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Abstract 

Solar photovoltaic (PV) system, as one kind of the most promising renewable energy technologies, plays 

a key role in reducing carbon emissions to achieve the targets of global net zero carbon. In the past few 

decades, PV installations have seen a rapid growth. Predicting the installed amount and the capacity of solar 

PV systems is therefore useful for formulating effective carbon reduction policies in the related area. In the 

present study, the methods of identifying PV installation based on satellite and aerial images have been 

reviewed. Suggestions have been put forward to optimize the identification process and to predict the 

potential of rooftop PV installation. The results show that the specific purposes of PV identification can be 

categorized as image classification, object detection and semantic segmentation. The available identification 

methods encompass pixel-based analysis method (PBIA), object-based analysis method (OBIA) and deep 

learning. Deep learning has a high accuracy in segmentation for all sizes of PV systems, with precision and 

recall of rooftop PV segmentation in the range of 41-98.9% and 54.5-95.8%, respectively. OBIA has the best 

accuracy in detecting centralized PV systems with relatively low-resolution multispectral images. 
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Furthermore, a grading segmentation strategy for PV segmentation in the large region is presented, combining 

the three identification methods and the images with different resolutions. In addition, the potential of rooftop 

PV installation can be predicted by segmenting the available roof area in the images. After considering the 

shading effects, upper structure and other uses, the roof availability coefficient tends to be in the range of 

0.25 to 0.46. It is also suggested to combine PV and roof segmentation to estimate the installation potential 

more accurately, in the context of rapid growth of the rooftop PV. 

Highlights 

 The sources and their characteristics of satellite and aerial images are analyzed 

 The methods of PBIA, OBIA, and deep learning are classified and compared 

 The applications of PV identification model are summarized 

 Optimization of potential prediction of rooftop PV is discussed 

 A grading strategy for PV segmentation with high efficiency, low cost and ensuring accuracy is 

proposed 
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1 Introduction 

As of April 2022, 128 countries have committed to achieving carbon neutrality [1]. Nevertheless, it is a big 

challenge for every country to achieve carbon neutrality synchronously, especially for developing countries like 

China, which is the world's largest carbon emitter. The Chinese government has set goals of peaking in 2030 and 

achieving carbon neutrality by 2060 [2]. The proportion of electricity provided by non-fossil fuels in China must 

reach 77% by 2030 and 85% by 2050 in the whole energy structure, among which 17% of the electricity demand 

will be met by solar energy [3-5]. In this situation, it is not realistic to continue to use natural gas as the primary 

fuel in a mixed energy supply mode for carbon neutrality, in the meanwhile renewable energy must be vigorously 

developed as soon as possible [6]. 

Solar energy, as a kind of clean and renewable energy, plays an important role in the development of global 
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renewable energy applications. The technologies to harness solar energy embrace solar PV, solar thermal 

applications, and solar thermal energy storage [7, 8]. Among these technologies, it is reported that the global 

installed capacity of solar PV in 2020 is 127 GW, accounting for more than 49% of the total new renewable energy 

capacity [9]. Whilst China market has contributed to 48.2 GW, with a cumulative installed capacity of 253 GW, 

accounting for one third of the global installed capacity [10]. Nevertheless, it is estimated that 2,200-2,800 GW of 

solar capacity and 1,500-2,600 GW of wind capacity are still needed for China to achieve the Paris Agreement. 

On the other hand, the cost of solar PV production and installation is falling rapidly, with the globally weighted 

average cost of electricity being fallen by 77% for utility-scale PV between 2010 and 2018 [11]. Solar PV will 

continue to be the fastest-growing renewable energy application in the context [12]. 

Regarding the installation site of solar PV, farmland is the most common land type for the installation of 

centralized solar PV systems, followed by arid areas and grasslands [13]. On the other hand, electricity demand in 

cities is greater than in rural areas, while urban areas do not have a lot of land for centralized PV installation, 

resulting in a mismatch between PV power generation and energy demands. It is much more difficult to further 

develop large-scale centralized PV power plants in urban land areas. Rooftop PV technology has the advantage of 

saving land and currently accounts for 40% of the world's cumulative installed solar PV capacity [14]. It is 

estimated that rooftop PV can contribute 3.7-4.5% of China’s total power consumption in 2030 if 20% of the urban 

roof area is utilized [15]. In addition, rooftop PV can improve the living conditions of citizens who reside in 

backward areas not connected to power grids, by alleviating their energy accessibility problems. Therefore, it is 

expected that rooftop PV will grow massively in the soon future. 

With the huge potential of a rooftop solar PV installation, it is of great significance to estimate the total 

installed solar PV capacity and power generation accurately. This will benefit policymakers and stakeholders. In 

the environmental sector, adequate energy statistics can provide a more complete picture of the country's progress 
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towards achieving carbon neutrality, allowing timely adjustments to national development goals. For government 

policymakers, understanding the accurate PV installation situation status leads to a better understanding of the 

implementation effect of incentive policies and how to adjust policies timely. For the electric power operation 

departments, the power grid working conditions can be better predicted with the photovoltaic layout and the future 

weather conditions, in order to prevent drastic voltage changes and power outage accidents. As to producers, 

production plans can be reasonably arranged in terms of targeted investment in publicity. 

Currently, methods for estimating the number and capacity of installed PV systems include official registers, 

crowdsourced field surveys, behind-the-meter analysis, and identification in satellite and aerial images. In general, 

in order to grant installation permits or financial subsidies, government departments usually register PV 

information. However, most centralized PV systems are in government registries, and the registries for distributed 

PV systems are incomplete [16]. It is because their installation time was too early, or owners tried to evade permit 

fees, among other reasons. Although the capacity of a single distributed PV system is small, there are so many of 

them that they still account for 30% and 52% of the UK and Germany’s total PV capacity, respectively [17, 18]. 

The crowdsourced field survey requires a lot of manpower, and the quality of data uploaded by different volunteers 

varies greatly [18]. It also requires high costs of data updates. The capacity of the centralized PV system can be 

estimated by analyzing the operation state of the electricity meter and the local solar irradiance. However, when 

the PV system is small, or the system is equipped with energy storage devices such as batteries, the prediction 

accuracy is low currently [19, 20]. 

In recent years, using satellite and aerial images to identify land cover types, road distribution and 

buildings has become a popular research means [21, 22]. Using satellite images to identify solar PV is 

confirmed as a feasible method. In 2018, Yu et al. [23] identified a total of (1.4702 ± 0.0007) million PV 

systems in the United States through aerial images, which exceeded the 1.02 million installations in 
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government registers at that time. Therefore, this method is considered the best method at present. In addition, 

after the satellite and aerial images are imported into the Geographic Information System (GIS), with a large 

number of geographic information such as terrain, location of roads and buildings, climate and economy data 

analyzed, the suitability of PV installation at each location could be calculated through the Analytic Hierarchy 

Process or multi-objective optimization [24-26]. It can guide the location of PV systems. The advantages and 

disadvantages of the above four methods for estimating the PV installation are summarized in Table 1. 

Table 1 Comparison of methods for estimating PV installation 

Methods Advantages Disadvantages 

Official registers 

It has complete information about almost all centralized PV 

systems. The information about the area, capacity, and tilt 

angle has high credibility. 

The information about many distributed PV systems 

is incomplete. The information about the PV 

systems dismantled cannot be updated in time 

Crowdsourced field 

surveys 

It is suitable for small-area statistics. It can be statistics 

flexibly of various types of information of PV systems. 

The quality of data uploaded by different volunteers 

is not uniform. A lot of manpower is required. The 

cost of updating data is high 

Behind-the-meter 

analysis 

The actual power of the PV system can be predicted directly. 

It could be used to guide power grid management. 

The prediction error of distributed PV systems is 

large. A large number of actual meter data is difficult 

to obtain. The application of batteries affects 

prediction accuracy. It cannot be further used to 

estimate the PV installation potential. 

Identification in satellite 

and aerial images 

Most satellite and aerial images could be got for free. The 

number of PV systems can be counted fully. The information 

about location, area, and azimuth is accurate. It has a fast 

statistics speed and requires less manpower. The database is 

easy to update. The installation potential could be analyzed in 

combination with building identification.  

A lot of computing resources are required. High-

resolution aerial images covering the globe are hard 

to be obtained. 

 

Recently, some review articles have mentioned the research status of PV identification using satellite 

and aerial images. Hoog et al. [27] summarized several classic studies and pointed out existing research 

challenges and opportunities. Cong et al. [28] and Gaviria et al. [29] stated the applications of artificial 

intelligence methods in the PV power grid and mentioned several classic studies on PV identification. 

However, different studies use satellite images and aerial images from different sources. The resolution, 

spectral band distribution, and download cost of these image data sources are different. At the same time, the 
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specific purposes of PV identification are also different, including image classification, object detection, and 

semantic segmentation. Object detection is suitable for counting the location and number of PV systems. 

Semantic segmentation can also be used to further estimate the area and capacity of the PV system. There 

are also a variety of methods of image identification, which involve machine learning methods and deep 

learning methods. At present, there is a lack of a comprehensive investigation of these studies, and the 

advantages, disadvantages, and applicable scenarios of various image data sources and identification methods 

have not been compared and analyzed in detail. This may lead to resource waste and insufficient identification 

accuracy in future research. Thus, it is necessary to scrutinize and analyze the existing methods in detail. 

The present paper aims to review existing studies on PV and roof identification using satellite and aerial 

imagery from a holistic perspective. The available satellite and aerial image database sources are discussed 

in Section 2. Various models and methods are analyzed and compared in Section 3. In Section 4, the 

applications of the models in wide regions as well as the study of identifying roof area and its available area 

are discussed, which is of great significance for better exploiting the potential of roof PV. Finally, further 

research into identifying and counting the existing PV area as well as analyzing the exploitable potential of 

rooftop PV is discussed. 

2 Image Collection and Model Metrics 

2.1 Image Data Sources 

Image data for solar PV installation identification can be obtained from satellite images or aerial images. 

Table 2 provides basic information about these image data sources. Commonly used satellite images come 

from Landsat-8, Sentinel, SPOT-6/7, and Gaofen-2, the first two of which are openly accessed by Google 

Earth Engine [30-34]. Satellite images generally contain multiple spectral bands with short revisit cycles but 

low resolution. It is worth noting that the satellite images need to be preprocessed to ensure quality before 
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being applied. Preprocessing includes geometric correction, radiation correction, and denoising. Among them, 

geometric correction is used to eliminate the errors caused by satellite position and imaging distortion of 

sensors. Radiation correction includes radiometric calibration, atmospheric correction, and topographic 

correction. Radiometric calibration is the radiometric correction for the sensors. Atmospheric correction is 

used to eliminate the influence of atmospheric absorption and scattering on radiative transfer. For the images 

of hilly and mountainous areas, topographic correction can eliminate the radiance error caused by the slope 

and the orientation. The cloud cover will affect the identification accuracy. Methods such as median filtering 

and homomorphic filtering could be used to eliminate the influence of a small number of thin clouds. If there 

are thick clouds in the image, a set of images with close time interval need to be cut and stitched to obtain a 

complete image without clouds [13]. Another method is to discard the local image where the clouds are 

located [35]. 

Higher resolution images can be obtained by performing aircraft aerial missions. Google Earth and 

Google Static Maps are the most used aerial image data sources in PV identification. They collect and provide 

global RGB images with a resolution of up to 0.15-0.3 m/px [36]. However, these images are charged. A 

thousand 640*640 pixels images require 1.6-2.0 USD [37]. When identifying the distribution of PV at the 

continent level or the global level, the charged fee for accessing high-resolution images in the full range is 

high. National Agriculture Imagery Program (NAIP)) provides 1 m/px image in the United States, including 

red, green, blue, and near infrared spectra [38]. Some studies show that this resolution is sufficient for 

building contour identification. Moreover, Spain, Germany, Switzerland, and other countries have their own 

high-resolution aerial images [39-41]. The update speed of the aerial image library is slower. Images of parts 

from the NAIP, for example, are updated every five years. In addition, Unmanned Aerial Vehicles (UAV) 

flying at low altitudes, allow their equipped cameras to shoot higher resolution images, with image resolution 
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being 0.1 m or even higher. However, due to the limited flight range and high time cost, UAV images are 

often used for PV identification on residential roofs in a small neighborhoods or damage detection of large 

centralized PV plants [42]. 

Table 2 Basic information about the image data sources for PV identification 

Source Coverage Resolution Description Free or not 

Landsat-8 [30] Global 
30 m/px or 15 

m/px 

11 spectral bands. The resolution is 30 m/px at the wavelength of 0.43 to 

2.29 μm and 1.36 to 1.38 μm. The resolution is respectively 15 m and 100 

m at the wavelength of 0.53-0.68 μm and 10.60-12.51 μm.  

It has a panchromatic band with a 15 m spatial resolution. The revisiting 

period is 16 days. 

Yes 

Sentinel-1 [31] Global 10 m/px 

C-band (5.407 GHz) SAR (Synthetic Aperture Radar) imagery. The VV 

and VH backscatter values can be used for PV at the acquisition mode of 

Interferometric Wide swath. 

The revisiting period is 6 days. 

Yes 

Sentinel-2 [32] Global 
10 m/px or 

lower 

There are 13 spectral bands. The commonly used optical bands are visible 

light and near infrared with a total of 4 bands with a resolution of 10 m/px, 

and Red Edge and SWIR with a total of 6 bands with a resolution of 20 

m/px. 

The revisiting period is 5 days. 

Yes 

SPOT [33] Global 
1.5 m/px or 

lower 

Panchromatic images (0.455-0.745 μm) are supplied with a resolution of 

1.5 m. Four spectral bands of images with a resolution of 6m, including 

red, green, blue, and near infrared (0.76-0.890) bands. The revisiting period 

is 26 days. 

No 

Google Earth & Earth 

Static Maps API [36] 
Global 

0.15 m/px to 15 

m/px 

Combines satellite and aerial imagery from multiple sources; much of the 

available imagery is between 1-3 years old.  

High 

resolution 

images is yes 

USGS [43] 
The United 

States 

0.15 m/px to 1 

m/px 

Ortho-rectified aerial imagery taken at different altitudes and different 

update cycles. Consolidation of multiple databases. 
Yes 

NAIP [38] 
Continental 

US 
1 m/px 

Aerial orthophoto image. 4 spectral bands, including red, green, blue and 

near infrared. Images were taken during the agricultural growing season in 

the continental United States. The image is updated every five years. 

No 

Gaofen-2 [34] Global 
0.8 m/px-1 

m/px or 4 m/px 

Panchromatic spectral images with a resolution of 0.8-1 m/px and 4 

spectral bands with a resolution of 4m are provided. 

The revisiting period is 64 days. 

No 

Digital Orthophotos 

(DOP) of Germany [39] 
Germany 0.2 m/px 

The product consists of georeferenced, differentially rectified aerial images 

of the surveying administrations of the German federal states. They are 

true-to-scale raster data of photographic images of the earth’s surface. The 

product includes color images (RGB) as well as infrared images and color 

infrared (CIR) images. 

No 
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PNOA: Plan Nacional 

de Ortofotografía Aérea 

[40] 

Spain 0.5 m/px 

The photograms were acquired in optimal meteorological conditions at a 

low flight altitude using calibrated photogrammetric cameras equipped 

with 3-band RGB sensors (8 bits per band). The imagery was 

orthorectified, radiometrically corrected, and has topographic corrections 

applied using ground points measured with accurate GPS systems 

No 

Swiss Federal Office of 

Topography [41] 
Switzerland 0.25 m/px 

Aerial photography of Switzerland. The application data are updated at the 

beginning of each quarter. 
Yes 

2.3 Training Dataset 

A large database of images that have been annotated with PVs is needed in machine learning models or 

deep learning models as training data. The manual annotation of PV distribution on satellite images is labor-

intensive and time-consuming. Therefore, the publicly available set of images with PV labels will be helpful 

for subsequent researchers. 

Bradbury et al. [44] collected 601 satellite images of four California cities based on the USGS image 

set and manually annotated geospatial coordinates and border vertices for more than 19863 solar panels, 

which constitute a basic dataset for many subsequent studies. Jiang et al. [45] provided a dataset of images 

at 0.1 m/px, 0.3 m/px, and 0.8 m/px resolution for a portion of Jiangsu Province, China. These images are 

classified according to topographic distribution, with each containing a different area of PV, and PV mask 

images matching each image are also provided. The Amir dataset [46] consists of a set of aerial images 

collected from 12 countries and large PV plants located on six continents. Using OpenStreetMap as a platform 

and crowdsourced data from volunteers, Stowell et al. [18] have built more than 260,000 PV maps across the 

UK. Using Sentinel-2 satellite imagery at 10 m-60 m spatial resolution, Ortiz et al. [47] identified a total of 

1076 large PV systems throughout India with available their latitude and longitude coordinates, installed 

areas, and polygon profiles. These datasets are publicly available and cover images from 0.1 m resolution to 

10 m resolution, which can help to enrich the datasets of subsequent researchers, reduce costs and improve 

the accuracy of PV detection models. The above freely available data sets are described in Table 3. 
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Table 3 Basic information about public image database 

Dataset Location Area Resolution Number Annotation type 

Bradbury et al [44] 
4 cities of 

California 
1352.25 km2 0.3 m/px 601 images 

Supply the corresponding PV 

mask images 
Jiang et al [45] 

Parts of Jiangsu 

Province, China 

~1000 km2 0.8 m/px 763 images 

~218 km2 0.3 m/px 2308 images 

~0.4 km2 0.1 m/px 645 images 

Costa et al [48] 
24 centralized PV 

systems in Brazil 
~722.5 km2 10 m/px 144 images 

Amir dataset [46] 12 countries / / 3580 images 

Supply orthographic images and 

the corresponding PV mask 

images 

Stowell et al [18] 
The whole of the 

U.K. 
/ / 260,000 systems 

Supply the latitude and longitude 

coordinates for each system. And 

supply the polygon shapes as 

geojson format 
Ortiz et al [47] The whole of India / / 

1076 large PV 

systems 

3. Classification of PV Identification Models 

The specific purposes of PV identification models can be categorized as image classification, object 

detection, semantic segmentation, and instance segmentation, as shown in Fig 1. Image classification 

classifies the images into positive samples and negative samples by judging whether the image contains PV 

or not. The distribution position and quantity of PV can be framed by object detection. Semantic segmentation 

can extract each pixel represented as PV in the image and then predict the area. 
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Fig 1 Different degrees of identification PV. (a) Image classification [23] (b) Object detection [49] (c) semantic 

segmentation [50] 

In terms of the adopted methods, PV identification models can be divided into the conventional machine 

learning method and the deep learning method. The conventional machine learning methods can be further 

divided into Pixel-Based Image Analysis (PBIA) and Object-Based Image Analysis (OBIA).  

3.1 Pixel-Based Image Analysis (PBIA) 

PBIA is a method that extracts the features according to the spectral information of every PV pixel and 

classifies the unknown pixels by using the features. Most GIS software can provide some PBIA classifier 

toolkits, including maximum likelihood, iso cluster, principal components analysis, Support Vector Machine 

(SVM), and Random Forest. Some studies have used some of these methods [51]. Table 4 summarizes the 

basic information for studies using PBIA. The classification methods include statistical recognition and 

multi-classifier fusion. 
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Table 4 Basic information for studies using PBIA 

Reference 
Image 

Resolution 
Location PV scale 

Type of the 

identification 
Method Result metrics 

Ji et al [52] 1.2 m Oldenburg,Germany Rooftop PV Object Detection 

Mathematical 

statistic 

classification 

overall accuracy is 

from 92.8% to 99.3% 

Karoui et al [53] 0.84-1.6 m 
a part of Toulouse, 

France 
Rooftop PV Object Detection 

Multi part 

nonnegative 

matrix 

factorization 

Normalized Mean 

Square Error of 

PV=23.73% 

Malof et al [54] 0.3 m the city of Fresno Rooftop PV Object Detection Random Forest  
precision=60%; 

recall=70% 

Xia et al [35] 10 m China 
Centralized 

water PV 

Semantic 

Segmentation 
Random Forest  

SPV: precision=96.9% 

recall=84.4%; 

FPV: precision=100%; 

recall=96.2% 

Czirjak et al. [55] tested the spectrum distribution of polycrystalline silicon PV panels and found that 

their reflectance in the visible band (400-700nm) was low on the whole test spectral band ranging from 400 

to 2500 nm, but increased sharply between 0.950-1.175 μm. They successfully detected PV in hyperspectral 

images using reference spectral distribution features. The results show that the PV quantity accuracy is high, 

but the shape and area are not accurate. Ji et al. [52] detected several hydrocarbon surface materials including 

PV in the image by the hydrocarbon index. Furthermore, by using 5 spectral indices, PV pixels can be 

screened out separately. 

A single pixel may contain spectral information from several objects when the image resolution is low. 

Karoui et al. [53] designed an iterative multiplicative gradient-based algorithm to calculate the PV abundance 

of boundary pixels. Compared to the traditional nonnegative matrix factorization algorithm, it is more 

suitable for application in urban areas with uneven landscapes or irradiance. 

The above three studies used the classification of statistical recognition. The classification of multi-

classifier fusion refers to the multiple integrations of a single classifier. Random forest classifier is generally 
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used, has better accuracy, and can effectively prevent overfitting. Malof et al. [54] extracted 6 features of 

each pixel, including the mean and variance of the RGB channels of its window pixels. Each window is 3 by 

3 pixels. The random forest method is used to assign a confidence value to each pixel point. Using random 

forest, Xia et al. [35] accurately distinguished centralized water PV, water surface and wetland by using the 

short infrared band of 1.610 μm, VH band information and Normalized Difference Vegetation Index. The 

segmentation results are shown in Fig 2. 

 

Fig 2 Results of segmentation water PV by PBIA [35] 
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3.2 Object- Based Image Analysis (OBIA) 

Compared with PBIA, OBIA adds a step in the early stage, i.e. the generation of candidate regions. 

Firstly, the image is divided into several homogeneous objects. After extracting the typical feature of each 

object, different models are used to classify objects of unknown categories. There are two core problems with 

this method. One is the selection of the segmentation algorithm and optimal segmentation size, the other is 

to select appropriate features to establish the rule set. In addition to the spectral features of every single pixel, 

the geometric, texture features and other spatial features can be extracted. SVM and Random Forest are 

commonly used regional classifiers. 

Malof et al. [56] extracted the mean RGB value and a multivariate normal probability distribution with 

mean and covariance parameters of each region in the image. Then, SVM was trained to classify the features. 

When detecting centralized PV systems in Ningxia, China, Zhang et al. [57] found that all accuracy and 

Kappa of detection increased by 0.87% and 3.4%, after 8 texture features were added, such as entropy, 

correlation and inverse difference moment, respectively, compared to PBIA. Plakman et al. [58] selected the 

mean, standard deviation, and median of each band in Sentinel-2 and Sentinel-1 as features to train a Random 

Forest classifier, as well as Short-Wave Infrared (SWIR), Red Edge, Normalized Difference Vegetation Index 

(NDVI) and Normalized Difference Water Index (NDWI). Also using Sentinel images, Vasku et al. [59] 

compared the performance of several classifiers. The results showed that the Random Forest and 

Classification and Regression Tree were the best. SVM was found to have more misjudgment after observing 

the image result. 
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Fig 3 The results of two steps of OBIA. (a) several homogeneous objects generation (b) Detection PV [58] 

In addition, the template matching technique is also used for PV identification. A small number of panels 

in the PV array can be used to create templates to identify the location and size of other panels in the same 
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array [60]. It is suitable for very-high-resolution images. 

The basic information of above studies is shown in Table 5. 

Table 5 Basic information for researches using OBIA 

Reference 
Image 

Resolution 
Location PV scale 

Type of the 

identification 
Method Result metrics 

Malof et al [56] 0.3 m 
100 building 

images 
Rooftop PV Object Detection SVM Recall= 94% 

Zhang et al [57] 30 m 
Ninxia 

Province,China 

Centralized PV 

(> 0.21 km2) 
Object Detection Random Forest precision=98.53%; recall=92.19% 

Plakman et al [58] 10-20 m Netherlands 
Centralized PV 

(>1034 m2) 

Semantic 

Segmentation 
Random Forest 

For object:  

recall=85.86%; precision=92.39%; 

IoU=80.19%; F=99.97% 

Vasku et al [59] 10 m Denmark 
Centralized PV 

(>12 km2)  

Semantic 

Segmentation 

Classification and Regression 

Tree 
precision=70.73%, recall=52.94% 

Random Forest precision=71.60%, recall=54.90% 

SVM precision=71.60%, recall=52.94% 

Naïve Bayes precision=63.64%, recall=37.25% 

Wang et al [60] 0.05 m Drone photos Centralized PV 
Semantic 

Segmentation 

region–line primitive 

association analysis and 

template matching 

precision and recall measures are 

both higher than 0.99. 

3.3 Methods Based on Deep Learning 

In recent years, methods based on deep learning have become very popular in image identification. 

Among them, the convolutional neural network (CNN) is the most common method. The most basic CNN is 

a classified network. The most basic CNN network includes the convolution layer, pooling layer, activation 

function, and full connection layer. The convolution layer uses the convolution kernels to extract image 

information, and the values in the convolution kernel require to be trained. The activation function can make 

the process of information extraction non-linear. The pooling layer can integrate a certain range of 

information, enlarge the receptive field, and reduce the size of the image. The full connection layer is used 

to establish a linear relationship between the output data of the penultimate layer and the actual category. 

When the model is used for prediction, the output of the full connection layer is the probability predicted for 
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each category. Several common CNN classification networks have been proposed and improved, including 

AlexNet, VGG series, ResNet series, Inception series, etc. As the demand increases, object detection and 

semantic segmentation models are proposed. They have more complex architectures and often use the 

aforementioned classification networks as backbones [61]. 

3.3.1 Image Classification 

The basic information of the investigations on image classification using CNN is summarized in Table 

6. Malof et al. [62] firstly applied CNN to PV identification task. They created a CNN network containing 6 

convolutional layers and 3 max-pool layers to filter false positive samples in the detection results of PBIA 

method in reference [54]. Thereafter, they created a CNN with VGG as the backbone [63]. They segmented 

satellite images into a large number of small size images, and used the CNN classifier to classify each small 

image. Using a larger low-resolution image set, Golovko et al. [64] trained a model containing 3 

convolutional layers and 3 fully connected layers, achieving 89.1% precision of classification. Moraguez et 

al. [65] created a CNN containing 8 convolutional layers to analyze the influence of image resolution, and 

the results showed that the change of image resolution between 0.3 m and 0.6 m would not have an obvious 

influence on the accuracy of image classification. 
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Table 6 Basic information for researches of image classification using deep learning models 

Reference 
Image 

Resolution 
Location PV scale Architecture Backbone Result metrics 

Malof et al [62] 0.3 m 
the city of 

Lemoore, CA  
Rooftop PV RF+CNN /  precision=72%, recall=80% 

Malof et al [63] 0.3 m 
the city of 

Lemoore, CA  
Rooftop PV 

CNN with 3 VGG modules, 

2 fully connected blocks 
VGG16 

The precision is about 95% when 

the recall is 80% 

Golovko et al [64] 
low-quality 

images  
/ Rooftop PV 

CNN with 3 convolutional 

layers 
/ 

The precision = 89.1%;  

recall= 83.3% 

Moraguez et al [65] 

0.3 m 

Riverside, CA 

and Redlands, 

CA  

Rooftop PV 
CNN with 8 convolutional 

layers 

/ precision=91.1%; recall=82.9% 

0.4 m / 
precision=91.9%; recall=92.4%;  

F1=92.3% 

0.6 m / precision=91.3%; recall=90.0% 

1.25 m / precision=73.8%; recall=75.2% 

3.3.2 Object Detection 

Object detection can frame the PV in positive images. The trained model is used to screen and correct 

the position and size of the anchor frame, so as to achieve the best match to the object. Most object detection 

frameworks are either two-state networks or one-state networks. Generally, one-state networks include the 

Feature pyramid Networks (FPN), YOLO series, SSD, and RetianNet [66]. Two-state networks, including R-

CNN, Faster RCNN, etc., are also known as candidate region-based methods, which can be applied to both 

object detection and semantic segmentation. 

The features from the shallow convolutional layers lack sufficient semantic information but have a lot 

of location information. The features from deep convolution are low resolution but have rich semantic 

information. Therefore, feature fusion enables detection networks to obtain both high semantic information 

and precise location information. For rooftop PV, Yuan et al. [67] built a CNN consisting of 7 stages. each of 

which consists of a convolutional layer and optionally a max-pooling layer. Different from regular CNN, 

there is an integration stage upsampling feature maps from four stages and generating a feature stack. The 
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network uses early stages to capture edges and corners. Although it used feature fusion, the feature maps 

from each layer are simply connected, and the detection is still from the last layer of the backbone network. 

Feature pyramid network (FPN), a classic and effective feature fusion network, is used as a neck network 

by many object detection models. It includes two branches. The bottom-up branch is used to generate multi-

scale features, and the top-down branch is used to transfer rich semantic information from the high level to 

the bottom level. The two highest layers are fused after passing through a convolution layer respectively to 

generate a new feature map. The new feature map is fused with the convolution result from the third highest 

layer to generate a second new feature map. Before each fusion, the smaller image should be enlarged by up-

sampling. And so on, multiple fusion feature maps with different scales are generated, and they could be used 

to detect objects of different scales. Based on this idea, Ioannou et al. [68] created a CNN model consisting 

of three convolution layers and two up-sampling layers in the detection task of the centralized PV. In the 

upper sampling layer, feature maps of the same scale are fused to transfer information from the shallow layer 

to the deep layer, as shown in Fig 4. In addition, they found that blindly increasing the training time of epoch 

cannot significantly improve prediction performance, but lead to over-fitting. For the one-stage detection 

network, RetinaNet is essentially an FPN with the traditional cross-entropy loss being replaced by a new 

Focal Loss. Kleebauer et al. [49] firstly trained a RetinaNet with ResNet101 as the backbone. By performing 

the detection task in Hesse State, a second RetinaNet was retrained with the same structure and parameters 

using true positive bounding boxes as input. The second RetinaNet can be used for PV detection in other 

regions of Germany with high accuracy and robustness. 
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Fig 4 Network architecture for fusion features from up-sampling layers [68] 

As for two-state networks, Golovko et al. [69] used Faster-RCNN to detect rooftop PV, where the model 

used FPN as a neck. However, objects of small size in the image, such as the top of the chimney, are also 

identified as small PV. Combined with the characteristics of two-state networks, it can be seen that the 

candidate region method adopts a large number of down-sampling coding methods and does not fully 

consider the global information, resulting in unsatisfactory detection effects for the distributed PV systems 

with a small area. 

SolarFinder combines machine learning models with CNN [70]. It calculates eight features from the 

color, texture, and shape of each region on RGB images. Then SVM is used to identify the regions that may 

be rooftop PV, and CNN is used to classify these possible regions. Its performance is better than that of pure 

SVM and pure CNN. Therefore, combining OBIA with deep learning may be a way to further improve the 

performance of deep learning. 

The basic information of the above studies is summarized in Table 7. 
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Table 7 Basic information for researches of object detection using deep learning models 

Reference 
Image 

Resolution 
Location PV scale Architecture Backbone Result metrics 

Yuan et al [67] 0.3 m 

Washington, 

San Francisco 

and Boston 

All kinds 
CNN with 7 

convolution layers 
/ 

San Francisco: precision=85.5%; 

recall=87.3%  

Boston: precision=81.2%, recall=84% 

Ioannou et al [68] 0.3-0.8 m Greece Centralized PV CNN Inception v3 
precision=53%, recall=52%;  

F1-Score=52% 

Kleebauer et al 

[49] 
0.2 m Hesse, Germany Rooftop PV RetinaNet+FPN ResNet101 precision=92.77%, recall=84.47% 

Golovko et al [69] 
low-quality 

images  
/ Rooftop PV Faster-RCNN ResNet50 precision=92.99% 

Li et al [70] 
low-quality 

images  

13 geospatial 

regions in U.S.  
Rooftop PV 

OBIA-pure 

thresholding 
/ 

Matthews Correlation Coefficient 

(MCC)=0.06 

PBIA-pure SVMs / MCC=0.25 

Pure CNNs / MCC=0.17 

SVM+CNN / MCC=0.31 

3.3.3 Semantic Segmentation 

Semantic segmentation can extract PV region at the pixel level. The area and capacity of PV can also 

be predicted by counting the number of pixels. The common semantic segmentation networks for PV can be 

divided into several types in terms of structure and training methods, as shown in Fig 5. 
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Fig 5 Classification of semantic segmentation models of deep learning for PV 

3.3.3.1 Candidate Region-based Method 

The candidate region-based object detection method mentioned in the above section is originally 

designed for detection, but in the process of development, it has the ability of semantic segmentation and 

even instance segmentation. In addition to the candidate region-based models mentioned in the previous 

section, Mask-RCNN is originally an instance segmentation network and has also been used to segment PV. 

The performance of segmentation PV using Mask R-CNN is shown in Table 8. For centralized PV systems, 

Sizkouhi et al. [71] established a Mask-RCNN with modified VGG16 as the backbone. All fully connected 

layers in VGG16 are removed, only two last layers are finetuned, and the other hidden layers are frozen. 

Schulz et al. [72] adapted the Mask-RCNN in combination with a multi-class labeling technique to build the 

DetEEktor. They chose ResNet101+FPN+RPN as a feature extractor. It can simultaneously identify roof-

mounted PV systems, free-field PV systems, roof-mounted solar thermal systems, free-field solar thermal 

systems, biomass plants, and wind power plants. Liang et al. [73] added an overs-tile strategy and right-angle 

polygon fit algorithm to Mask-RCNN, and the performance was further improved. 
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Table 8 Basic information for segmentation researches using candidate region-based methods 

Reference 
Image 

Resolution 
Location PV scale Architecture Backbone Result metrics 

Sizkouhi et al [71] / 12 countries 
Centralized 

PV 
Mask R-CNN VGG16 accuracy=96.93% 

Schulz et al [72] / 
BadBrambach and 

Chemnitz, Germany 
All kinds Mask RCNN 

ResNet101 + 

FPN  

Rooftop PV: 

precision=81%; recall=73%; 

 F1-score =97%; IoU =77% 

Distributed PV: 

precision =97%; recall72%;  

F1-score83%; IoU=86% 

Liang et al [73] 0.15 m The United States All kinds 

Mask R-CNN ResNet50+FPN 
precision=95.5%; recall=92.1%; 

IoU=86.5% 

Mask R-CNN+ overlap-

title 
ResNet50+FPN 

precision=95.7%; recall=93.5%; 

IoU=87.4%; 

Mask R-CNN+ overlap-

title+ right-angle polygon 

fit algorithm 

ResNet50+FPN 
precision=96.2%; recall=95.5%; 

IoU=88.8% 

The method of DeepSolar ResNet50+FPN precision=93.1%; recall=88.5% 

3.3.3.2 FCN-based Method 

FCN is implemented based on the CNN by replacing the last fully connected layers with convolutional 

layers. Moreover, FCN generates a feature map with the same size as the original image through up-sampling. 

Compared with CNN, FCN can take images of any size as input, and can directly achieve end-to-end pixel-

level prediction. To take advantage of multispectral images, Ishii et al. [74] first created an FCN with seven 

spectral input channels. The model is effective in detecting large PV systems in Japan. On the other hand, 

when predicting each pixel, multiple convolutional layers and pooling layers are applied to the original image 

for expanding the receptive field and extracting more information. However, the pooling layer will reduce 

the image size and resolution. After the prediction of the small--size feature map, the upsampling methods of 

the nearest neighbor or linear interpolation are applied to resize the predicted map to its original size. Such 

prediction results are fuzzy and smooth, and many details will be lost. Therefore, FCN is not suitable for the 
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segmentation of small objects. After that, there are more and more semantic segmentation models derived 

from FCN, to reduce the amount of detail lost by enlarging the receptive field. 

The symmetric semantic segmentation models with encoder-decoder architecture are proposed. 

Encoders usually use CNN and down-sampling to reduce resolution and extract image feature mapping. The 

decoder converts low-resolution images and features into image segmentation and maps to pixel-level 

prediction. Common networks include DeconvNet, SegNet, U-Net, LinkNet, etc. 

SegNet records the pooling index calculated in the maximum pooling layers of the encoder, and they 

are applied to upsample the feature map of the corresponding size in the decoder. This allows more accurate 

upsampling results. Edun et al. [75] adopted a modified VGG16 in the encoder to modify the input size and 

remove dense layers. Camilo et al. [76] changed the output of SegNet to 2-way Softmax. They form PV 

segmentation masks by classifying densely extracted image patches. The results showed that SegNet 

performed much better than VGG. When the Conditional Random Field, which is a postprocessing step, is 

combined with FCN to form CRFasRNN, the segmentation performance is still inferior to SegNet [22]. Other 

optimization methods were also tried, e.g., the signed Distance function (Dis) of boundaries. The Dis adopts 

a method of pixel labeling where the PV and non-PV areas of the image are represented by the distance 

between the pixels and the PV boundary points. The positive and negative numbers indicate the pixels inside 

and outside the PV area respectively. This labeling method can improve the imbalance of the number of 

pixels in different categories of samples. The results show that the precision of SegNet-Dis is 9.6% higher 

than that of SegNet-Bin, which adopts the Binary function as the labeling method. Furthermore, the accuracy 

of the model can be further improved by 1.2% after the fusion of near infrared spectra. House et al. [77] 

combined SegNet with the CNN classification network. The former is used to segment building roofs, and 

the latter can determine whether these roofs are PV-installed. This idea can be used to calculate the percentage 
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of area occupied by PV in the installed PV roof, which is important for estimating the PV potential of the 

roof.  

 

Fig 6 U-Net architecture [78] 

The structure of the U-Net proposed firstly is shown in Fig 6. It includes the contracting path of up-

sampling and the expanding path of down-sampling. Compared with SegNet, U-Net fuses the feature map to 

be upsampled with the feature map of the same depth and size in the encoder through skip layers. In this way, 

feature fusion is achieved, and its idea is similar to FPN in object detection. By the skip layer, the upsampled 

feature map contains more low-level semantic information. U-Net can achieve higher segmentation accuracy, 

of course, it also has more hyperparameters in the decoder than SegNet. By comparing precision, recall, and 

IoU in large-scale centralized PV power plants, U-Net is proved to be better than FCN [79]. U-Net is widely 

used to identify PV of all sizes in images of all resolutions, including large centralized systems and rooftop 

distributed systems [13, 80-82]. However, when identifying home systems with less than 100W capacity, the 

accuracy of the network will be significantly reduced. Jie et al. [50] introduced a Gated fusion module and 

an edge detection network to the U-Net to solve this problem. Some other optimization models based on U-
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Net are proposed. The multitask collision-maximization Attention Network (EMANet) is an unsupervised 

clustering algorithm without convolution operation, which can efficiently capture the information of the most 

interesting region in the whole image. Hou et al. [83] combined U-Net with EMANet to improve the IoU of 

centralized PV systems segmentation. An adaptive cross learning driven U-Net method (Adaptive CrossNets) 

is developed to utilize cross learning, each generic U-Net in the community first updates the parameters 

individually on each epoch, and then learns the parameters from the optimal individual on a particular epoch 

[84]. The generic U-Net that performs best in the community is selected as the final model for CrossNet. 

Most U-Net segmentation models use ResNet as the backbone. Zech et al. [85] respectively selected 

ResNet18, ResNet34, ResNet50, and ResNet101 as the  backbone to segment roof PV in Oldenburg of 

Germany. Jie et al. [86] also created a model for identifying large PV power stations, adding three modules 

between the encoder and decoder. The modules embrace Feature Refinement Residual Module (FRRM), 

Chained Dilation Attention Module (CDAM), and Global Channel Attention Module (GCAM). FRRM can 

refine the characteristics of each stage of the encoder, rather than directly connecting them to the 

corresponding decoder block. The CDAM expands the receiver range and selects useful features without 

reducing resolution. The basic information of the above studies is summarized in Table 9. 
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Table 9 Basic information for researches of semantic segmentation using FCN and FCN-based method 

Reference Image Resolution Location PV scale Architecture Backbone Result metrics 

Ishii et al [74] 30 m Japan Centralized PV (>5 MW) FCN  For object: IoU>50%; precision>60%; recall>75% 

Edun et al [75]  0.596 m 
The U.S. 387 locations, 

669 PV arrays 

Centralized PV and 

distributed PV 
encoder–decoder architecture  VGG16 

accuracy=98.66%， 

dice coefficient=81.74% 

Camilo et al [76] 0.3 m the city of Fresno Rooftop PV 

CNN VGG When recall=80%, precision is about 50% 

SegNet VGG 
When recall=80%,  

precision is about 90% 

Yang et al [22] 1 m 9 citys Buildings 

FCN-4s-Bin 

VGG16 

precision=31.0% 

FCN-8s-Bin precision=34.5% 

FCN-4s-CRFasRNN-Bin precision=29.8% 

FCN-8s-CRFasRNN-Bin precision=35.4% 

SegNet-Bin precision=74.1% 

SegNet-Dis precision=83.7% 

SegNet-Bin-Fused precision=74.2% 

SegNet-Dist-Fused precision=84.9% 

House et al [77] / An area of about 0.01 km2 Rooftop PV SegNet +CNN 
VGG16 

Precision=98.9%; recall=95.8% 

González et al [79] / 12 countries Centralized PV 
FCN recall=94.16%; IoU=87.47%; Dice coef=89.61% 

U-Net / recall=95.44%; IoU=90.42%; Dice coef=91.42% 

Kruitwagen et al [13] 1.5 m&10 m Global 
Centralized PV (larger 

than 10000 m2) 

U-Net +ResNet50 / RNN 

U-Net is used for semantic segmentation. 

ResNet and RNN is image classifier for 

filtering false positives 

/ 
For PV with an area greater than 10000W: 

recall=90%; IoU=90%; precision=98.6% 

Wu et al [80] 0.5 m 17 cities around the world Rooftop PV 

U-Net: 

The coding layer of U-Net is replaced with a 

pre-trained Resnet50. 

ResNet50 Count recall=91.90%; Area recall=96.25% 

Ren et al [81] 0.03 m Rwanda 
solar home systems (<100 

W) 
U-Net ResNet-50 

For object: the maximum value of F1-Score is 79%. When 

the recall is 89%, the precision is 41%. 

Castello et al [82] 0.25 m Swiss Rooftop PV U-Net  IoU=64%; accuracy=94%; F1-Score=80% 
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Jie et al [50] 2 m 7 provinces of China Centralized PV 

LinkNet 

ResNet34 

mIoU=81.17%; mean precision=87.60%; mean 

recall=90.71% 

U-Net 
mIoU=82.21%; mean precision=87.36%; mean 

recall=92.06% 

U-Net+FRRM+CDAM+GCAM 
mIoU=87.39%; mean precision=93.76%; mean 

recall=92.18% 

Hou et al [83] / China Centralized PV 

U-Net 

ResNet101 

mIoU=86.54% 

EmaNet mIoU=93.79% 

U-Net and EmaNet mIoU=93.94% 

Zhuang et al [84] 0.3 m Fresno, Oxnard, Stockton Rooftop PV 

U-Net with trasfer learning  mIoU=72.792%, Variance=1.286e-4 

U-Net without trasfer learning  mIoU=40.017%, Variance=1.191e-2 

CrossNets (a cross-learning driven U-Net 

method)  
 mIoU=74.268%, Variance=2.481e-5 

Adaptive CrossNets  mIoU=74.279%, Variance=1.458e-5 

Zech et al [85] 0.2 m Oldenburg, Germany  Rooftop PV U-Net 

ResNet18 IoU=65%; precision=83%, recall=76%; F1-Score=79% 

ResNet34 IoU=68%; precision=84%, recall=77%; F1-Score=80% 

ResNet50 IoU=69%; precision=84%, recall=79%; F1-Score=81% 

ResNet101 IoU=68%; precision=86%, recall=76%; F1-Score=81% 

Jie et al [86] 0.3 m Fresno, Stockton, Modesto Rooftop PV 

SegNet 

Eff-b1 

IoU=66.97%; precision=83.48%, recall=77.20%; F1-

Score=80.22% 

LinkNet 
IoU=69.23%; precision=83.60%, recall=80.11%; F1-

Score=81.82% 

U-Net 
IoU=70.28%; precision=83.83, recall=81.30%; F1-

Score=82.54% 

FPN 
IoU=71.11%; precision=84.79%, recall=81.50%; F1-

Score=83.11% 

U-Net+GFM+EDN 
IoU=73.60%; precision=86.17%, recall=83.45%; F1-

Score=84.79% 
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LinkNet has a U-shaped structure as well, but with fewer parameters. It uses a residual block to replace 

the convolution layer and directly connects the encoder and the decoder to improve accuracy. In comparison, 

the advantages of SegNet and LinkNet lie in simple structure and fast calculation speed, but it is not as 

accurate as U-Net. 

Meanwhile, the FCN-based dilation convolution semantic segmentation model is also employed, such 

as Deeplab v3 and DeepLab v3+ [87]. They refer to the idea of the skip layer in U-Net and applied the Atrous 

Spatial Pyramid Pooling (ASPP) module for feature fusion. At the same time, they apply the dilated 

convolution layers, which reduces the use of pooling layers, expands the receptive field, and avoids the size 

reduction of the feature map. RefineNet and PSPNet belong to the FCN-based residual networks. Costa et al. 

[48] compared the performance of U-Net, DeepLab v3+, PSPNet, and FPN models on segmenting large PV 

systems, and matched different backbones. The results show that U-net presents better segmentation accuracy 

with the optimal backbone of Efficient-net-b7. While PSPNet has the shortest training period. Jiang et al. [45] 

compared the segmentation capabilities of U-Net, RefineNet, and DeepLab v3+ for various PV systems using 

images with three resolutions. The results show that DeepLab v3+ obtains the highest accuracy and precision, 

but the lowest recall on three datasets. This indicates that DeepLab v3+ tends to guarantee that the extracted 

PVs are accurate, while RefineNet and U-Net attempt to identify as many PVs as possible. Meanwhile, 

DeepLab v3+ is superior to U-Net for the identification of roof PV with high precision. A comparison of the 

above architectures is shown in Table 10. 
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Table 10 Comparison of researches using FCN-based method 

Reference 
Image 

Resolution 
Location PV scale Architecture Backbone Result metrics 

Costa et al [48] 10 m Brazil Centralized PV 

U-Net 

Eff-b7 Overall accuracy=98.08%; IoU=91.17%; F-Score=95.38% 

Eff-b0 Overall accuracy =98.05%; IoU=90.97%; F-Score=95.27% 

ResNet101 Overall accuracy =97.96%; IoU=90.58%; F-Score=95.06% 

ResNet50 Overall accuracy =97.98%; IoU=90.70%; F-Score=95.12% 

DeepLab v3+ 

Eff-b7 Overall accuracy =97.83%; IoU=89.98%; F-Score=94.73% 

Eff-b0 Overall accuracy =97.77%; IoU=89.82%; F-Score=96.64% 

ResNet101 Overall accuracy =97.46%; IoU=88.47%; F-Score=93.88% 

ResNet50 Overall accuracy =97.02%; IoU=86.63%; F-Score=92.84% 

PSPNet 

Eff-b7 Overall accuracy =97.35%; IoU=88.03%; F-Score=93.64% 

Eff-b0 Overall accuracy =96.73%; IoU=85.43%; F-Score=92.14% 

ResNet101 Overall accuracy =97.06%; IoU=86.98%; F-Score=93.04% 

ResNet50 Overall accuracy =97.23%; IoU=87.60%; F-Score=93.39% 

FPN 

Eff-b7 Overall accuracy =97.38%; IoU=87.99%; F-Score=93.61% 

Eff-b0 Overall accuracy =97.45%; IoU=88.21%; F-Score=93.73% 

ResNet101 Overall accuracy =97.58%; IoU=89.21%; F-Score=94.30% 

ResNet50 Overall accuracy =97.25%; IoU=87.74%; F-Score=93.47% 

Jiang et al [45] 

0.8 m Parts of 

Jiangsu 

province, 

China 

centralized PV 

and ground 

distributed PV  

U-Net / IoU=77.6%; precision=87.1%; recall=86.4%; F1-Score=86.8% 

RefineNet / IoU=77.3%; precision=84.8%; recall=88.4%; F1-Score=86.6% 

DeepLab v3+ / IoU=79.0%; precision=87.7%; recall=85.7%; F1-Score=79.0% 

0.3 m All kinds 

U-Net / IoU=85.8%; precision=89.7%; recall=93.5%; F1-Score=91.6% 

RefineNet / IoU=87.8%; precision=95.7%; recall=93.7%; F1-Score=94.7% 

DeepLab v3+ / IoU=90.8%; precision=95.9%; recall=93.1%; F1-Score=94.5% 

0.1 m 

Haian 

county，

China 

Rooftop PV 

U-Net / IoU=78.7%; precision=78.7%; recall=90.0%; F1-Score=86.4% 

RefineNet / IoU=85.9%; precision=90.9%; recall=89.7%; F1-Score=90.3% 

DeepLab v3+ / IoU=86.8%; precision=92.8%; recall=89.4%; F1-Score=91.1% 

3.3.3.3 Weakly Supervised and semi-supervised Learning 

The various types of deep learning methods mentioned above are all fully supervised learning methods, 

whose training sets require high-quality pixel-level labels. However, it is difficult to obtain and costly. Weakly 

supervision requires relatively coarse-grained labeling information with lower labeling cost. Therefore, it is 

easier to obtain more training sets, which enables PV identification over a wider range. The basic information 

of the weakly supervised learning models for PV is shown in Table 11. 
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CAM (Class Activation Mapping) is a method for generating weakly supervised labels. CAM replaces 

the fully connected layer of the classification network with a global average pooling (GAP) layer to obtain 

the value of each feature graph. Following a simple weighting calculation, a coarser and pixel-level region 

of different categories can be obtained. In some studies, the CAM results were directly used as the detection 

results. Imamoglu et al. [88] trained a CNN network with a feedback structure (FB-Net) for image 

classification and the model has two feedback paths. In addition, they input the features to the multi-channel 

pulse-coupled neural network (m-PCNN), to obtain the CAM of the centralized PV systems and detect the 

area growth over the years. Then, since more data sets were available, Kouyama et al. [89] adopted the 

simpler Grad-CAM with consistent accuracy and replaced the convolutional block in FB-Net with ResNet to 

improve the identification accuracy of the PV boundaries.  

Yu et al. [23] established DeepSolar by employing the Greedy layer-wise training approach. They added 

a branch of image classification on a classification network to greedily extract features at a low-level 

hierarchy. Later, a new "convolutional layer-gap-linear classifier" structure was added at the end of the last 

convolutional layer on the branch to train the segmentation capability. The classification framework and the 

greedy layer-wise training are shown in Fig 7 The results show that CAM which can be used directly as 

segmentation results can be obtained via this method. Zhang et al. [90] thought that the results of CAM were 

rough and incomplete, and further took CAM generated from the fourth convolution layer in a classification 

model as the input, to train a pseudo supervised deep convolutional network with label correction strategy 

(PS-CNNLC) for semantic segmentation. The labels were updated by comparing the output with the input. 

When the output simultaneously satisfies three criteria, the iteration ends and the result is exported. They 

further developed optimization methods, such as using uncertainty estimation and forward correction to 

reduce the noise of pseudo-labels, or proposing a confidence-aware loss function to reduce the contribution 
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of low-quality pseudo-labels to the training segmentation networks [91, 92]. 

 

Fig 7 Classification framework and greedy layer-wise training for segmentation [23] 

Similar to the weakly supervised learning, a semi-supervised learning method has been applied. It 

projects the point coordinates of PV with known geographic locations into satellite images, and then the 

pixels with similar spectral characteristics near the point are clustered into a PV system to generate the weakly 

labels. The false positive regions in the first result are labeled as negative (Hard Negative Mining, HNM) for 

a second training [47]. 
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Table 11 Basic information of researches using weakly supervised and unsupervised learning models 

Reference 
Image 

Resolution 
Location PV scale 

Type of the 

identification 
Architecture Backbone Result metrics 

Imamoglu 

et al [88] 
30 m Japan 

Centralized 

PV (>5 

MW) 

Detection 
Feedback CNN (FB-Net) 

+m-PCNN 
/ 

For object: the precision is 83.81%, 

IoU is 0.56 

Kouyama 

et al [89] 
30 m Japan 

Centralized 

PV (> 5MW) 
Detection FB-Net+Grad CAM / / 

Yu et al 

[23] 
0.15 m 

The 

United 

States 

All kinds Segmentation 

Cassification: Inception v3, 

including 155 convolution 

layers 

Segmentation: the greedy 

layer-wise training 

/ 

Image Cassification: 

In residential areas: precision=93.1%; 

recall= 88.5% 

in non-residential areas: 

precision=93.7%; recall=90.5%  

Semantic Segmentation 

mean relative error (MRE)=3.0% for 

residential areas; 2.1% for non-

residential areas; Mean absolute 

percentage error (MAPE)=24.6% 

Mayer et al 

[93] 
0.1 m Germany All kinds Segmentation 

Cassification: Inception v3 

Segmentation: DeepLab v3 
Resnet-101 

Image Cassification 

precision=93%; recall= 93% 

Semantic Segmentation 

Mean absolute percentage error 

(MAPE)=18.5%; mIoU=74.1%; mean 

relative error (MRE)=3.9% 

Zhang et al 

[90] 
0.3 m 

Canberra, 

Australia 
Rooftop PV 

Semantic 

Segmentation 

PS-CNNLC /  precision=92.63%; recall=82.45% 

PS-CNN /  precision=83.29%; recall=89.38% 

The method of DeepSolar /  precision=67.67%; recall=77.93% 

Zhang et al 

[91] 
0.15-0.3 m 

Canberra, 

Australia 
Rooftop PV Segmentation 

effective uncertainty-aware 

forward correction method  
/ 

 precision=79.29%; recall=76.21%; 

F1=77.72%; IoU=63.56% 

PS-CNNLC / 
 precision=65.68%; recall=83.15%; 

F1=73.39%; IoU=57.96% 

The method of DeepSolar / 
 precision=65.17%; recall=60.23%; 

F1=62.60%; IoU=63.56% 

Zhang et al 

[92] 
0.15-0.4 m 

Canberra, 

Australia 
Rooftop PV Segmentation 

Grad-CAM 

ResNet18 

precision=88.31%, recall=54.50%, 

F1=67.40%,  

IoU=80.83% 

VGG16 

precision=75.55, recall=72.34%, 

F1=73.91%,  

IoU=58.62% 

SP-RAN 

ResNet18 

precision=64.55%, recall=89.80%, 

F1=75.18%; 

IoU=60.23% 

VGG16 

precision=73.13%, recall=84.02, 

F1=78.20%; 

IoU=64.21% 

Ortiz et al 

[47] 
10 m India 

Centralized 

PV 
Segmentation U-Net+ HNM / 

IoU=80.67%, precision=91.03%, 

recall=86.6%,  recall for count is 

94.4% 
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3.3.3.4 Statistic of Architecture and Backbone 

The times of each architecture used in the above segmentation models are counted in Fig 8. The symmetric 

network based on FCN is the most frequently used, among which U-Net and the optimized models based on it are 

the most popular ones. Combined with the studies of architecture comparison, it shows that U-Net and DeepLab 

v3+ have no obvious difference in segmentation performance. 

 

Fig 8 Number of times of all kinds of architectures for segment PV 

 

Fig 9 Number of times of all kinds of backbone for segment PV 

Fig 9 shows the times of various backbone networks used for feature extraction, referring to the 

references that pointed out their backbone types. ResNet is the most used backbone, followed by VGG16. 

And it is found that the performance obtained by ResNet50 is often better than that obtained by ResNet101 
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[48]. In addition, Efficient-net-b7 is more advanced and deeper to Efficient-net-b0, ResNet50 and ResNet101, 

however, the maximum difference of accuracy among them is less than 1% [45]. It indicates that blindly 

increasing the depth of backbone or using more advanced backbone does not significantly improve the 

segmentation accuracy. 

3.3.4 Statistic of Training Optimizer 

Among the above references on PV identification using deep learning methods, there are 27 references 

that described the training optimizer in their model training. The statistical results are shown in Fig 10. It can 

be seen that the Adaptive Moment Estimation (Adam) optimizer and Stochastic Gradient Descent (SGD) 

optimizer are the two most commonly used optimizers. Among them, most semantic segmentation models 

with fully supervised learning use the Adam optimizer. The models for image classification and object 

detection prefer the SGD optimizer. 

 

Fig 10 Number of times of all kinds of optimizers for PV identification 

3.4 Image Augment 

The PV region in satellite images is much smaller than the background. Image augment can increase the 

number of positive samples, so as to balance the sample proportion in the training set of deep learning to 

ensure identification performance. Meanwhile, image augment can also improve the robustness of OBIA and 
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deep learning models. Among the above 48 references using OBIA or deep learning, 22 references used 

image augment. Fig 11 statistically the times of the methods used. The most used image augment method is 

rotating the positive sample image, followed by flipping and adjusting the brightness range. Among them, 

random sampling is generally used for negative samples to reduce their proportion in the training set. 

 

Fig 11 Number of times of all kinds of methods for image augment 

3.5 Comparison of Different Methods contrast 

The above identification models are classified according to application scenarios, i.e., PV scale, image 

resolution and identification purpose level. Table 12 summarizes the range of performance metrics for each 

method. Only precision, recall and IoU (most used).  are summarized here, because the performance metrics 

used in each study are different. The application scenarios and performance of each method are roughly 

compared, even though the image datasets used in each study are different. 
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Table 12 Performance comparison of four methods under different identification tasks 

Identify rooftop PV in images with resolution less than 2 m/px 

 PBIA OBIA 
Fully supervised deep 

learning 

Weakly supervised deep 

learning 

Image classification / / 
precision=72-95%; 

recall=75.2-92.4% 
/ 

Object detection 
precision=60%; 

recall=70% 

recall=94% in 100 buildings 

images. 

precision=81.2-92.99%; 

recall=84-87.3% 
/ 

Semantic segmentation / / 
precision=41-98.9%; 

recall=73-95.8% 

precision=64.55-

92.63%; recall=54.5-

89.38% 

Identify centralized PV in images with resolution less than 2 m/px 

Semantic segmentation / 

Segment other panels within 

the same array: 

precision and recall measures 

are both higher than 0.99. 

precision=53-98.6%; 

IoU=77.3-90%; recall=52-

90% 

/ 

Identify centralized PV in images with a resolution greater than or equal to 10 m/px 

Object detection / 

precision=92.39-98.53%; 

recall=85.86-92.19% 

IoU=80.19% 

precision=60-83.81%; 

recall>75%; IoU=50-56% 
/ 

Semantic segmentation 

For water PV: 

precision=96.9-100% 

recall=84.4-96.2% 

precision=63.64-71.6%; 

recall=37.25-54.9% 

IoU=85.43-91.17%; 

F1=83-96.64%; overall 

accuracy=96.73-98.08% 

precision=91.03%; 

recall=86.6%; 

IoU=80.67% 

 

Combining Table 4 and Table 5, for the rooftop PV detection task in high-resolution images, when OBIA 

is applied in a small area, the recall can reach 94%. Since more texture features can be obtained, the detection 

performance of OBIA is higher than that of PBIA. However, PBIA and OBIA are only suitable for detection 

in a small region, and the performance in RGB images is not as good as in multispectral images. The deep 

learning method is suitable for city-scale detection and can maintain high precision, ranging from 81.2% to 

92.99%. Deep learning is generally used for the tasks of rooftop PV segmentation with high-resolution 

images. The range of the precision and the recall of fully supervised learning methods are 41-98.9% and 73-

95.8%, respectively. Compared to the weakly supervised learning method, the fully supervised learning 

method has a higher upper limit of performance. When the model structure is too simple, the segmentation 
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accuracy may be very low. Weakly supervised learning is suitable for segmentation in a larger geographical 

region. The well-trained weakly supervised learning model has a maximum precision of 92.63% with a recall 

of 82.45%, making it better than most fully supervised learning models. However, the performances from the 

same model but with different training datasets differ greatly. It indicates that the size of image datasets and 

label quality significantly affect the model performance. 

Fully supervised learning methods can be used to segment centralized PV in high-resolution images. 

However, compared with models using low-resolution images, its advantages are not obvious. For example, 

the maximum deviation in IoU is only 1.17%. As for OBIA, which is only used to identify other PV panels 

in the same array where the template PV is located, can be applied for fault detection of the PV array. 

Low-resolution images no higher than 10 m/px are generally satellite images from Landsat or Sentinel 

with information from multispectral bands. OBIA can outperform deep learning in centralized PV detection 

through the proper use of multispectral information and texture features. It can achieve the highest precision 

of 98.53% with a recall of 92.19%, which is significantly higher than those of deep learning. However, the 

deep learning method is still better than OBIA in the segmentation task, and the weakly supervised learning 

is inferior to the fully supervised learning. In addition, PBIA can achieve excellent segmentation performance 

for water concentrated PV due to the simple background and the obvious spectral differences between ground 

and targets. 

The advantages, disadvantages, and application scenarios of these methods have been presented in Table 

13. 
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Table 13 The advantages, disadvantages, and application scenarios of identification methods 

Model approach advantages disadvantages Applicable scenario 

PBIA 

The calculation speed is fast and 

the true positive of the result is 

high. 

Without utilizing the spatial features between 

pixels, it is easy to cause incomplete shapes 

when detecting or dividing PV. Easy to 

produce the salt-and-pepper effect. 

It is suitable for object detection in a small area, or 

when there is multispectral information and the PV 

spectrum is obviously different from the 

surrounding background. It has an excellent 

performance in segmenting water centralized PV. 

OBIA 

Fast calculation speed, better use 

of spectral features, and context 

information. It can obtain good 

performance using multispectral 

images. And the true positive of 

the result is high. 

The selection of typical features is diverse, so 

it is difficult to formulate simple, accurate, 

and robust rule sets. 

Detect the rooftop PV in small areas. Detect 

centralized PV using multispectral images. PV 

panel fault detection in a centralized PV. 

Deep 

learning 

method 

Total 

supervision 

learning 

It has the highest identification 

accuracy. The true negative rate 

of identification results is high. 

The physical meaning of the model is not 

clear. 

The model performance can only be 

optimized by repeated parameter tuning, 

which has the characteristics of experience 

and blindness. A large amount of accurately 

labeled training set data is needed. 

It is suitable for the detection and segmentation of 

rooftop PV in a relatively large area and the 

detection and segmentation of centralized PV in a 

large area. 

Weakly 

supervised 

learning 

It does not need lots of pixel-

level annotated training set data. 

The training set can be 

constructed through border-level 

annotation, graffiti-level 

annotation, and image-level 

annotation. 

The model training is complicated and the 

accuracy is lower than that of the fully 

supervised method 

The physical meaning of the model is not 

clear 

It is suitable for the detection and segmentation of 

PV systems of various sizes at the national or 

international level. 

 

4 Application of PV Identification 

4.1 Determining the Azimuth and Tilt Angle of PV panels 

The azimuth and tilt angle of PV panels will affect the accuracy of power generation estimation. The 

PV area in 2D images needs to be converted to the actual area with the tilt angle. The azimuth can be judged 

according to the rotation angles of the polygons. Edun et al. [75] used the Candy edge detection method and 

Hough Transform to determine the direction of the longest edge of PV to estimate its azimuth. The azimuth 

could also be estimated by identifying the ridge line in images [94, 95]. 
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According to a known tilt angle distribution law of a certain region, the tilt angle of PV in the vicinity 

can be assigned at random [95]. Killinger et al. [96] calculated the tilt angle of many PV systems worldwide, 

which accounted for 1.7% of global installed capacity in the year. The results showed that the average tilt 

angle was between 16.1° (Australia) and 35.6° (Belgium). Combined with 3D image information, Mayer et 

al. [87] used aerial orthographic images with 0.1 m/px to segment PV and assumed that every 6 m2 of PV 

area could have a capacity of 1 kilowatt peak (kWp). Compared to the capacity information from the official 

registry, the total capacity obtained is 22.70% to 31.73% lower without considering the tilt correction for the 

rooftop PV with a capacity of less than 30 kWp. This difference could be reduced to between 8.8% and 19.49% 

when all the tilt angles are equal to the local optimum tilt angle. Assuming that the tilt angle is equal to the 

optimal angle in that region, the tilt angle will not lead to capacity estimation deviation for the rooftop PVs 

with a capacity of more than 30 kWp. 

4.2 Predicting the PV at national or global level 

The fundamental goal of PV identification is to estimate PV area and capacity. Most studies ended up 

evaluating the performance of the model through test sets from the same locations as the training set. However, 

few studies extended their model to identify the PV in a wider region and to predict their area and capacity. 

Hou et al. [83] used SolarNet to identify and map 439 large-scale centralized photovoltaic power stations 

in China, covering a total area of nearly 2,000 km2. Kruitwagen et al. [13] counted PV output greater than 10 

kW in the world and collected a total of 68,661 systems in 131 countries. As for the distributed PV and 

rooftop PV, Yuan et al. [67] performed PV segmentation on satellite maps of San Francisco and Boston, 

covering an area of 108 km2 respectively, and projected the PV segmentation results onto OSM maps. The 

location of the PV distribution and the size of the coverage can be seen. DeepSloar identified approximately 

1.4702 million PV systems in urban areas and all areas in the United States with nightlight intensity greater 
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than 128 [23]. 

So et al. [97] proposed the estimation relationship between PV area and capacity 

 
0c      (1) 

where  is a proportionality constant, indicating the capacity per unit of surface area. 0  is a bias parameter.  

For the solution, So et al proposed two regression methods: (i) a global estimate of capacity per unit 

area; (ii)a unique estimate of capacity per unit area for each solar array. The second method assumes that the 

PV capacity is related to the brightness or intensity of the image, and the area of the PV plate is also related 

to the power generation efficiency. Analysis results show that the second method can improve the estimation 

accuracy by about 9%. Based on this method, Malof et al. [98] used SolarMapper to estimate the PV capacity 

of 168 municipal regions in Connecticut. Their   calculated by the first method was 0.88, and the second 

method was 0.91. 

4.3 Predicting rooftop PV potential 

Rooftop PV potential can be divided into four classes: physical potential, geographical potential, 

technical potential, and economic potential, as shown in Fig 12. Physical potential refers to the total amount 

of solar energy a region can receive. The data can be obtained from weather station statistics or from some 

sunshine simulation software. The geographic potential is the roof area available for PV installation. The roof 

geometry, tilt angle, azimuth, the shading effects of other buildings and trees, and the upper structures located 

on rooftops should be considered. Technical potential refers to the maximum power generation that can be 

generated, considering the conversion efficiency of PV modules and system performance efficiency. The 

former is about 19.8%, from the Tracking the Sun [16]. The latter is generally affected by panel fouling, 

component loss, ambient temperature and other conditions, and is generally 0.75-0.9 [99]. Economic 

potential is the profitability of the rooftop PV system after considering installation and operation costs, 
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lifetime, interest rate and other economic parameters and government policy. Among them, the geographical 

potential is the focus of this paper. 

 

Fig 12 The relationship and influencing factors of four kinds of rooftop PV potentials 

Some early studies suggested a rough positive correlation between roof area and local population density 

[100, 101]. Joshi et al. [14] established the relationship between population density, road length, the built-up 

area identified by satellite images and roof area to predict global PV potential. However, most of the building 

footprint data in the training set were from North America, Europe, and Africa. There are doubts about the 

accuracy of the model for China, India, and other regions.  

Segmenting roofs in satellite images, a more accurate method becomes more likely to be used in a large 

region as computer technology improves. Table 14 shows some studies on roof segmentation. Since building 

contours differ from roofs in non-orthographic images, it does not include studies on building segmentation. 

It shows that U-Net is the best segmentation model with a maximum precision of 91.9%. In addition, FPN 
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and SegNet also have good performance. At the same time, Zhong et al. [102] found that compared to the 

rural, the urban area is smaller but the number of buildings is larger and the background is more complex. 

Increasing the proportion of urban images in the training dataset can significantly improve the model 

performance.  

Table 14 Basic information of studies for roof segmentation  

Reference Location Method Backbone Performance 

Song et al [103] 
a sub-district of 

Beijing 
OBIA / area error=8.24% 

Qin et al [104] 7 cities, China 

FCN VGG16 overall accuracy=94.67%, mIoU=85% 

FCN+CRF VGG16 overall accuracy=94.69%, mIoU=83% 

Huang et al [105] Wuhan, China U-Net ResNet 

Compared with GIS: 

when the shading factor is 0, the error of PV potential 

is 9.23%. when the shading factor is 0.2, the error of 

PV potential is 0.1%. 

Lee et al [106] 6 cities, the U.S. 

FPN ResNet-101 precision=91.1% 

U-Net ResNet-102 precision=91.9% 

Mask-RCNN ResNet-103 precision=86.3% 

Sampath et al [107] Bangalore, India 

U-Net / Accuracy=94.73%，Dice coefficient=78.24% 

SegNet / Accuracy=94.07%，Dice coefficient=69.88% 

FCN / Accuracy=93.45%，Dice coefficient=61.41% 

Streltsov et al [108] 

Gainesville, 

Florida, and San 

Diego, California 

Modified U-Net ResNet-152 

Building recall for Gainesville=84%; Building recall 

for San Diego=88%;  

residential precision=99%; commercial 

precision=74% 

Zhong et al [102] Nanjing, China DeepLab v3 / 

Non-strategic sampling method: accuracy=90%，

precision=80%，recall=71%，F1=80%. 

Strategic sampling method: accuracy=92%，

precision=82%，recall=79%，F1=81%. 

 

The study by Huang et al shows that assuming 100% utilization of roof areas for PV will lead to a 

potential error of 9.23% [105]. Roof availability area is influenced by various factors. Sun et al. [109] trained 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



a model based on U-Net that could identify roof orientation to filter out roofs facing north. Qian et al. [110] 

propose a network model with the encoder-decoder structure that can identify the boundary lines of the roof 

structure.  Several methods have been proposed for laying fixed-size PV panels in roof images, 

considering in detail the PV installation angle and maintenance distance [94, 109, 111]. This method can 

improve the estimation accuracy but is very complicated. For residential in villages and towns in northern 

China, roofs are almost not shadowed by surrounding buildings, and the ratio of PV available area to total 

roof area in the whole village is about 0.58 [109]. However, this study ignored the area of solar thermal 

systems, which are common in this region. If the roof availability coefficient can be determined, the 

geographical potential of rooftop PV could be estimated by simple mathematical methods. Table 15 lists 

some methods of calculating the coefficient and the influencing factors considered. 3D building information 

of urban blocks is imported into GIS software to simulate solar radiation at a typical time, and to obtain the 

available roof area in most studies. The roof availability coefficient obtained by this method is between 0.5 

and 0.975. However, it only considers the shading effect between buildings, which results in a serious 

overestimation of geographical potential. Khan et al. [112] found that 20-25% of the roof area was used for 

other use including upper structures through field measurement. Considering the azimuth, shading effect and 

other uses, the coefficient is reduced to 0.25-0.46 through human inspection and segmentation from satellite 

images as well as the field survey. Also, the attenuation of low-rise buildings from surrounding trees is 

approximately 15-30% [113].  
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Table 15 Roof availability coefficient methods based on different methods 

Reference Location Building type assessed 
The factors 

considered 
Method 

Roof availability 

coefficient 

Izquierdo et al [114] Spain All in urban 

Shading between 

buildings, other roof 

uses 

Human inspection 

from satellite images 
0.34 

Bergamasco et al [115] Turin, Italy 
Residential 

Shading between 

buildings, other roof 

uses, azimuth 

Segmentation from 

satellite images 

0.431 

Industrial 0.460 

Bergamasco et al [116] Piedmont， Italy 
Residential 

Theoretical analysis 
0.065 

Industrial 0.304 

Lobaccaro et al [117] 
Lugano-Paradiso, 

Switzerland 

Residential 

Shading between 

buildings 

Irradiation 

simulation for 3D 

model 

0.7 

Industrial 0.9 

Ko et al [118] Taiwan, China All 0.5 

Ren et al [119] 
A block of Hong 

Kong, China 
Urban 0.643 

Xu et al [120] Wuhan, China 

Industrial buildings, 

middle and high-rise 

residential buildings 

0.901 

Commercial and office 

buildings 
0.946 

Low-rise residential 

buildings 
0.975 

Singh et al [121] Mumbai, India 

All 

Shading between 

buildings, other roof 

uses 

0.28-0.4 

Mishra et al [99] Uttarakhand, India Field survey 0.25 

Khan et al [112] Karachi, Pakistan 
Residential and 

commercial buildings 
other roof uses Field survey 0.75-0.8 

Sun et al [109] North China 
Residential in village 

and town 

Azimuth, 

maintenance distance 

Simulated 

installation in 

satellite images, 

field survey 

Ratio of installed PV 

area to roof area: 

Flat roof: 0.82 

N-S pitched roof: 0.47 

E-W pitched roof: 

0.83 

 

In addition, many roofs do not fully utilize the available area for rooftop PV installation in practice. 

Combined with manual inspection, Mainzer et al. [95] found that only 30% to 80% of the roof available area 
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was installed with PV systems in Freiburg, Germany. De Vries et al. [94] compared the installation situation 

of 215 roofs obtained by the model and the actual. There are 66 and 45 roofs were using two-thirds and one-

third of their available area for PV installation, respectively. The former is due to ignoring some roof obstacles, 

while the main reason for the latter is that the owners are unwilling to install it. The erosion of rooftop PV 

geographic potential caused by this situation requires further investigation and summary. At the same time, 

installing PV on available roofs as much as possible is a matter of economy and policy. 

5 Discussion 

5.1 Selection of Image Data Sources and Identification Models 

The satellite image with a resolution of less than 10 m/px can be downloaded free of charge, and have 

the advantages of multispectral information, short revisit periods and fast update. It can be used to identify 

centralized PV power stations and estimate their installation dates. The 0.3 m/px is the threshold resolution 

of the image segmentation task for rooftop PV [122]. High-resolution aerial images of a few countries are 

openly accessed with short update cycles. Although Google Earth/Static Maps offer high-resolution images 

that cover the globe, they are taken on inconsistent dates, and their update cycle is longer. Moreover, the 

images are not free of charge. To reduce the cost, multispectral images from Sentinel and Landsat-8 can be 

used to identify and filter out the centralized PV power stations as well as the large region of vegetation or 

water.  

The barrier to improving the PV identification model is the large number of high-quality PV image 

datasets. Existing public PV image datasets can cover various sizes of PV, but the overall number is still not 

abundant. 

By and large, the aim of PV identification mainly includes image classification, object detection and 

semantic segmentation. There are three common methods, i.e., PBIA, OBIA and deep learning. The 
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calculation speed of PBIA and OBIA is fast, and it can obtain excellent identification performance when 

using multispectral images for the centralized PV. OBIA has very excellent detection performance in 

identifying centralized PV even with low spectral images. Deep learning has high accuracy in PV 

segmentation of all sizes, but its model convergence is difficult, and the prediction speed is slow, with a large 

number of samples needed in training. Combined with the selection of images at different resolutions, this 

study proposes a strategy of grading identification for PV, which is used to segment all kinds of PV in a large 

region, such as national and global, as shown in Fig 13. Firstly, the PBIA and the 10 m/px and 20 m/px 

multispectral images from Sentinel can be used to identify the centralized water PV in the water region 

obtained by historical water surface data. Secondly, OBIA and the multispectral images from Sentinel can be 

used to detect centralized PV on land. It can be used to filter out large areas of water and vegetation through 

NDVI and NDWI, thus reducing the area needed to identify in subsequent tasks. The recall of objects should 

be kept high by adjusting the probability threshold. Then the images around the positive detection objects are 

cropped out and input into a deep learning segmentation model. This significantly reduces the identification 

region of the deep learning segmentation model. Finally, the deep learning method is used to segment rooftop 

PV and distributed PV systems in the remaining region in aerial images with the resolution of not less than 

0.3 m/px. Such a grading identification strategy can improve the efficiency of the overall identification task, 

reducing the cost of image acquisition and ensuring accuracy. 
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Fig 13 Strategy of grading identification PV 

A case study is applied to illustrate the strategy of detection first detection using OBIA and then 

segmentation using deep learning for centralized PV. In Jiangsu datasets [45], the dataset with a resolution 

of 0.3m /pixel includes five centralized PV image sub-datasets with different backgrounds and one rooftop 

PV image sub-dataset. In this case, the first five image sub-datasets are selected as the first image dataset, 

which includes 2072 images, each with a size of 1024×1024. The ratio of the training dataset to the test 

dataset is 8:2. On this basis, each image is divided into four 512×512 images, and the images with PV pixels 

are selected and grouped into the second image dataset, as shown in Fig 14. It includes 5551 images in total. 

This process approximately represents the process of using the detection model to screen the candidate 

regions for further segmentation.  
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Fig 14 Case Study’s Generation of Image Datasets 

The two models are trained on two datasets respectively. They all apply DeepLab v3 as the architecture, 

ResNet-101 as the backbone, and Adam as the training optimizer, with a learning rate of 0.001. After training 

50 epochs, the results of the optimal epochs represent the model performance. For the model using the 

complete dataset, the precision, recall, and F1-score for pixels for PV are 96.61%, 96.80%, and 96.71%, 

respectively. For the second model, the precision, recall, and F1-score for pixels for PV are 96.71%, 97.17% 

and 96.94%, respectively. As Fig 15(a) and (b), it can be seen that the continuity of the positive regions of 

the first model is less, and there are more false negative regions inside them. In addition, it may predict a 

large area of background areas as positive, as shown in Fig 15(c). The second model has better continuity 

and clearer boundary. In this case, manual image cropping is assumed to be a detection process. Referring to 

the above, for centralized PV systems, detection using OBIA and multispectral images can obtain better 

results than that using depth learning for the whole region. Therefore, this case has a certain reference value. 
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Fig 15 Segmentation Results of Two Identification Strategies 

5.2 Optimization of Identification Models 

Identification models for segmentation should still maintain high performance in the regions out of 

training datasets. For example, DeepSolar was trained using image datasets from the U.S, and when it was 

applied to Germany, its recall for PV number was reduced to 40.7% [93]. To improve the applicability of the 

models, the training dataset should include satellite images of various scenarios, including different 

landforms (e.g., cities, farmland, deserts, grasslands, etc.), as well as considering the diversity of architectural 

styles of different cities. When a model is applied to a similar new scenario, the performance of the model 

can be significantly improved only by adding a small amount of satellite images from the new scenario to 

the training dataset for further training. Studies have shown that the ratio of new satellite images from the 

new similar scenario to the original training datasets can be less than 10% [93, 123]. Some objects with 

similar colors or shapes are also easy to be identified as PV, such as solar thermal systems, glass skylights, 

swimming pools and roads. It results in an increased false positive rate while reducing precision and accuracy. 

The model can be optimized by adding images of these confusable objects or taking false positive results to 
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the training dataset for further training with negative labels [72, 124]. In addition, removing the identification 

results that coincide with the location of roads, or retaining the identification results only within the polygon 

contour of roofs can be used [67, 70]. It is found that PV showed significantly different color characteristics 

in sunlit situations and shade-facing situations [122]. However, almost all PV panels exhibit highly similar 

color histogram patterns. It suggests that the different color features are only caused by brightness relative to 

lighting conditions. Therefore, changing the color pattern in positive samples can be used as an image 

augment method, and the color pattern can also be used to filter out the false positives in the results. 

5.3 Estimation of Capacity and Installation Potential 

The tilt angle correction should be performed to estimate the actual PV area and build the relationship 

between the area and the capacity. The tilt angle could be based on the known tilt angle distribution law in 

the vicinity if it exists, or is assumed to be equal to the local optimum tilt angle.  

For predicting the rooftop PV potential, simulating the placement of fixed-size PV panels on each roof 

is a piece of detailed and accurate work, but it is too complicated to be not suitable for a wide application. 

Summarizing the roof availability coefficient is still the most feasible method. The solar shadow simulation 

of buildings in a block with 3D information only helps to estimate the effect of shading on this coefficient. 

The coefficient reduction resulting from the roof’s upper structure and other uses should also be considered.  

5.4 Outlooks 

(1) As for non-orthographic aerial images, such as from Google Maps, the image distortion and the area 

estimation error caused by the unknown shooting height and the unknown orthographic point location are 

worthy of a further study. 

(2) RNN, Temporal Cluster Matching technology, and PCNN have been used to predict the installation 

time of the centralized PV systems [13, 47, 88]. It is worth applying the identification to monitor the 
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installation growth rate. Identifying the dynamic growth process of rooftop PV can provide implications for 

the government to make more effective policies. 

(3) With the proliferation of rooftop PV, it is important to periodically estimate the rooftop PV coverage 

ratio and the existing geographic potential in a city. And the installed systems should be considered in future 

studies of geographic potential. Furthermore, it is necessary to conduct statistical analysis on the roof 

availability coefficient after PV installation, as well as on the proportion of PV installed area to total roof 

area. The latter can be used directly to improve the prediction accuracy of the potential of rooftop PV 

installation. 

6. Conclusions 

This paper has reviewed the image sources available and the existing public image datasets, followed 

by classification and analysis of the existing PV identification models. The application of predicting PV area 

and capacity in large regions and of predicting the geographical potential of rooftop PV has been discussed. 

The following conclusions and outlooks can be drawn: 

(1) The series of Sentinel can provide free, global multispectral imagery at 10 m/px with a short revisit 

period. It can be used to identify centralized PV systems and to infer their installation dates. Aerial images 

with a resolution of no less than 0.3 m/px are required for rooftop PV identification. Google Earth/Static 

Maps and other platforms can provide images of some countries meeting the required resolution. It is noted 

that these images may not be openly accessed and could be taken in different years, making it difficult for 

predicting yearly PV installation capacity. 

(2) The PV identification models can be divided into image classification, object detection and semantic 

segmentation subject to different purposes. Especially, the PV area can be predicted by the models of 

semantic segmentation. The PV identification models are commonly established by three main methods, 
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including PBIA, OBIA and deep learning. The first two methods have a fast identification speed, but both 

need to establish feature sets beforehand and their performance depends on the spectral information. OBIA 

can be superior to the deep learning method in detecting centralized PV. The deep learning method has the 

best performance in segmenting all sizes of PV systems including rooftop PV.  

(3) In the semantic segmentation model, the most widely used model with fully supervised learning is 

U-Net and its optimized architecture. The U-Net and the DeepLab v3+ are the models with the best accuracy, 

and there is no obvious performance difference between them. For backbone networks, the ResNet series and 

Efficient-Net-b series are commonly used. By far Efficient-net-b7 has the best performance, followed by 

ResNet-101 which has a simpler structure and is more commonly used. And the complexity and training 

efficiency of models also need to be concerned. Blindly increasing the complexity of the model does not 

necessarily improve the accuracy. To improve the robustness of the models, rotation, flip, and changing 

brightness are the most commonly used image augment methods. Considering the susceptibility of PV color 

characteristics in images to light, changing brightness should be preferred. 

(4) A grading segmentation strategy for all sizes of PV is presented. Firstly, PBIA and multispectral 

images from Sentinel are used to segment concentrated water PV and filter out the large regions of water. 

Secondly, OBIA is used to detect centralized PV in the remaining area of the image and maintain a high recall 

rate by adjusting the threshold. The regions around positive detection results are cropped into the candidate 

images for segmentation by the models based on the deep learning method. Finally, the deep learning model 

and the aerial images with a resolution of at least 0.3 m/px are used to segment roof PV and distributed PV 

in the remaining region. A simplified case study has been applied to illustrate that detection first and then 

segmentation can improve the segmentation accuracy of the centralized PV. 

(5) The available area on the roof is the key parameter to predict the geographic potential of solar rooftop 
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PV installation capacity. After considering roof azimuth, shadow effect between buildings and other uses of 

the roof, the roof availability coefficient is in the range of 0.25 to 0.46. The actual roof available coefficients 

for various functional buildings need to be investigated and summarized widely in the future. 
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