 
PACS Archives - 
Imperial College 
Healthcare 

Private 
St Mary’s 
Hospital 
Acquired for 
this study 

Publicly available 
Stanford University Hospital 
echonet.github.io/dynamic 

Ultrasound 
machine 

Philips Healthcare 
(iE33 xMATRIX) 
 

GE Healthcare 
(Vivid.i) and 
Philips 
Healthcare 
(iE33 
xMATRIX) 

Siemens Healthineers (Acuson 
SC2000) and Philips 
Healthcare (iE33, Epiq 5G, 
Epiq 7C) 

Number of 
videos/patients 

1,000 40 10,030 

Length of 
videos 

1-3 heartbeats ≥ 10 heartbeats 1 heartbeat 

Ground-truth 2 annotations by 2 
experts 

6 annotations 
by 5 experts 
(twice by one 
expert) 

1 annotation 

Original size 
(pixels) 

(300-768)×(400-
1024) 

422×636 112×112 

Frame rate 
(fps) 

23-102 52-80 50 

Format DICOM DICOM AVI 
Use Training/Testing Testing Testing 
 

 

2.2. Ground-truth definition 

The target output, or ground-truth, was generated using reference annotations provided 

by experts and subsequently used to train the deep learning models.  

Treating the definition of ground-truth as a classification task, with three classes for 

frames (ED, ES, trivial), would result in an imbalanced problem since the ‘trivial’ class 



would be greatly over-represented. A recent study put forth the argument of a binary 

classification approach for cardiac phase detection [16]. However, by allocating the 

same label to all frames in the diastole phase (1) and systole phase (0), one risks 

ignoring high-level spatial and temporally related markers, including crucial 

physiological differences throughout the entire cardiac cycle. 

Therefore, the problem was formulated as a regression task. To label individual cardiac 

frames, it was assumed the predictions for a cardiac sequence should decrease during 

the systole phase and increase during the diastole phase. Given two consecutive ground 

truth labels  and , we expect <  in systole, and vice versa. Assigning the 

target values of 1 and 0 to ED and ES time-points, respectively, and using a linear 

interpolation function, the target output was defined as: 

 

 

 

Here,  is the ground-truth label for frame  at time-point t and  and  are the 

frame numbers for ED and ES events, respectively. Due to varying video length, some 

contain a combination of singular or multiple events in the image sequence. 

 

 



2.3. Neural network architecture 

Fig.1A. provides an overview of the network architecture. The model comprises (i) 

CNN unit for the encoding of spatial information for each frame of an 

echocardiographic video input, (ii) RNN (LSTM) units for the decoding of complex 

temporal information, and (iii) a regression unit for the prediction of the frames of 

interest. 

Spatial feature extraction: First, a CNN unit is used to extract a spatial feature vector 

from every cardiac frame in the image sequence. A series of well-

established architectures were employed for the CNN unit. These include ResNet50, 

InceptionV3, DenseNet and InceptionResNetV2, details of which can be found in the 

relevant resources [26 - 29]. 

Temporal feature extraction: LSTM units are used to process the image features 

extracted from the entire image sequence by the CNN. Stacks of LSTM units (1-layer to 

4-layers) were explored, where the output of each LSTM unit not in the final layer is 

treated as input to a unit in the next. 

Regression unit: Finally, the output of the LSTM unit is regressed to predict the 

location of ED and ES frames. The model returns a prediction for each frame in the 

cardiac sequence (timestep). 

 

2.4. Deep learning framework 

For the model to be capable of processing a video input of arbitrary length, thus 

containing any number of heartbeats and events, a sliding window approach was 



adopted. As illustrated in Fig.1B., a sliding window with a fixed stride segments the 

cardiac image sequence into overlapping chunks of fixed length. Each segment is then 

fed into the neural network model, as described above, where a prediction vector  is 

returned. The final target output is computed as: 

 

 

 

Where  is the prediction for frame t in the  segment, and K is the total number of 

predictions available for each frame, obtained from overlapping segments. A peak 

detection algorithm then searched for the local maxima and minima, representing the 

ED and ES frames, respectively. 

 



 

 

Fig. 1.  Detailed schematic of the proposed deep learning framework: (A) the network 

architecture combining a CNN unit for spatial feature extraction with RNN (LSTM) 

blocks for temporal analysis; (B) the sliding window method processing fixed, 

overlapped, chunked sequences, generating multiple predictions for each frame with the 

mean calculated for each. 

 

 



2.5. Implementation details 

The models were implemented using the TensorFlow 2.0 deep learning framework [30] 

and trained using an NVIDIA GeForce ® GTX 1080 Ti GPU. Random, on the fly 

augmentation prevented overfitting, such as rotating between -10 and 10 degrees and 

spatial cropping between 0 and 10 pixels along each axis. The loss function was the 

mean squared error (MSE) with Adam optimiser [31] initialised with a learning rate of 

. Throughout the study, training was conducted over 70 epochs with a batch size of 

2 for all models. 

The PACS-dataset was used to train the models, with a data split of 60%, 20% and 20% 

for training, validation and testing, respectively. Early stopping was employed to avoid 

overfitting meaning training continued until the validation loss plateaued.  

During testing, a sliding window of 30 frames in width with a stride of one was applied, 

allowing up to 30 predictions of differing temporal importance to be calculated for each 

timestep. Toward the end of each video, should a segment be fewer than 30 frames in 

length, it was zero-padded with the added frames removed after completion. 

Experimentation proved a stack of 2 LSTM layers was the optimum configuration 

across all models. 

 

2.6. Evaluation metrics 

Evaluation of trained network predictions measures the difference between each 

labelled target , either ED or ES, and the timestep prediction  Average Absolute 



Frame Difference (aaFD) notation is applied, where N is the number of events within 

the test dataset: 

 

 

 

The mean (μ) and standard deviation (σ) of the error (i.e. frame differences) were also 

calculated. 

 

3. Results and discussion 

3.1. PACS-dataset 

The average time (mean±SD) taken by the operators to manually annotate ED/ES 

frames was 26±11 seconds, per event. The equivalent time for our automated models, 

executed on the GPU, was less than 1.5 seconds; significantly faster than the human-led 

process. 

Table 2 details the error in ED and ES frame detection for all videos in the PACS-

dataset. The results indicate the level of disagreement between Operator-1 annotations, 

considered as the ground-truth, compared with automated predictions and those made 

by Operator-2.  

Of all architectures explored, ‘ResNet + 2x-LSTM’ demonstrates the smallest 

discrepancy with Operator-1. The aaFD was less than one frame in both events, with a 



mean difference of -0.09±1.10 and 0.11±1.29 frames for ED and ES events, 

respectively.  

The discrepancy between Operator-1 and Operator-2 indicates a level of inter-observer 

variability; with an average absolute (and mean) frame difference of 1.55 (-1.35±1.31) 

and 1.44 (-0.90±1.80) frames for ED and ES events, respectively. Therefore, suggesting 

the discrepancy between automated models and Operator-1 is within the range of 

disagreement observed between two trained human operators. 

 

Table 2. Errors in ED and ES frame detection between Operator-1, the reference 

ground-truth, and predictions with Operator-2, for all testing videos in the PACS-

dataset. Detection time is the average time it takes for the model (inference time) or the 

operator (annotation time) to identify an ED/ES event. The best performing architecture, 

in terms of lowest detection error and shortest detection time, is highlighted. 

 

Model/Operator ED ES Detection Time 
(s) 

aaFD μ ± σ aaFD μ ± σ  
ResNet50 + 2x-LSTM 0.66 -

0.09±1.10 
0.81 0.11±1.29 0.776±0.33 

InceptionV3 + 2x LSTM 1.19 0.48±1.89 1.21 0.66±1.76 0.697±0.30 
DenseNet + 2x LSTM 0.81 0.19±1.30 0.98 -

0.01±1.53 
1.379±0.59 

InceptionResNetV2 + 2x 
LSTM 

0.77 -
0.02±1.38 

0.83 0.23±1.29 1.07±0.46 

Operator-2 (inter-
observer) 

1.55 -
1.35±1.31 

1.44 -
0.90±1.80 

26±11 

 

 

 



 

 

Fig.2. illustrates model frame predictions and Operator-1 annotations for two arbitrary 

patients from the PACS-dataset test set and demonstrates typical examples where there 

is full agreement and conversely, when there is a mismatch. 

 

Due to its lowest error and shortest inference time, the ‘ResNet + 2x-LSTM’ 

architecture (hereinafter, referred to as the model) was selected for further analysis 

using the additional MultiBeat and EchoNet datasets. Table 3 provides a comparison 

between the performance of the model and previously reported deep learning results.  

The model outperforms almost all existing approaches, indicating smaller discrepancies 

with the ground-truth from which it has learnt. However, caution is necessary, as 

different studies have used different private patient datasets, presumably with various 

levels of image quality and experience of human experts for annotations. Therefore, a 

direct comparison between the reported accuracies may not be as informative as desired. 



However, the proposed model’s removal of all pre-processing steps and its capacity to 

identify multiple heartbeats in one long video is, however, an indisputable advantage. 

It is also observed that ES frame detection error is consistently higher in all models than 

that for ED. Potentially owing to minute differences in consecutive frames indicating 

the mitral valve opening as the onset of the diastole phase is less apparent in the images; 

thus, resulting in a more challenging detection task for the model. 

 

Table 3. Comparison of the proposed model with previously reported deep learning 

architectures regarding aaFD in ED and ES event detection. 

 

Model aaFD ED aaFD ES 
ResNet50 + 2x-LSTM 0.66 0.81 
ResNet + 2x-LSTM [14] 3.7 4.1 
3D CNN + LSTM [16] 1.6 1.7 
DenseNet + 2x-Bi-GRU [15] 0.20 1.43 

 

 

3.2 Multibeat-dataset 

An ECG signal was recorded simultaneously alongside image acquisition for the 

MultiBeat-dataset and appears as a transverse trace on the echo image sequence. The 

ECG was extracted using a combination of constraints where the trace was assumed to 

be (i) continuous, (ii) have a consistent colour profile, and (iii) distinct from the 

background. The extracted signal for a random patient is used in Fig.3. to plot the 

identified frames by the human operators (6 annotations) and the automated model. 

 



 

Fig. 3. Extracted ECG trace spanning 4 heartbeats for a random patient, delineated 

showing the 6 annotations from 5 operators (red circles) and automatically identified 

(blue squares) ED and ES frames. 

 

Table 4 details detection errors between Operator-1 and detections made by the model 

and other operators. The model disagrees with Operator-1, as do Operators 2-5. Indeed, 

Operator-1 disagreed with themselves on their second annotation attempt (denoted as 

Operator-1b). The smallest error was the discrepancy between the two annotations on 

separate occasions by the same operator (i.e. intra-observer variability), with a mean 

difference -0.22±2.76 and 0.25±3.75 for ED and ES events, respectively.  

The range of mean difference between two different operators (i.e. inter-observer 

variability) was [-0.87, -5.51]±[2.29, 4.26] and [-0.97, -3.46]±[3.67, 4.68] for ED and 

ES events, respectively. The model discrepancy falls within the range of inter-observer 

variability. Clearly demonstrating the reliability of the model in frame detection, 

compared with the experienced human experts.  



Significantly, both intra- and inter-observer variability measures suggest the experts’ 

disagreement is greater when identifying ES frames. This is consistent with the model’s 

performance, for which higher errors are observed when detecting ES frames. 

 

Table 4. Errors in ED and ES frame detection between Operator-1a (considered as 

ground-truth) and predictions made by the other operators and the model for all testing 

videos in the MultiBeat-dataset. Operator-1b denotes the second set of annotations by 

the first human operator, indicating intra-observer variability. 

 

Model/Operator ED ES 
aaFD μ ± σ aaFD μ ± σ 

Operator-1a  vs   Operator-1b 1.96 -0.22 ± 2.76 1.90 0.25 ± 3.75 
Operator-1a  vs   Operator-2 2.65 -1.22 ± 4.26 3.67 -2.25 ± 4.68 
Operator-1a  vs   Operator-3 5.82 -5.51 ± 3.77 4.80 -4.46 ± 3.77 
Operator-1a  vs   Operator-4 1.72 -0.87 ± 2.29 2.01 -0.97 ± 3.48 
Operator-1a  vs   Operator-5 3.27 -2.96 ± 2.57 4.11 -3.64 ± 3.67 
Operator-1a  vs   model 2.62 -1.34 ± 3.27 1.86 -0.31 ± 3.37 

 

 

To ensure fair comparison between model performance and operators, Fig. 4. plots 

detection errors. Each human operator is compared with other 5, their consensus (mean) 

is considered as the reference annotation (red boxplots). The model is also compared 

with the consensus of the same 5 human annotations (blue boxplots). All 12 panels 

suggest performance of the model is similar, if not better, to that of an individual 

operator when using the other operators as a reference standard. 



 

Fig.4. Errors in ED and ES frame identification by each operator, expressed relative to 

the consensus (mean) of all other 5 human annotations (red boxplots). In each case, 

alongside these errors, are those identified by the model expressed relative to the 

consensus of the same 5 annotations (blue boxplots). In the box-and-whisker plots, the 

thick line represents the median, the box represents the quartiles, and the whiskers 

represent the 2.5% and 97.5% percentiles. 

 

Because different human experts make different judgments, it is not possible for any 

automated model to agree with all expert annotations all the time. However, it is 

desirable for automated models to have fewer discrepancies when compared with the 

performance of human judgment. Given the model was never exposed to this dataset 



(image sequences, and any of the corresponding annotations), its predictions in ED and 

ES frame detection can be treated as one of the independent assessors.  

Hence, for each heartbeat, there were 7 assessments of the desired frame; 6 human and 

one automated. Therefore, for each assessor, 6 frame differences were calculated when 

compared to other human or automated assessors. The pool of these differences across 

all heartbeats and image sequences indicates the overall performance for each assessor 

and is shown as boxplots in Fig.5. 

Operator-4 demonstrates the smallest range of discrepancies in identification of ED 

frames (standard deviation of 3.47), but was consistently late, with a bias of -1.50 

frames when compared to the consensus of other assessments.  

The model had a relatively acceptable discrepancy from the consensus of the human 

operators, with a mean difference of 0.39±3.97 and 1.54±3.80 frames in ED and ES 

events, respectively. Indicating the model can be used to detect the frames of interest 

and that it is as reliable as the experienced human experts. 

The range of human operator judgments for each heartbeat (i.e. difference between the 

earliest and latest manually identified frames) may be assumed as the uncertainty of the 

reference method and, therefore, the highest accuracy obtainable. The mean frame 

intervals among all heartbeats was 8.10±3.84 and 7.01±4.28 frames for ED and ES 

events, respectively. 

 



 

Fig.5. Errors in ED and ES frame identification by each of the assessors across all 

heartbeats and all patients. For each heartbeat there were 7 assessments (6 human and 

one automated). Errors are expressed as the pooled data from frame differences between 

each individual assessor and the 6 others. In the box-and-whisker plots, the thick line 

represents the median, the box represents the quartiles, and the whiskers represent the 

2.5% and 97.5% percentiles. 

 

3.3. EchoNet-dataset 

In section 3.1, the proposed model was compared against previously reported 

approaches. However, each study used a different private dataset, making a direct 

comparison extremely difficult. Here, we applied our model to the publicly available 

EchoNet-dataset, allowing for future studies to be benchmarked against ours. Like the 



MultiBeat-dataset, no further training was carried out, and the dataset was used in its 

entirety for testing. 

From the total number of videos (10,000), 810 were excluded owing to one of the ED or 

ES events occurring in the penultimate or final frame in the video, hence being 

unsuitable.  EchoNet was made available for a challenge focused on segmentation of the 

left ventricular. Therefore, it was acceptable to have ED or ES events occurring in first 

or last frames. The retained 9,190 videos were fed into the model, when no resampling 

of the images was required as the dataset is provided with a resolution of 112×112 

pixels; identical to the input size of our model. 

An aaFD of 2.30 and 3.49 frames was obtained for ES and ES events, respectively and 

the mean frame difference was 0.16±3.56 and 2.64±3.59 for ED and ES; well within the 

range of inter-observer variability observed in section 3.2. 

 

4. Conclusion 

This study sought to investigate the feasibility of fully automated identification of ED 

and ES frames derived from 2D echocardiographic images and independent from an 

accompanying ECG signal using deep neural networks. The performance of the 

proposed method was examined by comparisons to gold standard reference data, 

obtained from multiple cardiologist experts. It has been demonstrated that the 

performance of the proposed model is like that of human experts, with its detection 

error falling within the range of inter-observer variability and can therefore be used to 

reliably identify multiple ED and ES frames from videos of arbitrary length. 



The performance of the automated model, measured as the processing time, is superior 

to that of human operators, where an improvement of >20 times was observed. 

The proposed framework was tested on A4C views; however, it is the authors’ belief 

that the utilised deep learning approaches could be applied to other echocardiographic 

views. This will be the subject of future studies. As in previous studies, ours 

investigates 2D echocardiography as the clinically relevant modality. Currently, 3D 

echocardiography suffers from a considerable reduction in frame rate and image quality, 

hindering its adoption into routine practice [32]. When such issues are resolved, 

automatic frame detection in 3D images could be explored. Meanwhile, 2D 

echocardiography remains unrivalled, particularly when high frame rates are required. 

Interpreting the results of our proposed model alongside other published architectures 

from the literature was not feasible. A direct comparison of detection accuracy would 

require access to the same patient dataset. At present, no echocardiography dataset, and 

corresponding annotations specifically prepared for cardiac phase detection, is publicly 

available. Additionally, representative multi-centre patient data, essential for ensuring 

any developed model would scale up well to other sites and environments, is currently 

scarce. 

To address such broadly acknowledged shortcomings in the application of deep learning 

to echocardiography, we are developing Unity (Unity-Imaging.net), a UK collaborative 

of cardiologists, physiologists and computer scientists under the aegis of the British 

Society of Echocardiography.  

An image analysis interface is under development in the form of a web-based, 

interactive, real-time platform to capture carefully curated expert annotations from 



numerous echo specialists with patient data provided from over twelve sites across the 

UK. Thus, ensuring coverage of multiple vendors, systems and environments. All 

developed models designed using this annotation biobank will be made available under 

open-source agreements at github.com/intsav. 
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