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ABSTRACT Intelligent transport systems (ITS) are pivotal in the development of sustainable and green
urban living. ITS is data-driven and enabled by the profusion of sensors ranging from pneumatic tubes to
smart cameras which are used to detect and categorise passing vehicles. Simple sensors, such as pneumatic
tubes, are successfully deployed for counting passing vehicles but are not useful for vehicle tracking or
re-identification. Smart cameras, on the other hand, collect comprehensive information but suffer from
occlusion, patchy coverage, and compromised vision in adverse weather and visibility. This work explores
a novel ITS data source based on an optical fibre which acts as an uninterrupted length of virtual sensors
using a distributed acoustic sensor (DAS) system. Based on real DAS data collected in the field, we first
present a study of latent DAS features that uniquely identify a given vehicle, otherwise referred to as the
vehicle signature. We formulate a classification problem that examines incoming DAS data to extract vehicle
signatures and identify the different types of vehicle. To this end, we implement different classification
methods and present a comparative performance analysis that reveals novel insights into the potential role
of DAS for ITS applications. This work is a pilot study of DAS for vehicle classification that is driven by
real DAS data and validated by promising results where a vehicle’s type is correctly identified with 94%
accuracy and the size of a vehicle with 95% accuracy.

INDEX TERMS Intelligent transport system (ITS), distributed acoustic sensors (DAS), classification,
vehicle type.

I. INTRODUCTION
Intelligent transport systems (ITS) are concerned with apply-
ing technology to enable informed traffic management and
environment-friendly traffic flow. Vehicle detection is an
essential ITS objective with a rising interest in vehicle clas-
sification. The vehicles’ characteristics of interest to ITS
include the size, the occupancy, and the engine type, as each
would have a different impact on traffic planning and environ-
mental pollution. In recent years, numerous types of traffic
detector have been deployed to monitor traffic flow, such
as remote traffic microwave sensors [1] and magnetic sen-
sors [2], in addition to more traditional sensors such as
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pneumatic road tubes [3]. However, the data generated by
these sensors is mostly limited to counting of vehicles to
apply in tasks such as optimising traffic flow by control-
ling traffic lights. More recently, video sensors have been
deployed for traffic flow monitoring with the ability to clas-
sify the type of passing vehicles and to track their movements.
For instance, the authors of [4] employ advanced deep learn-
ing techniques in the analysis of video footage to detect and
track vehicle movement. It is, however, extremely challeng-
ing and costly to cover and analyse kilometers of road net-
works with video cameras and there are inevitable limitations
due to blind areas and poor performance in adverse light and
weather conditions [5]. Furthermore, privacy concerns due to
omnipresent cameras in urban spaces and related regulations,
such as the General Data Protection Regulation (GDPR),
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have resulted in public reluctance about the spread of video
sensors [6]. The authors in [7] propose a deep neural net-
work model to mine microphone data and classify different
transportation modes, including On-Road and four related
sub-categories: ‘Auto Rickshaw’, ‘Bus’, ‘Car’, ‘Pedestrian’.
Despite the encouraging results obtained, such a method
does not support continuous and uninterrupted sensing and
is not suitable for the problem defined in this work: detecting
different types and/or sizes of passing vehicles. A network
of wireless acoustic sensors in proposed in [8] to classify
two types of military vehicles. A classification system is
designed that can mitigate the impact of sensor faults and
environmental noise. In this case, 23 sensors are used to cover
0.27 square kilometers, hence the proposed classifier is not
scalable for ITS solutions.

In this work, we propose to use fibre-based distributed
acoustic sensors (DAS) to collect uninterrupted data along
the length of the road network. Indeed, fibre optic commu-
nication is available across the globe and is based on optical
fibres deployed underground (or underwater). Unused optical
fibre cables, sometimes referred to as dark fibre, are often
purposely laid along used fibre for future use; these can
be re-used to enable a DAS system. By connecting a DAS
interrogator to a fibre, each point along the fibre becomes
a sensing unit and, therefore, yields a system that achieves
continuous detection along the length of the road. The DAS
system continuously monitors fluctuations of the reflected
probe signal that are caused by external vibrations; these
are referred to as acoustic events. Current advances in DAS
technology allow the localisation of acoustic events along
the fibre and the categorisation of the event (e.g. a pass-
ing car or drilling). Commercial DAS systems are mostly
based on optical backscattering technology and are widely
used in monitoring of oil and gas pipelines [9], peripheral
safety [10], structural health [11], and submarine power
cables [12]. Recently, DAS systems are considered for traffic
flow detection with promising results for vehicle detection
and speed estimation [13]. In this context, DAS is a relatively
new technology that promises to overcome the issues with
blind areas and reduce the deployment cost of equipment
and data analysis. More importantly, DAS is not affected
by adverse weather or luminosity conditions and does not
capture personal data such as faces and clothing.

A. RELATED RESEARCH
Advanced feature extraction techniques are currently applied
to DAS data to get more information such as the signature of
the detected event and its identification. In line with acoustic
signals classification, manual feature extraction techniques
were first adopted in DAS event classification. Such tech-
niques include wavelet packet transform [14], [15], spec-
tral substitution [16], Mel-spectrograms [17], and empirical
mode decomposition [18]. The classification task is then
conducted using conventional classifiers such as support
vector machines (SVM such as [14]) and relevant vector

machines [15]. In order to improve the classification results,
some works propose to use advanced classifiers instead of
conventional classifiers. For example, the authors in [18] use
XGboost, an ensemble algorithm, and the authors in [16]
and [17] use convolution neural networks (CNN), achieving
a higher success rate than conventional classifiers. Instead of
manual feature extraction, the authors in [19] apply a one-
dimensional CNN (1D-CNN) directly to the raw signal fol-
lowed by an SVM-based classifier, and outperform previous
works.

Most of these works aim to detect and classify DAS
signals generated by distinguishable events such as road
works [16], [17], [19]. Others are concerned with distin-
guishable man-generated disturbances [15], [18]. However,
none of these works attempts to distinguish similar events
(e.g. type of moving vehicle) based on DAS-salient features.
In other words, the listed works are not designed to classify
the type or size of a passing vehicle using DAS. Recently,
the authors of [14] presented an SVM-based classification
method to identify types of vehicles, namely: cars, sport
utility vehicles (SUV), and trucks with 71.69% accuracy.
Another paper, [20], uses DAS signals to identify heavy
vehicles by associating the high number of axles detected
visually with a DAS disturbance threshold. It follows that this
method does not distinguish vehicle types nor the different
size/weight of two vehicles with the same number of axles.

B. CONTRIBUTIONS
In this work, we posit that DAS data contains representative
features that uniquely characterise a given vehicle type and
size. This is an important ITS problem that applies to dif-
ferent use cases. One such case represents controlled access
areas, such as airports, ports, or manufacturing sites, where
only authorised and known vehicles are allowed to roam.
In this case, the problem we address can serve as a security
measure to detect the movement of an unauthorised vehicle.
Another use case relates to urban areas with restricted access
to large vehicles. In this context, detecting the size of any
vehicle approaching the restricted areas can be informed
by the detected DAS signal. The code and data of this
work are available here: https://github.com/Chiayen0503/
Distributed-Acoustic-Sensor-Systems-for-Vehicle-Detection-
and-Classification.git

In our investigation, we first conduct a DAS feature explo-
ration study that aims to identify unique signatures that rep-
resent specific vehicles based on real collected data. For this
purpose, we employ empirical mode decomposition (EMD)
energy analysis [18] to extract a feature vector from the
original normalized DAS data and a differential signal. Our
study suggests that EMD is not a suitable method for fea-
ture extraction since it assumes that the vehicle signature
is embedded in the energy carried by each time-domain
Intrinsic Mode Functions. Another common approach for
processing acoustic signals relies on Mel filter banks which
mimic the human ear’s acoustic perception, with better
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discrimination for lower frequencies than higher frequencies.
Recently, Google published a new model that replaces the
traditional fixed features ofMel banks by a learnable frontend
for audio classification (LEAF) [21]. Despite the learnable
side of LEAF, it nonetheless focuses the feature extraction on
frequency components of the acoustic signal; it follows that
it behaves poorly in DAS signal classification.

Based on these findings, we adopt an automatic feature
extraction approach using supervised learning and find that
DAS data indeed contains unique vehicle signatures. This is
confirmed by using raw DAS data as input signal to different
classifiers commonly used for identifying acoustic signals,
such as VGG-16 [22] which achieves 67% accuracy. Next,
we propose the first 1D-CNN approach for the extraction of
distinguishable latent features of similar DAS events created
by moving cars. In particular, our method successfully clas-
sifies five categories of vehicles moving at different speeds.
We argue that automatic feature extraction using a 1D-CNN
is the most successful approach to capturing the vehicle class
signature when followed by a softmax classifier. We present a
performance analysis of the proposed method and we investi-
gate the role of car size on the imprinted DAS signature. Our
work outperforms prior art in [14] and reaches an average
accuracy of 94% for car type and 95% for car size.

This is a pioneering feasibility study of using DAS in
vehicle type/size classification based on a dataset acquired
under controlled conditions. In the hope of motivating more
research in this area, the dataset and code are made available
to the public. Moreover, we posit that the methods proposed
in this manuscript are not specific to this dataset but that the
models obtainedmay benefit from re-trainingwhen presented
with DAS data that was acquired in different conditions.
To this end, We discuss the applications and limitations of
the proposed methods for different conditions including traf-
fic scenarios, road types, fibre characteristics, and weather
conditions. Two use cases are examined: (a) Areas with
vehicle-controlled access and (b) Urban areas with restricted
access to large vehicles. In the first case, the list of permitted
vehicles, road, and fibre conditions are known and remain
mostly unchanged. In this case, the model would benefit from
retraining based on collected data specific to the target area.

The second case is defined based on common concerns in
transportation planning1 where the dimensions and weight
of vehicles on the roads are required in ITS planning. This
work does not suggest to provide a complete answer to these
questions; instead, we offer an alternative means to detect
large vehicles whenmodelling the traffic flow. In urban areas,
vehicles and traffic conditions are not predefined, but the cov-
ered road and the conditions of the fibre attached to each DAS
interrogator and fixed. In this case, we posit that the model
would benefit from retraining to better represent these charac-
teristics, and propose to address the challenge of labelling by
employing alternative data sources (e.g., camera-based) in a
fixed location of the road. The advantage of the DAS-method

1https://www.hse.gov.uk/workplacetransport/vehicles.htm

FIGURE 1. DAS system.

in this case is that it offers a reliable and efficient detection of
large vehicles for tens of kilometers with a single interrogator.
The paper is organised as follows. The DAS technology, DAS
system, and DAS dataset are first described in Section II. This
is followed by a problem formulation in Section III and DAS
data exploration in Section IV. Next, we present the proposed
1D-CNN approach in SectionV. In SectionVI, we present the
obtained results and we discuss the findings in Section VII.
We finally conclude the article in Section VIII.

II. DISTRIBUTED ACOUSTIC SENSING: SYSTEM
AND DATA
In this section we first present the general theory of DAS
followed by the data acquisition method adopted in the col-
lection of the dataset used for this research.

A. DAS SYSTEM
A DAS system is an opto-electronic device sensitive to the
strain distributed over an optical fibre of the length of up to
40 to 50 km [23]. The technology is rooted in Optical Time
Domain Reflectometry (OTDR) where a pulse of coherent
light is periodically injected into a fibre and a fraction of the
light reflected back via Rayleigh (elastic) scattering mech-
anism is captured by a photodetector at the launching end
(see Figure 1. Each probing pulse results in a continuous time
series of back-scatter intensity, commonly referred to as a
fibre shot, with the time being proportional to the distance
that the pulse has traveled along the fibre. In conventional
OTDR the back-scatter intensity is a smooth exponentially
decreasing function of fibre distance unless there is a sudden
variation in the local fibre reflectivity coefficient due to a
faulty splice or a fibre break. In a DAS system, in contrast
to OTDR, the intensity is a random function of fibre position
and the cumulative phase of the interference of light scattered
back by the fibre within the interrogating pulse. This fibre
interval giving rise to the back scatter interference is called
a resolution cell. Although the back-scatter phase from each
resolution cell is inherently random due to the randommolec-
ular structure of the fibre glass, it stays constant as long as the
state of fibre within the corresponding resolution cell remains
unchanged. If, however, a fibre is subjected to dynamic strain,
the strain variation results in a variation of the back-scatter
phase and hence back-scatter intensity. Therefore a series of
back-scatter measurements at a given fibre distance carries
information about the evolution of the strain applied at the
corresponding fibre position.

The size of the resolution cell defines the spatial resolution
of a DAS system and is determined by the width of the
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probing pulse: a 100 ns pulse corresponds to the spatial
resolution of approximately 10 m. The spatial resolution is
different from the spatial sampling period. The latter is related
to the rate of the analog-to-digital converter (ADC) that
samples the fibre shots for the purpose of data logging and
digital signal processing. Usually, the ADC rate is configured
so that the sampling period is substantially smaller than the
spatial resolution. The temporal sampling resolution is given
by the interrogator’s pulse repetition frequency (PRF) which
is limited by the length of the sensing fibre. Maximum PRF
varies from 2.5 kHz to 100 kHz for 40 km and 1 km long
fibres, respectively. The output of a DAS system is thus a
collection of digitized fibre shots acquired at a given PRF.
Given that a fibre shot constitutes a set of measurements
sampled along the fibre length, DAS data can be viewed as
a 2D spatio-temporal array of scalar measurements.

Implementations of a DAS system can be grouped into
two categories with respect to their interrogation method:
intensity-based and phase-sensitive systems. In the former,
it is the back-scatter power (or intensity) that is measured
while in the latter the temporal changes in back-scatter
phase constitute the acquired signal. Intensity-based sys-
tems are simpler in design. However, their transfer func-
tion, i.e., the strain-intensity relationship, is a non-linear and
not predictable function of strain. Phase-sensitive DAS sys-
tems, being more complex in design, feature linear transfer
(strain-phase) function which makes the acquired data more
amenable to interpretation. For this research, we used a phase-
sensitive Helios DAS [24]. The system utilizes a proprietary
phase interrogation technique to recover temporal evolution
of the back-scatter phase along the fibre. The system was
operated with 100 ns pulse width corresponding to spatial
resolution of 10 m. The temporal phase sampling frequency
was 6 kHz. The ADC rate was set to 150 × 106 samples per
second resulting in the spatial sampling period of ≈0.68 m.

B. DAS DATA
We set up a controlled experiment in which DAS data is
collected along a 4.8 km stretch of an inter-city road leading
into a town. The selection of this particular section of the road
aimed to capture traffic at different speeds: faster outside the
town and slower as the vehicles approach the town centre.
The fibre used was purposely laid along the road stretch at
20 cm underground depth in a micro-trench. Fotech’s Helios
DAS interrogator (see Section II-A) was used to capture the
DAS signals.

In this research, the DAS signals obtained from controlled
movement of five different vehicles are studied. There are five
conducted experiments in which the five vehicles moved at
a given fixed speed (30 km/h, 40 km/h, 50 km/h, 60 km/h,
70 km/h) and with predefined order and inter-vehicle distance
in both road directions. One side of the road was blocked and
the experiments were carried at night to reduce the chance of
external vehicles driving along the controlled road segment.
The five vehicles are listed in Table 1.

Figure 2 shows a section of the collected data for the
50 km/h speed experiment. In this figure, the x-axis indicates
the time in fibre shots, s, where one shot is equivalent to
1/1000.04 seconds and the y-axis refers to the position along
the laid fibre in fibre bins, b, where one bin is equivalent to
0.68 metres. The lightness of each pixel at bin b and shot s
represents how strong was the signal displacement ρ(b, s),
as a result of the vibration generated by the moving vehicle.
The dominant five lines, as highlighted in Figure 2, represent
the track of the five vehicles moving at the same speed
and respecting the same inter-vehicle distance. Two other
lines can be seen in Figure 2. The first represents an out-of-
experiment vehicle which was moving in the same direction
and was positioned between Car 2 and Car 3. The other one
represents another external vehicle which was moving in the
opposite direction and passed both Car 4 and Car 5.

Each of the five experiments (for the different five car
speeds) generated a two dimensional dataset where the first
dimension is the fibre bin such as 1 ≤ b ≤ B and B is
the last fibre bin, and the second dimension is the fibre shot
1 ≤ s ≤ M , where M is the last acquired shot in the dataset.
The reported value is that of the signal displacement ρ(b, s)
in radians for each position determined by s and b.

FIGURE 2. Section of DAS collected data (top) for the 50 km/h
experiment showing the five target vehicles in addition to two unwanted
ones. In addition, a sample DAS signal is taken at bin 450 for Car 1 as
shown in the bottom, where 1000.04 fibre shots are presented as one
second and the y-axis shows the disturbance level in radians.

III. PROBLEM FORMULATION
Consider a raw DAS dataset of fibre length B (bins) collected
over a duration of M (shots) fibre shots. Each fibre bin
1 ≤ b ≤ B represents a virtual acoustic sensor that measures
the displacement of the optical signal in radians at any time
1 ≤ s ≤ M . Let ϱ ∈ RB×M be this complete raw dataset
over the entire length of the fibre B and over the full period
of recording M . Let xω

b ∈ Rdω
b be a data sample of index

1 ≤ b ≤ B that is collected from bin/sensor b during the
duration dω

b < M . The superscript ω ∈ {0, 1, 2, . . .T } is
the index of an event where ω = 0 refers to an unwanted
event (noise) and ω > 0 indicates the type of the detected car
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TABLE 1. The list of vehicles included in the trial with their respective kerb weights and lengths and categorisation as small or large.

(e.g., ω = 1 indicates Car 1, ω = 2 indicates Car 2,
etc). Based on the controlled experiment setup described in
Section II-B, there is a unique dω

b > 0 for each value of
1 ≤ ω ≤ T at each bin b, given by dω

b = sωb,e−sωb,s, where for
all bins 1 ≤ b ≤ B, sωb,s is the starting shot of event ω at bin
b and sωb,e is the end shot. Let dω

= max(dω
b ) be the largest

duration for an event 1 ≤ ω ≤ T for all values of 1 ≤ b ≤ B.
Following the order of the cars, it can be said that for any bin
b, s1b,s < s1b,e < s2b,s < s2b,e < · · · < sTb,s < sTb,e and all other
events represent noise (i.e., ω = 0).

We can then express the set of all data samples xω
b in

the dataset of type ω as Xω
∈ RB×dω

as the sequence of
B data samples describing event ω that are collected by B
sensors for a duration of dω seconds. The starting shot and
end shot of each data sample in Xω differ, and they each span
a different duration; in this work dω is the largest duration of
an event ω within a sequence Xω. Similarly, we can express
X ∈ RB×dω

×T as the union of all such sequences Xω in
the data set for all 1 ≤ ω ≤ T where each data sample xb
in Xω (we drop the superscript ω since all samples in Xω

have the same ω) is associated with a label yb = ω and
b = 1 . . .B.
In this paper, we examine five different datasets

{X30 . . .Xν . . .X70} where ν ∈ {30, 40, 50, 60, 70} is the
speed of the moving cars in each experiment and XJS is
the joint dataset that combines joint speeds. For simplicity
of mathematical notation and unless more than one dataset
is used at the same time, we use the notation X to indicate
a given dataset without the subscript ν. The problem can
thus be formulated as a classification predictive modelling;
a process of predicting car types that are categorised into
T classes/labels (e.g., Car 1, Car 2, etc. or Large/Small) by
approximating a mapping function from input data samples
in X = {X1, · · · ,XT } into discrete output labels Y . To this
end, we reorganise the set of input data samples X into a
training set Dt and a testing set Dv. Dt

∈ RDt×dm is a
two dimensional matrix where Dt is a design parameter that
indicates the number of samples included in the training set
and dm = max(dω) for all values of ω in ρ. Each row in

Dt is a data sample xi from any Xω, taken at bin i, with the
corresponding label yi. In case dω < dm, zero padding is
applied to edge shots, i.e. ρ(i, j) is set to 0 for all shots jwhere
j < sωb,s − (dm − −dω)/2 and j > sωb,e + (dm − −dω)/2.
The training dataset Dt is shown in Eq(1), at the bottom

of the page, where ρ(i, j) is a single measurement value (in
radians) for a particular sensor (bin i) at a certain time (shot
j) within the data sample xi. In this case, the bin i represents
the index of the data sample and j is shot index relative to the
start shot of xi. For example, for a data sample xi taken at bin
i with label yi = ω, a value ai,j is equal to ρ(i, sωb,s + j) and
ai,dω = ρ(i, sωb,s + dω).

Similarly, Dv
∈ RDv×dm is a two dimensional matrix

where Dv is a design parameter that determines the number
of samples used in the testing phase. Each sample xi in
Dv is associated with a label yi as in Eq(1). The sum of
Dt + Dv ≤ T × B, since each vehicle within the controlled
experiment passes by each bin within the controlled stretch
of the fibre and passes only one time through each bin during
the recording of the full dataset ϱ.

IV. DAS FEATURE EXPLORATION
Similar to standard acoustic signal exploration, in this section,
we examine DAS signals by studying the time domain and
frequency domain representation. To this end, we extract the
phase displacement ρ(b, s) for one specific bin and speed
over a window of 4,500 shots that spans across the visual
marks left by Car 1 and Car 2, as shown in Figure 3 (Top)
and (Middle), respectively. These two signals are fed into
a cross-correlation algorithm which applies a lag ranging
between -4500 and 4500 to one signal and, for each lag
value, computes the dot product to determine the correlation.
The result is show in Figure 3 (Bottom) and indicates high
cross-correlation (close to 1) between these two different car
types. Such a high correlation between the DAS signal tem-
poral representation of these two significant different vehicles
(Car 1:Large and Car 2:Small), indicate that temporal-based
features are not sufficient to distinguish their respective sig-
natures.

(1)
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FIGURE 3. (Top) Car 1 DAS signal. (Middle) Car 2 DAS signal.
(Bottom) A cross-correlation plot between both signals, when both cars
are moving at the same speed across the same bin.

FIGURE 4. Top: Spectrograms of DAS signals generated by Car 1 (left) and
Car 2 (right). The x-axis represents the time, the y-axis the frequency, and
the colormap indicates the corresponding intensity in dB. Bottom: Both
signals are processed with fast fourier transform and the resulting
frequency components are cross-correlated using a convolution
operation. The result is presented in the time domain.

Next, we examine the frequency domain representation by
visually examining the spectrograms of both signals which
are difficult to differentiate, as shown in Figure 4 (Top).
Next, we feed the Fast Fourier Transform results of both
signals in Figure 3 (Top) to the cross-correlation algorithm.
The outcome is shown in Figure 4 (Bottom) which again
shows high correlation andmatches the finding from the time-
domain cross-correlation shown in Figure 3 (Bottom).
These results suggest that, unlike traditional acoustic sig-

nals, DAS signals cannot be differentiated by examining the
features corresponding to the frequency components. Next,
we follow the EMD method in [18] to manually extract
features, followed by an XGboost classifier. The resulting
classification accuracy achieved is 26%, which is similar

to random guessing between the five possible classes. This
finding further confirms that, although such a method is
suitable to classify distinguishable events (e.g. knocking,
climbing) [18], it is incapable of extracting the latent features
that represent the individual vehicle signatures.

Another successful approach in acoustic signal processing
is Mel-filter banks; a method to decompose a signal into
separate frequency bands in a scale that mimics the nonlinear
human perception of sound. The problem with Mel-filter
banks is that these need to be tuned for different acoustic
signals (piano, speech, language, etc). A recently published
model, LEAF, harnesses advances in 1D-CNN to create
dynamic filter banks that can be learned for any acoustic
signal including acoustic scenes, birdsong, music, speech,
language classification [25]. We applied LEAF to our DAS
signals and obtained an accuracy of 22%, again similar to
random guessing.

The findings obtained through the data exploration indicate
that DAS signals, although categorised as acoustic, cannot be
represented with known acoustic features that mostly relate
to frequency components. This leads us to the next step in
our study that taps into the potential of deep convolution
networks to automatically extract the features for successfully
representing our data.

V. METHODOLOGY
Based on the problem formulation in Section III, we present
here ourmethodology for two sub-problems: sample labelling
and sample classification.

A. SAMPLE LABELLING
Data labeling requires the raw data to first be parsed for event
detection, event framing, and finally event labelling. In this
section, we apply linear regression to the dataset ϱ for the
detection and labelling of events of interest.

Looking at Figure 2, the red lines show that there is a
linear relationship between fibre bin (y-axis) and fibre shot
(x-axis) for all cars. This indicates that all target cars drove
at the same speed in the same direction with fixed distance
as part of the controlled experiment. The path of each car is
highlighted by the red lines in Figure 2. This finding allows
us to use linear regression in the labelling task. In this work,
we focus the analysis on a section of the road covered by
bins 250 ≤ b ≤ 750, where each spans 0.68metres. A default
car window of 50 bins is considered. By plotting the signal
every 50 bins, we can record manually the start shot sb,s
and the end shot sb,e for every bin b. We then feed the data
in two linear models to find the start and end shot of each
car signal at any bin 250 ≤ b ≤ 750. We get two pairs
of coefficients: (c1, c2) for the linear model representing the
start shot sb,s = c1 × b+ c2 of each bin b and (c3, c4) for the
end shot sb,e = c3 × b+ c4.
Next, each car window is labelled as either ω = 0 if the

window contains an unwanted signal, or ω ∈ {1, 2, 3, 4, 5}
if it contains one of the controlled cars, in which case the
value of ω is determined based on the predefined order of the
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vehicles (see Section II-B). Let xb(s) = ρ(b, s) for a given
bin b, it can be said that xb(s) is a signal displacement in a
given shot s, and xb ∈ Rdω

for sb,s ≤ s ≤ (sb,s + dω) is a
one-dimensional car signal, i.e. a data sample such as

xb = {ρ(b, sb,s), ρ(b, sb,s+1), . . . , ρ(b, sb,e)} (2)

B. PROPOSED 1D-CNN MODEL
We first build a 1D-CNN to extract the sample features fol-
lowed by a softmax function that completes the role of classi-
fication. The proposed 1D-CNN is shown in Figure 5, where
for each input signal xi with index 1 ≤ i ≤ B, the softmax
classifier produces an output pi = {pi,1, .., pi,ω, .., pi,T } such
that 0 ≤ pi,ω ≤ 1 is the confidence level of input sample xi
matching signals of type ω.

The proposed 1D-CNN is composed of thirteen layers,
as shown in Figure 5. The model can be decomposed into
three parts: feature extraction, high-level feature combination
and classification. There are three CNN blocks in feature
extraction. A CNN block is formed by convolution, batch
normalisation and average pooling layers. The third block did
not have a AVGpooling because its output was too small to
be further compressed. The output of the high-level feature
combination block (Fully connected layers) is a features vec-
tor zi = {zi,1, . . . , zi,Z } that corresponds to each input sample
xi and where Z = 64. This features vector zi is then the input
of the softmax function.

During the model training, kernels are optimised through
backpropagation (BP). BP calculates a partial derivative of a
loss function; for softmax the loss function is based on the
cross-entropy CE(i) = − log(pi,ω) or negative log likelihood.
In this case, ω = yi is the ground truth label of sample xi and
pi,ω is the confidence level that is produced by the softmax
function (τ ), as shown in Figure 5.
In this work, we split the dataset X into a training dataset

and testing dataset with a ratio (Dt : Dv) = (8 : 2). The CNN
is trained for 100 epochs where each epoch is conducted by
multiple iterations when the whole data is exposed. In each
iteration a batch size of data (32 xi) is processed before the
CNN weights are updated.

C. EVALUATION
Given the pioneering nature of this research, we first build on
the feature exploration in Section IV by examining the ability
the model to extract representative features. This is done by
calculating the extracted features cross-correlation between
DAS signals of each two different car types in a given dataset
X. Next, we adopt accuracy as the main performance evalua-
tion metric of the data model and the confusion matrix for
class-based metric. The output of the data model is deter-
mined by the softmax function, i.e. the predicted class ŷi ∈

{1, . . . ,T }. In this case, ŷi = argmax(pi) = ω such that, the
confidence level pi,ω is the largest of all values in pi. A signal
is correctly classified when its predicted class ŷi is equal to its
ground-truth yi. To calculate the accuracy A, we simply take
number of correctly predicted samples divided by number of

total samples in the validation dataset Dv.

A =

∑Dv
i=1(ŷi = yi)

Dv
(3)

We randomly split train/test set and validate our model for
10 times.

Ten different trained models are obtained in order to get a
better picture of the general performance/accuracy rather than
relying on a single model. Each model selects a number of
batches of random samples fromDt . The number of steps for
each model is Dt/32, where 32 is the batch size. Therefore,
when the model reaches the final step, the complete dataset
Dt would have been exposed to the model for training. Sim-
ilarly for the evaluation phase, Dv/32 batches of 32 samples
each were selected until the complete validation datasetDv is
covered, where Dv is the number of data samples in Dv.

VI. RESULTS AND ANALYSIS
In this paragraph, we present our results in which we measure
the efficacy of the proposed method to identify a car type
under different conditions. The 1D-CNN model used for
vehicle type classification (see Figure 5) consists of around
40, 000 trainable parameters; when adjusted for vehicle size
classification, the parameters drop just below 40, 000. The
estimated computation time for two models is 37.36 and
46.77 seconds, respectively, training both for 100 epochs on
a NVIDIA A100-PCIE-40GB GPU. The total size of our
dataset is 563 MB. The labelling results are first summarised
in Table 2.

TABLE 2. Number of samples for each dataset and for each car type.

In Section VI-A, we conduct a model representation study
based on the features identified by each model. The cross
correlation is conducted on dataset X60.

In Section VI-B, we present the results of classification for
each individual data set Xν for ν ∈ {30, 40, 50, 60, 70} km/h
and for the joint speed dataset XJS .
In Section VI-C, we regroup the five different vehicle types

to two super-types: Large and Small (see Table 1). Hence,
we reduce the number of classes from the existing T = 5 to
T ′

= 2. This is motivated by the need to detect the size
of vehicles rather than their make and model in urban ITS
applications.

A. FEATURE REPRESENTATION
We first examine how well the proposed model represents
the dataset through the extracted signature-specific features
of each vehicle. To this end, we calculate the cross-correlation
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FIGURE 5. In this figure we show proposed 1D-CNN architecture for DAS signal classification. Number of filters,
filter size, stride and dimension for each layer are presented.

FIGURE 6. In this figure we show the cross-correlation between DAS
signals corresponding to different car types for the four models: EMD,
LEAF, 2D-VGG, and 1D-CNN.

of the model’s features corresponding to each DAS signal of
each of the five vehicles contrasted with the remaining four.
In other words, we extract all DAS samples that correspond to
each of the vehicles, based on the method in Section V-A in
datasetX60 and calculate the correlation between xω1

b and xω2
b

for all b ∈ B and {ω1, ω2} ∈ [1, ..T ] such that ω1 ̸= ω2. The
results are shown in Figure 6 in which we present the cor-
relation results of the four models: EMD, LEAF, 2G-VDD,
and the proposed 1D-CNN. The results further confirm the
inability of EMD (0.72 correlation) and LEAF (0.92 correla-
tion) to represent the unique DAS signature of each vehicle.
The 2D-VGG model seems to result in the least correlation
between DAS signals generated by different vehicles with
an average 0.13 whereas the proposed 1D-CNN results in
an average 0.35. Both correlation outcomes of 2D-VGG
and 1D-CNN are promising. It is anticipated that a two-
dimensional DAS sample (as in the 2D-VGG model) would
contain more information about the passing vehicle than a
1D-CNN since it captures the DAS data along the length of
the vehicle [26]. However, the complexity of the 2D-VGG
(i.e. the number of tunable parameters) is much higher than
the number of data samples available to this research, thus is

likely to result in overfitting. In the next section, we measure
the classification of both models: 2D-VGG and 1D-CNN.

B. CLASSIFICATION RESULTS OF VEHICLE MODEL
The methodology described in Section V is applied to the
five datasets in Table 2 and the hybrid dataset XJS . For this
purpose, the dataset is split into 80% for training and 20% for
testing; the testing results are summarised in Figure 7. The
proposed method successfully classifies samples from any of
the five vehicle types for both fixed speed and joint speed
datasets with accuracy ranging from 82% to 99%. The worst
accuracy of 82% is registeredwithXJS and is a boxplot outlier
(see Figure 7).
The 2D-VGG model is tested on the XJS and, as expected,

results in worse accuracy of 71% in the validation phase. This
confirms that, due to its complexity, this model is not suitable
for the given problem with limited data.

The average confusion matrices for each dataset are cal-
culated as the average of the 10 models. Due to space lim-
itations, only the confusion matrix resulting from XJS is
shown in Figure 8 (Left). It can be seen from the class-
based accuracy figures that the model performs equally well
(87–92%) for all car types except for the minority class Car 1
(83%). The Car 1 data in X30 was dropped manually because
of an occlusion caused by an anonymous vehicle. This can
be improved with further data collection or investigation on
how to clean data when the signal of a target car overlaps
with an anonymous car’s. However, the results demonstrate
that DAS signals include detailed latent information about
the respective events. Such information can be used to track
a particular vehicle in a wide area.

C. CLASSIFICATION RESULTS OF VEHICLE
SIZE AND WEIGHT
We simplified the five-class classification problem to two-
class classification. The first super group, Large consists of
Car 1 and Car 5 as they are the top two heaviest vehicles
in Table 1. The second super group, Small, includes the
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FIGURE 7. Classification results for T = 5 and T = 2. The boxes represent
the inter-quartile range, the whiskers represent the most extreme,
non-outlier data points, and the fliers represent the outliers. The
horizontal lines of each box represent the median value.

remaining Car 2, Car 3, and Car 4. For this purpose, the
dataset is split into 67% for training and 33% for testing; the
testing results are summarised in Figure 7. As a result of re-
organising the five existing labels into two groups where the
first includes two labels and the second the remaining three,
a data imbalance is created (Imbalance ratio is 1684/2656 =

0.63). It follows that the data split of 80% : 20% adopted for
the problem in SectionVI-B gives under-par performance and
the proposed 67% : 33% yields a better accuracy. The results
are shown in Figure 7. A general trend of high accuracy
shows that the DAS signal contains information about the
car size (related to weight) in addition to that of the car
type. The accuracy of classification in this case ranges from
81% to 98%.

Similarly to T = 5, the average confusion matrices for
each fixed speed dataset and joint speed are calculated as
the average of the ten T = 2 models. The confusion matrix
resulting from XJS is shown in Figure 8 (Right) and shows
that the model performs slightly better in super group 2 (small
car). Although an imbalanced data ratio between Large:Small
(4759:8567) diminished the accuracy of minority class, the
results are very encouraging and present a reliable means for
the usage of DAS signal in ITS to detect and control the type
of vehicles moving along different road types.

FIGURE 8. Average confusion matrix XJS : (Left) T = 5, (Right) T = 2.

VII. DISCUSSION
It should be noted that the data analysed in this work
was collected under controlled conditions and therefore,
the obtained results cannot be directly generalised without

further examination. There are four aspects of this study that
should be underlined in this context.

Firstly, the controlled experiment limited unwanted move-
ments along the test road. Nonetheless, the proposed method
is still successful in distinguishing the vehicle types despite
external activities such as those created by other cars as shown
in Figure 2. This was possible given the well-labeled data
based on the a priori knowledge of the wanted car and speed.
In the absence of such information, a distinct and uncontam-
inated DAS signature of a target car would be needed before
hand. It would then be possible to re-identify this signature
in the presence of other moving vehicles. Given the length of
the DAS system spanning tens of kilometers, this is a realistic
assumption to have in an urban environment.

Secondly, the dataset studied in this work is limited to
five vehicle models only and cannot be readily generalised to
distinguishing any vehicle model roaming the streets today.
The applications that require identifying a specific vehicle,
such as airports, manufacturing sites, energy plants, and sim-
ilar entail a well determined list of authorised vehicles in
contrast with undetermined list in open urban environments.
It follows that this pioneering work can be expanded to
represent the list of cars of interest in each application and
would result in an effective, efficient, and reliable means of
detecting any intruders and of tracking known vehicles. In the
case of detecting the size of a vehicle for conditional access
in urban applications, expanding the list of vehicle models
in the dataset would likely result in a more representative
model. Nonetheless, this study demonstrates the potential of
DAS signals in estimating the size of a vehicle and offers a
promising methodology for extracting this information given
a larger list of vehicles.

Thirdly, given that the data was collected along the same
fibre line and road, the obtained results cannot be generalised
to any road and any DAS system. Indeed, the physical charac-
teristics of the fibre used, the road type, and the depth of the
fibre are known to impact the DAS signal. It follows that, for
each deployed DAS system, the model should be re-trained
to account for these physical characteristics and would yield
a highly reliable method for detecting and tracking vehicles
along the roads spanned by the system.

Lastly, it should be noted that the data used in Section VI
were collected on a dry day, thus, it is not possible to fully
analyse the effect of rainfall or other weather conditions.
In [27] the authors suggest that the rainfall results in an acous-
tic signal of high intensity background noise and its energy
spreads unevenly across frequency spectrum. It is expected
that such spectral characteristics of noise could be filtered out
using typical signal processingmethods, e.g. low-band filters.
The impact of rain and surface material on the DAS signal
is examined in [28]. The work concludes that DAS signals
collected under a dry surface have higher average signal-to-
noise ratio than on a wet surface on a rainy day. Based on
these two works, we anticipated that the effect of rain on the
DAS signal is likely to increase the noise level but believe that
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it could be treated, to a large extent, with signal processing
methods that would target the suppression of noise generated
by the rainfall. However, this can only be confirmed with
representative data and further experiments which are part of
our future work in this area.

In summary, the importance of this pioneering investiga-
tion is not limited by nor confined to the examined dataset.
Instead, the field trial data has enabled this study and revealed
the potential of DAS in addressing ITS problems related to
moving vehicles. More importantly, DAS was shown as an
alternative uninterrupted data source for ITS that covers tens
of kilometers of road stretches and that is resilient to issues
such as weather, visibility, and luminosity often hindering
camera-based data. DAS is thus a robust data source that
contains ITS-related information and is intrinsically GDPR-
compliant since it does not include sensitive information
(faces, clothing, etc). In this work, we shed light on the poten-
tial role of DAS in informing ITS problems as a standalone
data source. Future work will examine how camera-based
sensors could be used to label DAS signals in a given location
and howDAS systems can then be used to track themovement
of the identified vehicle over tens of kilometers.

Indeed, the method proposed presumes the possibility of
data labelling, hence, harnesses the potential of supervised
learning. The authors believe that data labelling for the dataset
at hand is facilitated by the conditions of the controlled exper-
iment but may be more challenging in real-traffic scenarios.
To this end, we propose to employ an alternative data source
to assist with the labelling in order to fully leverage the
potential of DAS in ITS applications (e.g. in urban scenarios
for restricted vehicle assess). Such a joint solution would ben-
efit from the rich information provided by a single camera-
based data source with controlled lighting for labelling and
from the efficacy of DAS in monitoring tens of kilometers
of roads.

VIII. CONCLUSION
This work examines the potential role of distributed acoustic
sensors (DAS) as an alternative data source for enabling
intelligent transport systems (ITS) applications. In particular,
the problem of recognising the model and the size of the
vehicle is investigated based on field trials that involved five
specific vehicles. We first conduct a feature analysis of the
incurred DAS signals and demonstrate that, unlike traditional
acoustic signals, these cannot be represented by time-domain
and frequency domain manually engineered features. Instead,
we propose a one-dimensional convolution neural network
for feature extraction followed by a soft-max function for
classification. The method successfully identifies one of five
car types used in the controlled experiment with mean accu-
racy of 94%. The same method is applied to detect the size
of the vehicles with binary classification of Small or Large.
The results are encouraging with mean accuracy of 95%. The
outcome of this pioneering work demonstrates the richness of
DAS signals and their inherent role in identifying overground
movement using a privacy-compliant approach.
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