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A B S T R A C T   

Artificial Intelligence (AI) is increasingly impacting the healthcare field, due to its computational power that 
reduces time, cost and efforts for both healthcare professionals and patients. Diagnosing cardiac abnormalities 
using AI represents a very attractive subject for both medical and technical professionals. Cardiac abnormalities 
are characterized by the ECG signal, which is known by its variable morphology and intense affection by noises 
and artifacts. In this context, the presented study aims to propose a simple yet efficient version of Convolutional 
Neural Networks (CNN) to classify those abnormalities. This version increases the ability to detect several heart 
rate arrhythmias and severe cardiac abnormalities based only on the original 1D format of the ECG signal, which 
reserve the main feature of this signal and can be very suitable for ready-to-use and real-time applications. The 
main used training datasets are the MIT-BIH arrhythmias and the PTB databases. The proposed architectures are 
mainly inspired by the most recent CNN models and introduce several modifications on functions and layers, 
such as the use of the Leaky-ReLU instead of the ReLU activation function. The results of the proposed model are 
varying from an accuracy of 97%–99% in classifying Normal (n), Supraventricular (s), Ventricular (v), Fusion of 
ventricular and normal (f), and noisy (q) beats, in addition to the Myocardial Infarction (MI) case. A continuous 
performance was achieved while testing the model on real data, and after its migration to real mobile devices.   

1. Introduction 

The numbers of cardiovascular diseases are increasing significantly 
[1,2]. The presence of this kind of diseases can increase the likelihood of 
other types of both chronic and communicable diseases [3,4]. Patients 
suffering from cardiac arrhythmias are more likely to be assisted 
permanently to avoid any dangerous complications [3-5]. On the other 
hand, intense advancements in technology are evolving every day 
[6-10], trying to handle critical situations that need immediate inter-
vention, such as Myocardial Infarction (MI) [11-13]. This later is sym-
bolized by a heart attack that can lead to a sudden death [14]. In its turn, 
AI is offering one of the most promising paths to create efficient solu-
tions that may help chronic patients handle their cardiac abnormalities 
on a daily basis [15-17]. The Electrocardiograph (ECG) signal is a very 
important criterion for the diagnosis and the detection of cardiac ab-
normalities [14,18,19,20,21]. For that, classifying ECG data symbolizes 
a revolution in specialized medical services [18-24]. The idea of clas-
sifying the ECG is not very recent. For a long time, many studies have 
been devoted to introduce new methods, combine existing methods, and 

propose new scientific approaches [11,12,13,15,16,17,18,19,20,21,22, 
23]. 

The research in this domain is very broad; ranging from older 
mathematical methods, such as Fourier transforms, passing by the use of 
wavelets, and ending with the use of Machine Learning (ML) techniques 
and Deep Learning (DL) algorithms [15-36]. In 2015, Montano et al. 
[28] introduced a Neural Network (NN) composed of three layers. The 
layers were constructed of 12, 13, and 5 neurons, respectively. The 
dataset was trained using the “Levenberg Marquardt (MLA)"algorithm, 
while an accuracy of 98,67% was obtained. Another study was proposed 
in 2016 by Cruz et al. [29]. This study introduced two principal tech-
niques, “Adaptive Neuro-Fuzzy Inference System (ANFIS)" and “Support 
Vector Machine (SVM)" coupled with “Mother Wavelet Daubechies 
(MWD)" method. The second technique was more efficient than the first 
one, with 95% accuracy compared to 85%, respectively. Zihlmann et al. 
[30] used two architectures of DL based on “Convolutional Neural 
Networks (CNN)" and “Convolutional Recurrent Neural Network 
(CRNN)", respectively. The CRNN was barely more accurate than the 
CNN, with 82.3% for the first compared to 81.2%. In 2018, Li et al. [31] 
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and Zhai et al. [32] developed a new approach to handle the ECG signal, 
based on its transformation to a 2D format. This approach was followed 
to make the ECG data more adaptive to the morphology of CNN, 
regarding the good performances of this later on 2D images were used 
rather than 1D signals. Although, this method can neglect an important 
number of ECG features while transforming it to images. Following the 
same path, Li et al. used the “One-Hot Encoding” to obtain the 2D data, 
while Zhai et al. coupled the signals to a 2D matrix. The first approach 
attained an accuracy of 97% compared to 98.60% for the second one. In 
the same year, Savalia et al. [33] used the “Multi-Layer Perceptron 
(MLP)" in addition to the CNN, which gave an accuracy of 88.7%. In 
2019, Ji et al. [34] used the “Short-Time Fourier Transform (STFT)" to 
represent the ECG signal on its frequency domain. This method was very 
efficient with an accuracy of 99%. Following the same path, Huang et al. 
[35] confirmed the high performances of the STFT transformation 
coupled with CNN models compared to 1D-CNN models without 
preprocessing. 

In this same context, the main contributions of the proposed research 
can be resumed as follows:  

• The introduction of a simple 1D-CNN model that suits directly the 
original 1D ECG format, which can avoid losing indicative features of 
this later.  

• The deployment of two databases with the same model to include a 
larger number of cardiac abnormalities ranging from heart rate ar-
rhythmias to MI.  

• The use of several preprocessing steps to regularize the amount of 
data in each targeted class, to avoid the bias and the over-fitting 
effects.  

• The choice of the most suitable structure, layers, parameters and 
functions, that can produce a highly performing model.  

• The use of the most efficient tools and libraries to produce a simple, 
light and portable model, that can be easily exported to mobile 
environments. 

This paper introduces firstly the global methodology of the proposed 
study. The next section is dedicated to the implementation process, 
where the paper describes the characteristics of the main used datasets, 
the steps followed to prepare this data and the architecture of the pro-
posed model. It shows in the results section the significant achievements 
of this model, compared to the most relevant solution in the literature. 
Finally, this article resumes the presented work and introduces some of 
the related perspectives. 

2. Methodology 

In AI, the quality of data is crucial [36,37]. The used database must 
be as clear as possible to give the machine all the essential information 
for the generation of a good classification or prediction model. For this, 
filtering, preprocessing and also augmentation steps can be put in place 
before triggering the ML procedure. In addition, this data must include 
the greatest possible number of cases characterizing a class or a cate-
gory, since the amount of data in addition to its quality can remarkably 
increase the performance of the generated model. The amount of 
available data must remain the same for every treated class or category. 
This later criterion is very important to avoid any biased result [37,38]. 
For that and basing on the massive literature reviews and reproduction 
of the available solutions, the implementation of presented work follows 
the procedure described in Fig. 1. It starts with several steps of visuali-
zation, preprocessing, filtering, segmentation and data augmentation. It 
continues by feeding the training dataset to the proposed model, vali-
dating this later and testing it to choose the most adequate functions and 
parameters. After obtaining the optimal model, the procedure ends up 
with exporting the model to the mobile environment. All the mentioned 
steps were executed after collecting suggestions, requirements and 
medical explanations from several conducted interviews with a 

cardiologist. This workflow will be detailed during the next section. 

3. Implementation 

To cover a good number of cardiac abnormalities, the Implementa-
tion was processed on two main databases “MIT-BIH Arrhythmia Data-
base” and the “PTB database”, as mentioned in Fig. 2. The preprocessing 
section is composed of some steps of annotation, manipulation and 
visualization. It is followed by the detection of the most indicative fea-
tures of the ECG. Data augmentation techniques are affected just before 
splitting the data into the train and the validation datasets. The model’s 
architecture is then implemented to proceed on the classification, the 
visualization of the results and the improvement of the final model. The 
testing of the improved model is finally affected on new data. Once the 
optimal model is achieved, a last step of exporting is executed, to add it 
to a simple mobile application to showcase its mobility feature. Fig. 2 
resumes all the above steps, which are detailed, one by one in the 
following sections. 

3.1. Experimental data 

The ECG data used in this study belongs to the famous “MIT-BIH 
Arrhythmia Database”. This database contains recordings of the two- 
channel ambulatory ECG signals from 47 people [39]. The 47 subjects 
include a mixed population of inpatients and outpatients, with 60% and 
40% of the recordings, respectively. The signals were digitized in 360 
samples per second for each channel. The total number of annotations 
(explanatory symbols for signals, such as the N annotation for the 
normal signal) is 110,000 annotations. This database contains 

Fig. 1. Global methodology of the presented study.  
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recordings of 1440 min in total. The MIT-BIH database remains the most 
famous ECG database, given its frequent scientific use. It represents the 
classes of normal ECG (which do not represent any abnormalities), 
premature contractions (arterial and ventricular), bundle branch block 
(right and left) and signal at an accelerated rate. 

Another database integrated into this work is called “PTB-DB”. This 
database contains archives of ECG signals from 290 of mixed population, 
aged 17 to 87, with a rate of 1–5 recordings per person [40]. The re-
cordings include the conventional 12 leads ECG along with the 3 Frank 
lead ECG. The studied classes can be summarized into two main classes 
representing the signals of healthy people and those of people with a 
variety of coronary heart disease such as Myocardial Infarction (the 
partial death of cells of the heart muscle, commonly known as heart 
attack [14]). 

3.2. MIT-BIH data preprocessing 

The very first step is to load the data needed to train the classification 
model. This loading is done directly from the selected databases and 
using the data manipulation tools offered by the Waveform Database 
(WFDB) library [41]. Since the first database is the one named MIT-BIH, 
loading the data highlights the five classes of the ECG signal it contains 
as described in Fig. 3. The classes are symbolized by the numbers from 
0 to 4 and ordered according to their amount of data, decreasingly. 

To fully understand and analyze this database, we have established 
some graphical presentations using programming tools and libraries 
such as Pandas and Numpy, to illustrate the subdivision of data ac-
cording to these classes as shown in Fig. 4. The normal (n) signals in red 
take the majority with a percentage of 82.8%. The second class in green 
is called (q), it groups together random and noisy signals. The class 
known as (v) is that which represents rapid and abnormal ventricular 

contractions at the ventricles (visible on the “QRS” complexes of the 
ECG [42]), while (s) is the class which symbolizes anomalies on 
supra-ventricular contractions (between ventricles and atria). This later 
represents cardiac arrhythmias such as Tachycardia (elevated heart rate 
[43]). The last class (f) represents signals forming a fusion of normal and 
ventricular signals. 

Illustrations of these classes are plotted for visualization in Fig. 5. 
The heterogeneity of this database requires data augmentation and 
preprocessing to avoid any biased decisions. The data augmentation step 
will regularize the amount of data in each class to be equal. This step is 
only possible after detecting the QRS complex in the ECG signals, 
segment the signals according to this complex and augmenting them 
where necessary. The QRS detection is detailed in the next section. 

3.2.1. QRS complex detection 
The QRS complex represents one of the most important character-

istics of the ECG, which is the peak or the highest value of this signal. 
This complex is essential for the detection of a large number of cardiac 
abnormalities [44]. The chosen method for this detection was intro-
duced in a recent scientific study by Jun et al. [45]. The choice of this 
method resides mainly on the good performances of its approach, in 
addition to the ease of its integration thanks to its segmentation function 
directly included in the Biosppy library [44,46]. The sampling frequency 
used is 1000 Hz. The results of this method are illustrated in Fig. 6. 

Fig. 2. A detailed architecture of the implementation process.  

Fig. 3. MIT-BIH data format and size.  

Fig. 4. The repartition of the five classes presented in the MIT-BIH database 
before preprocessing. 
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Another simpler approach consists in directly using the function called 
“gqrs_detect” proposed by the WFDB library. The results of this detection 
method are very favorable as shown in Fig. 7 and Fig. 8. This step is 
essential to segment the signals according to the detected QRS complex 
and prepare them for the next step, which is data augmentation. 

3.2.2. Data augmentation 
This step consists of using an encoding method called “One-hot 

Encoder”. This method is based on the principle of transforming all the 
values of the database into vectors of size “188′′ bits. These vectors 
consist of “0′′ and a single “1". The location of the “1′′ differentiates each 
vector from the others [31]. 

3.2.3. Data subdivision 
A subdivision of the whole data into two groups is then implemented. 

The first group represents the training dataset. This later is used to train 
the machine with a percentage of more than 96% of the initial data. 
About 4% of this training dataset is used for cross-validation. The second 
group is used to test the designed model with a percentage of about 4% 
of the initial data. 

3.3. PTB-DB data preprocessing 

The second database contains a similar format to the first one with 
less data as shown in Fig. 9. It is composed of two main classes which are 
signals for normal persons and signals presenting MI arrhythmia as 

Fig. 5. Visualization of the five classes of the MIT-BIH database before preprocessing. (a) Samples of the Normal class “n". (b) Samples of the Supraventricular ectopic 
class “s".(c) Samples of the Ventricular ectopic class “v". (d) Samples of the Fusion of ventricular and normal class “f". (e) Samples of paced, noisy and unknown 
beats “q". 

Fig. 6. QRS complex detection using the Biosppy library.  
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visualized in Fig. 10. The next steps of preprocessing and data 
augmentation remain the same for this database as the first one. 

3.4. Model implementation on MIT-BIH dataset 

The declaration of the main architecture of this model is made by 
designating the number as well as the type of layers used in Fig. 11. The 
1D-CNN model is inspired by the study of Kachuee et al. [47], with 
several changes on functions and layers. It is composed of an initial 
convolution layer, then a block of another convolution layer and a 
“Leaky-ReLU” activation function. This particular function assigns a 
variant for negative values such that neurons never time out [48-50], as 
mentioned in (1). Unlike the “ReLU” function used in Kachuee et al. 

model, which forces the negative values to 0 [47,48], as described in (2). 

f (x)= [1 ∗ (x< 0) ∗ αx] + [1 ∗ (x≥ 0) ∗ x] (1)  

where α is a small constant. 

f (x)=max (0, x) (2) 

This block is also composed of another convolution layer, addition 
layer, an activation layer and a last layer of “Max pooling”. This main 
block is repeated 5 times. Towards the end, a layer of “Flatten”, another 
of “Dense”, an activation layer in addition to two other layers of “Dense” 
and a last of “Softmax” are added. Table 1 describes this architecture in a 
more detailed way, mentioning the shape of the input data in each level 
and the number of parameters. 

3.5. Model implementation on PTB-DB dataset 

The classification model deployed for this database is the same 1D- 

Fig. 7. Notebook output after the QRS detection in numbers using the 
WFDB library. 

Fig. 8. Visualization of the QRS detection using the WFDB library.  

Fig. 9. PTB-DB data format and size.  

Fig. 10. Visualization of the two classes of the PTB-DB database before preprocessing. (a) Samples of the normal class. (b) Samples of the MI class.  

Fig. 11. Architecture of the proposed 1D-CNN model.  
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CNN model used previously, with only one small change in the activa-
tion function which is replaced by the famous “ReLU” function for this 
case, regarding the small amount of data in the PTB-DB dataset, which is 
not affected by the dying effect of the “ReLU” function. The learning of 
this model is carried out over 30 epochs. 

3.6. Evaluation metrics 

The achieved performance of the proposed models was measured 
using the “Accuracy” and the “Loss” indicators, represented in (3) and 
(4), respectively. While True Positive (TP) refers to the abnormalities 
correctly detected, True Negative (TN) represents the normal cases 
correctly detected, False Positive (FP) refers to the normal cases wrongly 
detected as abnormalities, and False Negative (FN) represents the ab-
normalities wrongly detected as normal cases. The Loss function was 
based on the Binary Cross-entropy function as detailed in (4). 

Accuracy=
TP + TN

TP + TN + FP + FN
(3)  

Loss(Xi, Yi)=
∑c

j=1
yij ∗ log

(
pij
)

(4)  

Where Yi is one-hot encoded target vector (yi1,yi2,…..yic) and Pij = f(Xi)

is the probability that the ith element is in class j 

Table 1 
A detailed architecture of the proposed 1D-CNN model.  

Layer (type) Output Shape Param # Connected to 

input_1 (InputLayer (None, 187, 
1) 

0  

conv1d_1 (Conv1D) (None, 183, 
32) 

192 input_1[0][0] 

conv1d_2 (Conv1D) (None, 183, 
32) 

5152 conv1d_1[0][0] 

leaky_re_lu_1 (LeakyReLU) (None, 183, 
32) 

0 conv1d_2[0][0] 

conv1d_3 (Conv1D) (None, 183, 
32) 

5152 leaky_re_lu_1[0][0] 

add_1 (Add) (None, 183, 
32) 

0 conv1d_3[0][0] 

conv1d_1[0][0] 
activation_1 (Activation) (None, 183, 

32) 0 
add_1[0] 
[0]  

max_pooling1d_1 
(MaxPooling1D) 

(None, 90, 
32) 

0 activation_1[0][0] 

conv1d_4 (Conv1D) (None, 90, 
32) 

5152 max_pooling1d_1[0] 
[0] 

leaky_re_lu_2 (LeakyReLU) (None, 90, 
32) 

0 conv1d_4[0][0] 

conv1d_5 (Conv1D) (None, 90, 
32) 

5152 leaky_re_lu_2[0][0] 

add_2 (Add) (None, 90, 
32) 

0 conv1d_5[0][0] 

max_pooling1d_1[0][0] 
activation_2 (Activation) (None, 90, 

32) 
0 add_2[0][0] 

max_pooling1d_2 
(MaxPooling1D) 

(None, 43, 
32) 

0 activation_2[0][0] 

conv1d_6 (Conv1D) (None, 43, 
32) 

5152 max_pooling1d_2[0] 
[0] 

leaky_re_lu_3 (LeakyReLU) (None, 43, 
32) 

0 conv1d_6[0][0] 

conv1d_7 (Conv1D) (None, 43, 
32) 

5152 leaky_re_lu_3[0][0] 

add_3 (Add) (None, 43, 
32) 

0 conv1d_7[0][0] 

max_pooling1d_2[0][0] 
activation_3 (Activation) (None, 43, 

32) 
0 add_3[0][0] 

max_pooling1d_3 
(MaxPooling1D) 

(None, 20, 
32) 

0 activation_3[0][0] 

conv1d_8 (Conv1D) (None, 20, 
32) 

5152 max_pooling1d_3[0] 
[0] 

leaky_re_lu_4 (LeakyReLU) (None, 20, 
32) 

0 conv1d_8[0][0] 

conv1d_9 (Conv1D) (None, 20, 
32) 

5152 leaky_re_lu_4[0][0] 

add_4 (Add) (None, 20, 
32) 

0 conv1d_9[0][0] 

max_pooling1d_3[0][0] 
activation_4 (Activation) (None, 20, 

32) 
0 add_4[0][0] 

max_pooling1d_4 
(MaxPooling1D) 

(None, 8, 32) 0 activation_4[0][0] 

conv1d_10 (Conv1D) (None, 8, 32) 5152 max_pooling1d_4[0] 
[0] 

leaky_re_lu_5 (LeakyReLU) (None, 8, 32) 0 conv1d_10[0][0] 
conv1d_11 (Conv1D) (None, 8, 32) 5152 leaky_re_lu_5[0][0] 
add_5 (Add) (None, 8, 32) 0 conv1d_11[0][0] 
max_pooling1d_4[0][0] 
activation_5 (Activation) (None, 8, 32) 0 add_5[0][0] 
max_pooling1d_5 

(MaxPooling1D) 
(None, 2, 32) 0 activation_5[0][0] 

flatten_1 (Flatten) (None, 64) 0 max_pooling1d_5[0] 
[0] 

dense_1 (Dense) (None, 32) 2080 flatten_1[0][0] 
activation_6 (Activation) (None, 32) 0 dense_1[0][0] 
dense_2 (Dense) (None, 32) 1056 activation_6[0][0] 
dense_3 (Dense) (None, 5) 165 dense_2[0][0] 
softmax_1 (Softmax) (None, 5) 0 dense_3[0][0]  

Table 2 
Results of the kachuee et al. model on MIT-BIH dataset.  

Class precision recall f1-score support 

0 0.82 0.99 0.90 800 
1 1.00 0.84 0.91 800 
2 0.90 0.96 0.93 800 
3 0.99 0.87 0.93 800 
4 0.99 0.99 0.93 800 

accuracy   0.93 4000 
macro avg 0.94 0 .93 0.93 4000 
weighted avg 0.94 0.93 0.93 4000 

ranking-based average precision: 0.964 
Ranking loss: 0.020 
Coverage_error: 1.082  

Table 3 
Results of the proposed 1D-CNN model on MIT-BIH test dataset.  

Class precision recall f1-score support 

0 0.84 1.00 0.91 800 
1 1.00 0.86 0.92 800 
2 0.93 0.96 0.94 800 
3 0.99 0.92 0.95 800 
4 0.99 0.99 0.99 800 

accuracy   0.94 4000 
macro avg 0.95 0.94 0.94 4000 
weighted avg 0.95 0.94 0.94 4000 

ranking-based average precision: 0.971 
Ranking loss: 0.017 
Coverage_error: 1.068  

Table 4 
Results of the proposed 1D-CNN model on PTB-DB test dataset.  

Class precision recall f1-score support 

0.0 0.99 0.97 0.98 634 
1.0 0.99 1.00 0.99 1549 
accuracy   0.99 2183 

macro avg 0.99 0.98 0.99 2183 
weighted avg 0.99 0.99 0.99 2183  
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The performance indicators were not limited to the accuracy and the 
loss rates. Three other indicators were added, referring to the “Preci-
sion”, the “Recall” and the “F1-score”, represented in (5), (6) and (7), 
respectively. 

Precision=
TP

(TP + FP)
(5)  

Recall=
TP

(TP + FN)
(6)  

F1 − score =
2TP

2TP + FP + FN
(7)  

3.7. Model exportation 

After improving the model and validating it, the last step of the 
presented study consists of its migration to a simple mobile application. 
The proposed 1D-CNN model was primarily implemented using “Keras " 
[51] and TensorFlow [52] libraries, in order to facilitate its exportation. 
This later requires firstly the conversion of the model to a TensorFlow 
Lite (.tflite) format and then its integration to the mobile application 
environment. For our case, the mobile application was developed in 
Android Studio [53] environment, to be used on Android devices. 
Although, the integration of the tflite version of the 1D-CNN model is 
also possible for a wide range of devices and environments. 

4. Results 

The proposed 1D-CNN model trained on MIT-BIH database produces 
very good results in terms of accuracy and loss rate as seen in Fig. 12 and 
Fig. 13, during its training over a number of 75 epochs and its validation 
by the rest of the non-labeled data (4% of the training dataset). 

The overall accuracy and loss performance results produced by the 
proposed 1D-CNN model on the PTB-DB dataset are by far very advan-
tageous, approaching to 99% and 0%, respectively as shown in Fig. 14 
and Fig. 15. Against an accuracy of only 95.9% of the Kachuee et al. 
model. 

The results shown in Tables 2, 3 and 4 have proven the high per-
formance of the presented approach during the testing phase. The error 
and loss rates are also reduced in this approach. The confusion matrix in 
Fig. 16 illustrates in more details the performances according to each 
class of the MIT-BIH database. 

The proposed 1D-CNN model on MIT-BIH test dataset achieved an 
average of precision of 97%, of recall and F1-score of 94%, while it 
achieved an average of 99% for all the three indicators on the PTB-DB 
test dataset, against an average of just 96% of precision and 93% of 
recall and F1-score for the Kachuee et al. model. 

These results present a higher performance compared to the most 
recent studies in this field, namely the study presented by Niu et al. [54]. 

The performance of the 1D-CNN remains the same after its migration 
to the mobile environment. It proved its capacity to classify different Fig. 12. Accuracy of the 1D-CNN model on MIT-BIH dataset.  

Fig. 13. Loss of the 1D-CNN model on MIT-BIH dataset.  

Fig. 14. Accuracy of the 1D-CNN model on PTB-DB dataset.  

Fig. 15. Loss of the 1D-CNN model on PTB-DB dataset.  
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cases as shown in Fig. 17 and Fig. 18, based on new testing data. This 
later was introduced to the mobile model in a format of stocked files on 
the device, only for testing purposes. In the future, the model can be 
successfully integrated in a more complex application to classify real- 
time ECG data coming from medical sensors. The size of the exported 
1D-CNN model equals to only 468 KB. 

5. Discussion 

The main particularity of the proposed 1D-CNN model resides on its 
simplicity, which make it directly suitable for the ECG data format 
instead of changing this format to make it more adaptive to the CNN 
nature. This aims to reserve the original ECG format, which automati-
cally reserves its features and most indicative parts. Unlike the most 
advanced research following the 2D and the 3D trends which neglect the 
negative effect of these transformations on the ECG valuable data. 

This particularity lies also on the use of the activation function 
named Leaky-ReLU, unlike the basic model and most scientific works 
that use the ReLU function. The main point of difference between these 
two approaches is that neurons do not die in our case. It is because of the 
Leaky-ReLU effect which assigns a variant to negative values to reserve 
the neurons and in consequence the valuable data. Unlike the ReLU 
function which gives a 0 to these values, kills the neurons, and may 
neglect some of the valuable data. This later can significantly affect the 
learning process for large amounts of data. Although, it is not very 
harmful for small datasets. 

The preprocessing carried out on the original data, included the 
segmentation and the data augmentation to normalize the amount of 
data in each class, in addition to the Dense layers also improved these 
results, thanks to their effect of regularization on the output in each level 
to avoid the over-fitting effect and any biased decision. 

The 1D-CNN model has also proven to be particularly effective on 
test dataset (new and non-labeled data), and after exportation to the 
mobile environment. 

However, the proposed 1D-CNN model needs to be tested on much 
more ECG data, collected continuously and in real-time to evaluate its 
time consumption and ability to carry out real ECG data, which can 

Fig. 16. Confusion matrix of the proposed 1D-CNN model on MIT-BIH dataset.  

Fig. 17. Examples of the ECG classification results on a simple mobile application. (a) The application before classification. (b) The detection of Ventricular ectopic 
class. (c) The detection of a Fusion of ventricular and normal class. (d) The detection of paced, noisy and unknown beats. 
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change continuously during the day. These types of tests can be con-
ducted in future works using wearable ECG sensors. 

6. Conclusion 

Selecting CNN networks to classify ECG signals is a challenge in the 
truest sense of the word, since this type of neural networks was designed 
especially to classify images with two-dimensional values, unlike the 
ECG signal. For that, the current trend is to transform the ECG signal to 
2D and even 3D images, to make it more suitable for CNNs. Despite this 
trend, the presented study proved that it is possible and even more 
effective to deploy a simple 1D-CNN model. This later can be easier to 
deploy and does not require the transformation of the ECG signal, which 
may affect its main features. 

The quality of the chosen data, the steps of preprocessing, filtering 
and augmentation, in addition to the choice of the activation function, 
the number and the type of layers play a major role in improving the 
overall performance of the classification model. These methods have 
given rise to algorithms for high-quality classification, which are able to 
detect ECG abnormalities with a very high precision, recall and accu-
racy. This performance remained the same when tested on new and non- 
labeled data. 

The presented work is open to be improved to handle more cardiac 
abnormalities because of its ability to automatically learn the features 
basing on the provided dataset. While the quality of this model can be 
enhanced by merging available datasets or creating a larger one. 
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[8] Bote-Curiel L, Muñoz-Romero S, Gerrero-Curieses A, Rojo-Álvarez JL. Deep 
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