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Abstract: Neuromorphic computing is promising to become a future standard in low-power AI
applications. The integration between new neuromorphic hardware and traditional microcontrollers
is an open challenge. In this paper, we present an interface board and a communication protocol
that allows communication between different devices, using a microcontroller unit (Arduino Due) in
the middle. Our compact printed circuit board (PCB) links different devices as a whole system and
provides a power supply for the entire system using batteries as the power supply. Concretely, we
have connected a Dynamic Vision Sensor (DVS128), SpiNNaker board and a servo motor, creating
a platform for a neuromorphic robotic system controlled by a Spiking Neural Network, which is
demonstrated on the task of intercepting incoming objects. The data rate of the implemented interface
board is 24.64 k symbols/s and the latency for generating commands is about 11ms. The complete
system is run only by batteries, making it very suitable for robotic applications.

Keywords: spiking neural network; neuromorphic computing; SpiNNaker; neuromorphic interface
board

1. Introduction

Spiking Neural Networks (SNN) run on neuromorphic hardware are an excellent
platform to develop new robotic systems, and at the same time get better insight into
the operation of biological neural systems [1]. The strength of SNNs lies in the neuron
structure, where the biological membrane potential is computed resolving a differential
equation, placing this model closer to the biological neuron. Compared to the second
generation of Artificial Neural Networks (ANN), Spiking Neural Networks receive discrete
signals (spikes), greatly simplifying the computation complexity. A presynaptic neuron
fires when the membrane potential exceeds a potential threshold value, emitting a spike
to the postsynaptic neurons. After that, a relaxing phase follows, where the membrane
potential is restored to the resting value before new input stimuli increase the potential
again [2]. The information in SNNs is encoded by the signal itself and its timing [3].

Due to these features, neuromorphic computing exhibits low latencies and low energy
consumption. In order to take advantage of the SNN principle and make it available, the
Advanced Processor Technologies Research Group (ATP) at the University of Manchester
develops a manycore computer architecture SpiNNaker (Spiking Neural Network Archi-
tecture) to simulate some operational aspects of the human brain [4]. This computing
platform has been deployed in several research fields, such as robotics. One example
is the “line follower robot” from ATP [5] where a DVS signal is sub-sampled to match
SpiNNaker’s processing speed. The system employs a PC to convert protocols between
DVS, SpiNNaker, and wheel motors. Another example, PushBot [6], is a mobile robot that
employs two microcontroller units (MCUs) that are used to connect with SpiNNaker and
other external devices, respectively. It communicates with the other MCU through WIFI
to send and receive DVS data and commands for the controlling motor. An autonomous
mobile platform [7], based on a 48-chip SpiNNaker board, uses an MCU for communication
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between SpiNNaker and other components and a Complex Programmable Logic Device
(CPLD) interface board. It is able to achieve two independent tasks: trajectory stabilization
using real-time computed optic flow and stimulus tracking with Nengo [8].

Different Interfaces Boards (IB) were implemented for SpiNNaker, examples are the
FPGA-based solution from the SpiNNaker team [9] and the MCU interface [10] jointly
developed by the University of Manchester and the Technical University of Munich. The
former provides a unidirectional data transfer, which means the interface can only send data
from input sensors to SpiNNaker and makes it difficult to connect other external devices.
In the latter, the data flow is bidirectional, but necessitates two data format conversions
and two chips for symbol transmission, resulting in greater power consumption.

The system introduced here represents the first complete prototype which in com-
parison to the previous work [11] has an integrated power supply and power regulators,
a built-in sensor for the reward signal and new communication software for the micro-
controller. This is the first self-contained and stable version of our robotic system. The
implemented Interface Board links together and powers the whole system consisting of a
Dynamic Vision Sensor (DVS128), a SpiNNaker board (SpiNN-3), an MCU (Arduino Due)
and a digital motor (Futaba S9257), using batteries. In addition, the board allows multiple
inputs from different types of sensors, entirely managed by the MCU. The input signals
are encoded in a way that allows communication with SpiNNaker, which is working as
“the brain”, analyses the signal and sends back the result to the MCU, which is then able to
drive a device such as a servo as an output. Figure 1 shows the configuration we used to
test our IB.

Figure 1. Communication block diagram of a system consisting of different neuromorphic hardware
units (DVS and SpiNnaker), and a digital motor, touch sensor, and the Interface Board with an MCU
which represent the backbone of the system. Here we tentatively include a PC, which is used during
the setup phase to adjust the field of view of the camera and to analyze the produced data and can be
removed during the operational phase of the robot.

2. Interface Board Design and Specification

The proposed Interface Board is designed to meet compactness, portability and low
power consumption specifics, allowing the use of different types of input sensors (as vision,
sound, chemical, temperature sensors), and different output devices (as motors, alarms,
lights, actuators). With a size of only 120 mm (width) × 120 mm (length) × 55 mm (height),
our platform consists of a PCB board that allow the direct connection of an MCU (using
direct pin connection) and a SpiNNaker board (fixed on the board and connected with a
dedicated cable). The Arduino Due was selected as MCU for its high number of GPIO ports
and adequate processing capacity. It is used to perform communication protocols, so that
input sensors, SpiNNaker and the actuators can communicate with each other. The board
provides the connection between different robotic components and relevant functions (e.g.,
inbound links, level shift, voltage regulation). A compact interface board provides a ‘spinal
cord’ which connects the peripheral ‘organs’ (i.e., vision and sound sensors or actuator) to
the ‘brain’ (SpiNNaker), allows them to talk to each other and pre-processes the signals.
Figure 2 shows the data flow of the hardware components introduced previously in Figure 1.
It is possible to distinguish three main phases: input signal processing, communication
with SpiNNaker and output command execution.
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Figure 2. Interface Board connected to different hardware units. The schema shows three main com-
munications pathways: the data flow from the camera (DVS) and the touch sensor to the SpiNNaker
via the MCU board, the dataflow from SpiNNaker to MCU, and communication with the goalkeeper
(position commands). The Arduino Due board (MCU) is installed on the Interface Board and allows
the input–brain–actuator communications, performing data pre-processing, encoding/decoding and
command execution. The MCU is linked to a SpiNN-3 board that simulate a simple SNN with 8 input
layers and 8 outputs layers. The final position is the SNN computation.

2.1. SpiNNaker

SpiNNaker is a multi-core, real-time computer [12] that simulates brain networks.
It uses ARM’s high-performance embedded processors [13,14], and thus utilizes their
very low power and computational efficiency. Several different SpiNNaker platforms
have been developed, we are using the smallest SpiNN-3 board, but the communication
protocol works for all the other models. SpiNN-3 board consists of four chips, each having
18 ARM968 processing cores and local memory [15]. The power supply of the SpiNN-3
board is 5 V 1 A via a 2.1mm DC port. For peripheral connections, the SpiNN-3 board
has 2 ports: ports J1 and J2 which are 34-way sub-miniature head sockets [16]. The pin
assignments are shown in Figure 3. The input part of the link includes inputs Lin(6)–(0)
and output LinACK. The output part of the link includes input LoutACK and output
Lout(0)–(6).

Figure 3. SpiNNaker J1–J2 connector pinout. The image shows the communication link with the
MCU (Arduino Due). Two different channels for sending and receiving data are used on the J2 port.

2.2. Arduino Due

Arduino Due board was selected because of the high number of GPIO ports and for
the presence of a USB host connection that allows plugging in a USB device (DVS camera
sensor). The Arduino Due is based on a 32-bit ARM chip with a clock speed of 84 MHz.
The recommended power supply range of the Arduino Due is 7–12 V. On our board, the
Arduino is powered with 9 V. To communicate with the J2 link 16 GPIO are necessary,
which are covered by the 54 GPIO pins of the Arduino MCU. Thus, there are many unused
GPIO pins available to connect with other external devices for further development. The
Arduino Due also provides 5 V, 3.3 V and 2 DAC ports to supply power to external devices.
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For communication with PC, DVS or eDVS, this board has a UART and 2 micro-USB ports
with a maximum 115,200 baud rate.

2.3. Hardware Links

The layout of our PCB for the Interface Board is shown in Figure 4. As stated in the
SpiNNaker-3 and Arduino Due sections, they work at different input voltages. In order to
use a unified input current for the IB, two different voltage regulators, the MC7809, which
is used to provide a stable source of power at 9 V to Arduino, and the MC7805, which
supplies power to SpiNNaker at 5 V, were used.

Figure 4. PCB layout. The two-level shift converts the 1.8 V signal from SpiNNaker to the 3.3 V of
the Arduino Due board. On the right, the Arduino Due pinout allows the direct connection of the
board on the PCB. On the bottom left, two power regulators are used for the batteries connection.

The GPIOs of the Arduino operate at 3.3 V; the SpiNN-3 board port operates at 1.8 V.
Thus, level shifters are needed to perform conversions between 3.3 V and 1.8 V, and reverse.
TXS0108E chips are used on this PCB for that purpose, which provides 8-way bidirectional
level shifts. Therefore, two TXS0108E chips are adequate for 16 GPIO communications. The
maximum data rate of this chip is 110 Mbps, which will not be a limitation of the system
data rate. Table 1 shows the links between the SpiNNaker-J connector and the Arduino
Due ports, passing through the voltage regulators. In Figure 4, (right side) it is possible
to see the Arduino Due connection pins, where the MCU is connected directly to the IB.
Table 2 shows the GPIO connection between Arduino Due and the main components.

Table 1. SpiNNaker link with Arduino Due ports.

SpiNNaker Link 1 3 5 7 9 11 13 15 17
Arduino Due GND GND GND GND GND GND GND GND GND

SpiNNaker Link 2 4 6 8 10 12 14 16 18
Arduino Due 8 7 6 5 4 3 2 10 GND

SpiNNaker Link 19 21 23 25 27 29 31 33
Arduino Due 29 28 27 26 25 24 23 22

SpiNNaker Link 20 22 24 26 28 30 32 34
Arduino Due GND GND GND GND GND GND GND GND
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Table 2. Arduino Due link with others components.

Arduino Due Board

Pins N Pins Type Voltage Shifted to

SpiNNaker 2–8, 10, 22–29 16 Digital 3.3 V 1.8 V

Servo 39 (data), Vin, Gnd (power) 1 PWM 3.3 V n/a

Touch Sensor 13 (data), Vin, Gnd (power) 1 Digital 3.3 V n/a

DVS USB n/a Serial 5 V n/a

Power (batteries) Vin, Gnd 2 DC 15 V 9 V

3. Communication Protocol

In the previous sections, we described the system from the hardware point of view,
focusing on connecting the components (Figure 2). To permit the correct exchange of data
between SpiNNaker and the MCU, two different communication protocols were used: the
2-of-7 coding protocol and the 2-phase handshake protocol. For data coding and encoding,
a self-timed 2-of-7 coding protocol is used to transmit data in packet form so that the data
can be recognized by the SpiNNaker. The 2-phase handshake protocol is used to make sure
each packet is successfully transmitted and received by the receiver.

3.1. 2-of-7 Coding

In Spiking Neural Networks information is represented as a time-dependent sequence
of spikes, such as a sequence of bits transmitted on a channel. Different coding protocols
have been used in SNN each with some limitations. Conventional rate coding counts spikes
in fixed time windows to represent each information unit (i.e., encode one alphabet letter or
one number), resulting in a relatively slow technique. A faster coding solution is possible
with rank order coding, with whom it is possible to use shorter time windows to represent
more bits of information. For a real-time scenario, the delay must be as short as possible,
prioritizing the transmission time and sacrificing the amount of information that can be
represented [17]. N-of-M coding is a protocol that mirrors these properties, allowing a
parallel transmission of N bits to represent M bits of information. It is a Non-Return to
Zero (NRZ) protocol meaning that the voltage level is not reset to zero after each bit [18].
SpiNNaker uses a 2-of-7 coding protocol to communicate with external devices, where the
sender just needs to change the logical level of two wires during each symbol transfer. The
states of the other five wires are not changed [19]. In data transfer, there are a total of 17
symbols that can be conveyed, as shown in Table 3. These symbols are able to present 16
hexadecimal digits (from 0 to F) and an EOP sign (which means the end of packets).

Table 3. 2-of-7 coding. The table shows the changing bit to represent HEX numbers plus one extra
EOP signal.

Symbol 0 1 2 3 4 5 6 7 8 9 A B C D E F EOP

bit 1 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 1 5
bit 2 4 4 4 4 5 5 5 5 6 6 6 6 1 2 3 3 6

3.2. 2-Phase Handshake Protocol

In the 2-phase handshake protocol, the sender first transmits a symbol to the receiver,
then waits for the receiver to provide an acknowledgment signal. The receiver will send an
acknowledgment signal to the sender after receiving a symbol from the sender.

3.3. Encoding/Decoding Packets

After MCU receives the events from input sensors, MCU will encode the data into
packets and send them to SpiNNaker in real time. There are two types of SpiNNaker
packets of different sizes: 40 bits and 72 bits [16]. ‘EOP’ symbols are placed after each
packet to show that the transmission of that packet was completed. In comparison to the
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40-bit packet, the 72-bit packet contains a 32-bit extra payload. The 72-bit packets are also
called nearest neighbor (NN) packets; the 40-bits packets are also called multi-cast (MC)
packets. The header and packet data are included in both types of packets. The packet data
contains the spike information, while the header contains the packet’s specification. The
packet type is indicated by the last two bits in the header, where ‘01’ indicates NN packets
and ‘00’ indicates MC packets. The parity bit indicated is odd parity, which means that the
total number of 1s in the packet, excluding the EOP, is odd. The value of the parity bit is
determined after the rest of the packet bits are decided.

The packets are divided into hex numbers and sent in symbols with the 2-of-7 coding
protocol. After one packet is received, the hex number of each symbol will be transformed
into binary numbers (The SpiNNaker starts to read the packet from the end of the packet,
which means the order of the symbols in each part of the packet is reversed and the symbol
conversion between hex numbers and binary numbers is also reversed. For instance, the
SpiNNaker reading order of ‘C000’ is ‘000C’, where the hex number ‘C’ converted into
binary numbers is ‘0011’ instead of ‘1100’).

For packets sent from MCU to SpiNNaker, all the packets are MC packets, which have
the size of 40 bits. When the SpiNNaker communicates with an external device, the external
device is regarded as a virtual chip inside the system for the SpiNNaker. Thus, a virtual
routing key is needed (4 hex numbers sent in the second half of the packet data part).

4. Evaluation

The evaluation of the IB (Figure 5) starts with analyzing the communication data rate
between Arduino and SpiNNaker (both up-link and down-link). The tests are executed by
sending predefined data packets with a time interval of 15 ms.

4.1. Network Topology

For the purpose of this work, a simple neural network was configured (Figure 2 green
box). The number of inputs corresponds to the 8 possible positions of the input spikes
received from the DVS sensor. The output is composed of 8 neurons that reflect the input to
the output without using a learning rule to predict the final position of the target ball. The
integration of the touch signal with a learning rule is under consideration for future work.

4.2. Up-Link Data Rate

With a time interval between packets set to 1.5 ms and 0.15 ms, respectively, the
communication is able to operate successfully, but the SpiNNaker issues a warning that the
time interval between packets is too small. The speed of up-link communication exceeds
the processing speed of SNN hosted on SpiNNaker. The SpiNNaker receives 112 packets in
50 ms, which corresponds to 24.64 ksymbols/s or 12.32 kbytes/s.

4.3. Down-Link Data Rate

When the Arduino sends the predefined packets to SpiNNaker at maximum speed,
the Arduino receives all the predefined packets from SpiNNaker. Thus, the downlink data
rate should be equal to or larger than the up-link data rate. The data rate of the whole
system is limited by the up-link data rate, which is 24.64 ksymbols/s.

4.4. Accuracy

The accuracy of the ‘robotic goalie’ blocking the balls heavily depends on the SNN
which runs on SpiNNaker and the speed of approaching balls. To compute the accuracy of
our prototype, we take into account the number of saved balls over the total number of
launches. The experiment consists of 100 ping-pong balls launched from approximately 1
m with various speeds and directions. When the speed of the approaching ball is relatively
low (up to approximately 1 m/s), the ‘robotic goalie’ can intercept the ball with a 75%
success rate. As the ball speed increases, the accuracy of the system gradually decreases.
For the balls with fast speed, The robotic system can not maneuver the goalie to the right
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location prior to the balls arriving. The reason is that the SNN used in this project has not
been taught to anticipate the track of balls on the basis of their movement at the early stages
of their approach to the goal.

4.5. Latency

The response latency in the prototype is the time it takes for the DVS to catch the ball’s
movement and the servo motor to move to the desired location. The minimum time step
in DVS is 1 µs. As a result, DVS needs at least 1 µs to produce an event and another 1 µs
to communicate the event. Then, the MCU keeps receiving these events (via the serial
port) and encodes them into packets every 500 µs. The next relevant parameter is the
communication speed between the MCU and SpiNNaker. Sending a packet to SpiNNaker
takes 1

2240 s ≈ 0.45 ms and receiving a packet by the MCU takes 0.45 ms. This is longer than
the time it takes for DVS to capture an event and for the MCU to receive it. Furthermore,
for every 1 µs, the MCU verifies the condition of all processes. As a consequence, events
are received, packets are sent or received, instructions are generated, and commands are
executed in parallel. The MCU sends the second converted event to SpiNNaker at the same
time it receives the first packet from SpiNNaker. The simulation on the SpiNNaker runs
with 1 ms time step. Thus, the minimum time for the SpiNNaker processing data is 1 ms.
Furthermore, the packets are queued and the commands are created using the most recent
Npac received packets, and the uplink and downlink speeds are virtually identical. As a
result, the time spent on operations prior to generating servo control commands (tcommand)
is the sum of DVS events, communication to MCU, encoding time, time to communicate to
SpiNNaker, processing and time to send back the response to the MCU with Npac packets:

tcommand =(0.001 ms + 0.001 ms) · Nevents + 0.032 ms+

0.5 ms +
1

2240
s + 1 ms + Npac ·

1
2240

s

For Nevents = 100 and Npac = 20, we theoretically estimate this time to be approxi-
mately 11 ms. If the number of events needed to create an output from the SNN running
on SpiNNaker is increased to Nevents = 1000, the latency will increase only to 13 ms. This
we compare with the latency of the executive organ, such as a servo motor. For example,
in our robogoalie demonstrator [20] (Figure 6) we use a Futaba digital motor, which has
a speed of 60° of angular rotation in 75 ms. Therefore the whole system was reasonably
successful (about 85% of the time) in intercepting the ball, with speeds of up to 1 m/s.

Figure 5. Hardware components installed together. The image shows the connection of the SpiN-
Naker board at the bottom of the IB and the Arduino Due board on the top, resulting in a compact
and portable system.
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Figure 6. A complete demo setup for the Interface Board, demonstrating a robot goalkeeper [20]. The
DVS camera was connected to a PC for data monitoring and the data was forwarded to the Arduino
Due board. A video demonstration is available at https://youtu.be/0UqKsB0lQr8 (accessed on 21
October 2022).

5. Discussion

The aim of our work was to implement a compact Interface Board Platform to allow
communication between an MCU and a SpiNNaker board. We used an Arduino Due
board to manage the communication between the various peripheral hardware and the
SpiNNaker board, adapting the signal with two voltage level shifters.

The test environment is represented by the goalkeeper task, where a robotic arm
intercepts an incoming ball moving toward the horizontal axis. To “see” the target object, a
Dynamic Video Sensor camera was used, exploiting its fast, non-redundant information
transmission and low power consumption. However, there is no learning rule that allows
the prediction of the final position of the ball (it is under consideration for future works).
This lack of the SNN model limits the tests to specific environmental conditions (e.g.,
light, noise). In fact, a learning rule can work in different conditions, enabling a dynamic
adaptation to many conditions. The current implementation of the system considers the
horizontal axis only, resulting in a failure interception when a bouncing ball is thrown
toward the goal. This is not a limitation because is out of the aim of this work but, it is
possible to consider the installation of a two-axis actuator to block the target in the 2D space.

Although there are some limitations in our system for the goalkeeper task, it is possible
to find different strong points. Looking at the reaction time, our Interface Board consumes
only 13 ms for 1000 events (considering that the DVS have a resolution of 128 × 128 [21] or
16,384 pixels, 1000 events is reasonable for the tests) to actuate the decision, showing the
fast communication between the components. Then, considering that the whole system
works with usual batteries, the low power consumption, and its portability are the features
that differ from other similar works, breaking down considerably their consumption.
Table 4 provides a comparison of our prototype with other neuromorphic projects, tested
on the same task or with potential experimentation in solving our similar problem. The
main difference, excluding the motors used and weight and only considering the power
computation devices, is the power consumption. It is clear how the fast communication
of our Interface Board in combination with neuromorphic hardware, completely reduces
energy consumption.

https://youtu.be/0UqKsB0lQr8


Chips 2023, 2 28

Table 4. Comparison of our Interface Board with neuromorphic robotic platforms.

Name Description Vision Sensor Power Consumption Positioning Time Accuracy

Quadrupedal Robotic
Goalkeeper [22]

The Intel camera is used to
track the target ball and send
the prediction to the Mini
Cheetah. A GPU is used to
train the model using the
YOLO algorithm.

Intel RealSense D435i
120 W/h
(Mini Cheetah max)
[23]

0.5 s/4 m field
(sidestep)
∼65% (full)
∼85%

iCub v1.0/v2.0 (Intel
ATOM D525) [24]

Humanoid robot with an
embedded pc. It is composed
of different actuators to
simulate human motions.

PointGrey Dragonfly
v2 (640 × 480 30 fps)

288 W/h
(960 W/h peak) n/a n/a

Fetch (and Freight)
(Intel i5, Haswell) [25]

Fetch robot is a mobile
manipulator to catch and
move objects (until 6 kg)

Primesense Carmine
1.09

20 W/h
(36 W/h peak) n/a n/a

spiNNaLink (this work)

Interface Board Platform to
link an MCU with a
SpiNNaker board. A DVS
camera is used to reveal the
ball direction, maintaining a
low information rate and low
power consumption.

Dynamic Vision
Sensor 128

∼7 W/h (Whole
system max) 0.150 s/1 m field 75%

6. Conclusions

In this paper, we build spiNNaLink, an Interface Board to link a SpiNN-3 board with an
MCU, allowing the usage of multiple input sensors and output actuators. The implemented
PCB board works with a set of 1.5V AA rechargeable batteries making it small and portable
(Figures 5 and 6). The Arduino Due is utilized to perform communication protocols and
data conversion between devices. The use of a specific MCU is not a limitation and it is
related only to this particular version of the Interface Board. In fact, considering that the
level shifters can work between 1.65 V to 5.50 V and that it is possible to use port extender
chips to increase the GPIO ports, future versions of the Interface Board could be used with
different MCUs. Furthermore, to overcome the lack of a USB host port, it is possible to
consider eDVS cameras communicating directly using the Serial port. The power supply
for the entire system, including Arduino and SpiNNaker, is also provided by the interface
board. Our tests show that the board allows fast communication link from input sensors
(DVS) to the output channel (motor), resulting in a delay of ∼11 ms. The interception
accuracy is sensible to the ball speed and direction, due to the simple SNN developed
without learning rule. This is because the main purpose of the project was related to the
hardware link and the Interface Board. This limit can be treated in future research where
the network can be trained to predict the final position of the ball and, additionally, a
reward feedback signal can enable self-learning in this task.

The most relevant feature of our prototype is the very low power consumption that
compared with similar, or task-related, neuromorphic robots, breaks down completely the
consumptions, maintaining a high computational power even with the usage of batteries.
Moreover, projecting us into a future scenario where more components will compose
a more complex system, it is easy to imagine how the usage of extremely low power
consumption hardware can permit the development of bio-inspired, autonomous and
energy-independent devices.
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Abbreviations
The following abbreviations are used in this manuscript:

ACK Acknowledge Packet
ARM Advanced RISC Machine Processor
ATP Advanced Processor Technologies Research Group
CPLD Complex Programmable Logic Device
DAC Digital-to-Analog Converter
DC Direct Current
DVS Dynamic Video Sensor
EOP End of Procedure
FPGA Field Programmable Gate Arrays
GPIO General Purpose Input Output
IB Interface Board
MC Multi Cast
MCU Micro Controller Unit
NN Nearest Neighbour
NRZ Non Return to Zero
PCB Printed Circuit Board
SNN Spiking Neural Network
UART Universal Asynchronous Receiver-Transmitter
USB Universal Serial BUS
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