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Abstract: Epilepsy is a common brain disorder that causes patients to face multiple seizures in
a single day. Around 65 million people are affected by epilepsy worldwide. Patients with focal
epilepsy can be treated with surgery, whereas generalized epileptic seizures can be managed with
medications. It has been noted that in more than 30% of cases, these medications fail to control
epileptic seizures, resulting in accidents and limiting the patient’s life. Predicting epileptic seizures in
such patients prior to the commencement of an oncoming seizure is critical so that the seizure can be
treated with preventive medicines before it occurs. Electroencephalogram (EEG) signals of patients
recorded to observe brain electrical activity during a seizure can be quite helpful in predicting seizures.
Researchers have proposed methods that use machine and/or deep learning techniques to predict
epileptic seizures using scalp EEG signals; however, prediction of seizures with increased accuracy
is still a challenge. Therefore, we propose a three-step approach. It includes preprocessing of scalp
EEG signals with PREP pipeline, which is a more sophisticated alternative to basic notch filtering.
This method uses a regression-based technique to further enhance the SNR, with a combination of
handcrafted, i.e., statistical features such as temporal mean, variance, and skewness, and automated
features using CNN, followed by classification of interictal state and preictal state segments using
LSTM to predict seizures. We train and validate our proposed technique on the CHB-MIT scalp
EEG dataset and achieve accuracy of 94%, sensitivity of 93.8% , and 91.2% specificity. The proposed
technique achieves better sensitivity and specificity than existing methods.

Keywords: epilepsy prediction; electroencephalogram; deep learning; preictal state; postictal state

1. Introduction

Patients experience seizures in epilepsy due to disruption in the functionality of
neurons inside the brain. Around 65 million people worldwide are affected by epilepsy [1].
Conventional methods to treat epilepsy patients are through medication and surgery;
however, successive seizures cannot be controlled using existing treatments in around
30% of patients [2]. Therefore, it is very important to predict subsequent seizures in
time. Upcoming seizures, if detected early, can be stopped to avoid serious damage,
which in some cases can be fatal. Mostly, such patients are monitored and examined using
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electroencephalogram (EEG) recordings [3,4]. These recording are then visually analyzed by
doctors for a more comprehensive understanding of the patient’s seizures. The procedure
is subject to human error and is time consuming and highly subjective in nature. The need
for an automatic seizure detection system arises, mainly aimed at accelerating the analysis
process, making it accurate, and to assuage the workload of neurologists. EEG signals are
recorded in two ways: one is scalp EEG, in which probes/electrodes are placed on the scalp
of the subject, and the other is intracranial EEG, where EEG electrodes are fixed invasively
on the tissues of the brain [5].

EEG signals of an epileptic patient can be broadly categorized into four states [6]: the
preictal state [7] is the state a few minutes before the actual occurrence of the seizure; the
ictal state [8] is the state when the seizure is actually occurring; the postictal state [9] is the
state after the seizure has passed; and the interictal state is the state between two consecutive
seizures, which can also be called the normal state. Figure 1 presents a multichannel plot of
one hour of EEG signals. In seizure prediction, the preictal state is useful as it begins a few
minutes prior to the seizure.

Figure 1. One hour recording of EEG signal of epileptic patient for three channels.

The preictal state is used for the detection and forecasting of seizures. It provides
valuable information about the start of a seizure, as it begins a couple of minutes before
the seizure actually occurs [6]. Predicting the ictal state by classifying the interictal and
preictal state can help in averting seizures and the damage caused because of it by allowing
timely administration of medicine. Figure 1 verifies the transformation in the electrical
activity of the patient’s brain between the preictal and the interictal states; in terms of
both frequency and amplitude, there is an observable increase in the preictal state [10].
Prediction of epileptic seizures [11–35] includes preprocessing for noise reduction, feature
set extraction, and categorization of interictal and preictal state segments. Inter-electrode
interference, powerline noise, and noise owing to movement-related cortical potentials and
ECG signals all cause noise in EEG signals during recording. Using machine learning and
deep learning approaches, researchers have developed various ways for time/frequency
domain extraction and automation. Automated features have been derived from many
types of CNNs, whereas handcrafted features include time and frequency domain univari-
ate and multivariate features. Machine learning classifiers such as SVM, decision tree, and
MLP and deep learning-based classifiers such as CNN, RNN, and LSTM have been used to
classify interictal and preictal state segments. Prediction accuracy remains a difficulty since
it necessitates excellent preprocessing, features with large interclass variance, and improved
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classification. We present a convolutional neural network and SVM-based technique for
classification of EEG signals for epileptic seizure prediction in this research.

2. Related Work

Researchers [36–55] have proposed several techniques to predict seizures, including
traditional machine learning approaches and deep learning techniques. EEG signals are
generally susceptible to noise, especially scalp EEG, where electrodes that acquire the
EEG signals are placed far from the source, i.e., on the scalp. Multiple types of noise
affect the SNR of EEG signals, including powerline noise [56] between 50–60 Hz, baseline
noise [57] that occurs because of the electrical interference of electrodes with each other,
and artifacts that are generated because of human movements such as eye blink, pulse,
etc. Researchers have proposed preprocessing techniques for increasing the signal-to-
noise ratio (SNR) of electroencephalogram signals. The authors of [36,46,58] removed
noise using bandpass filters. The authors of [38] transformed the time domain signals
to frequency domain using fast Fourier transform (FFT). Researchers [39,59] have also
used short time Fourier transform (STFT) to preprocess the EEG signals. STFT is very
useful in preprocessing because of the non-stationary nature of EEG signals. The authors
of [45] broke the signals down into multiple intrinsic mode functions (IMFs) on the basis of
the frequency components using empirical mode decomposition (EMD) [60,61] as well as
discrete wavelet transform (DWT) [62] for the purpose of preprocessing. In [41], the authors
proposed DWT for preprocessing. Making a surrogate channel [63], using a common spatial
pattern (CSP) [64], local mean decomposition (LMD) [60], or adaptive filtering [65] are
some of the other ways of removing noise from EEGs.

Data after preprocessing is usually in large quantities and of a higher dimension. In this
form, EEG signals are not suitable to be passed to classifier for classification. Therefore,
a feature set is required, which is a subset of data that has lower dimensions and is not
redundant. The process of converting data into a feature set is called feature extraction
and extracts distinct features for classification. Both handcrafted and automated features
have been extracted in existing methods. Handcrafted features of EEGs usually include
univariate [66] and multivariate features [67]. Time domain features include Lyapunov
exponent PCA [68], Hjorth parameters [69], approximate entropy [70], and statistical
moments [71] and include the mean, also know as the average, variance, which is the
deviation from the mean; skewness, which can be called distortion or asymmetry; kurtosis,
which is the sharpness of the peak; and entropy, which is the measure of randomness in
data [72]. Hjorth parameters are complexity and mobility. These parameters are helpful in
the classification of EEG signals. Variance of the EEG signal through time is called Hjorth
activity. The following equations give the mathematical representation of activity, mobility,
and complexity, respectively.

Activity = var(y(t)) (1)

Mobility(y(t)) =

√√√√ Activity( dy(t)
dt )

Activity(y(t))
(2)

Complexity(y(t)) =
Mobility( dy(t)

dt )

Mobility(y(t))
. (3)

Average frequency is given by mobility, whereas variation in frequency is given by
complexity. Spectral features, which are frequency domain features, include spectral mo-
ments, spectral skewness, spectral centroid, variational coefficients, and power spectral
density. Handcrafted features such as zero-crossings intervals [36], phase-locking val-
ues [45,46], bag of waves [37], and common spatial pattern filtering [44], have been ex-
tracted. Convolutional neural networks (CNNs) are used by [41,73] for feature extraction. A
convolutional neural network extracts features in such a way that it keeps the class informa-
tion; by doing this, features that have high inter-class variance are extracted. Ref. [74] used
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Hilbert vibration decomposition for the extraction of amplitude modulation/frequency
modulation subcomponents of signals of non-stationary nature.

Multiple traditional machine learning and a few cutting-edge deep learning methods
have been employed for classification after extracting features. Machine learning classifiers
include k-nearest neighbors (KNN) [69], naive Bayes [68], decision tree, and SVM. Deep
learning-based classifiers include CNN, recurrent neural network (RNN), and long short-
term memory (LSTM). Table 1 presents a comparison between these techniques along with
their performance metrics results. Table 1 compares the existing state-of-the-art methods
proposed in recent years. Preprocessing plays a vital role in achieving increased sensitivity
when predicting an epileptic seizure. Moreover, extraction of multivariate features helps
in getting better prediction results. Neural network-based classifiers and support vector
machines seem to perform better than other classifiers. Average anticipation time and
sensitivity are interrelated. If a prediction method has increased sensitivity, this leads to
increased average anticipation time. However, wrong selection of a classification technique
could lead to increased false positives and reduced sensitivity. Therefore, selection of the
classifier can affect overall performance. In these studies, it is seen that damage due to
epileptic seizures can be avoided by predicting the epileptic seizure through identifying the
beginning of the preictal state. Effective preprocessing techniques are needed to remove
that noise that was introduced in the acquisition of the EEG signal. Extracting and selecting
features have also proven to be a major challenge.

Table 1. Preprocessing, feature extraction, and classifiers in existing methods.

Method Preprocessing Features Classifier

[36] Bandpass Filter Zero Crossings Variational GMM

[37] - Codebooks Construction, Bag of Waves
Segmentation ELM

[38] Fast Fourier Transform Spectral Features Threshold for States

[39] Short-Time Fourier Transform Convolutional Neural Networks Convolutional Neural Networks

[41] Discrete Wavelet Transform Convolutions Neural Network Convolutional Neural Networks

[42] Bandpass Filter Lyapunov Exponent, Fourier Transform Neural Networks

[43] Derivatives and Statistical Moments Derivative, Local Variance, Median
Filtering Thresholding

[44] - Statistical features using CSP Linear Discriminant Analysis

[45] Empirical Mode Decomposition Phase Locking Value Support Vector Machines

[46] Standard Deviation/Bandpass Filter Phase Locking Value Thresholding

[74] - Hilbert Transform Least Squares—Support Vector
Machine

3. Overview of Proposed Method

We propose a patient-specific method for seizure prediction that predicts a seizure
by detecting the start of preictal state. A flowchart for the proposed method is shown in
Figure 2. The dataset used in this study is the widely used, publicly available CHB-MIT
scalp EEG dataset [75]. It has recordings of 22 subjects with 23-channel signal recording and
a sampling frequency of 256 Hz. PREP pipeline [76] is used to remove the powerline noise.
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Figure 2. Flow diagram of the proposed epilepsy prediction system.

After noise is removed from the dataset, a sliding window of 30 s with 50% overlap is
selected, and short time Fourier transform (STFT) is applied in order to further enhance
the SNR and to convert from the time to frequency domain. The overlapping window is
selected only in the preictal data. This is done to overcome the class imbalance between
the interictal and preictal class. As stated earlier, the interictal state is the normal state
of the brain, and the preictal state is recorded a few minutes before the occurrence of a
seizure, so there is an inherent imbalance between the amount of data available for the
two states. An overlapping window is used to perform oversampling of the preictal state.
This is done across the board to all the channels and for each occurrence of preictal state.
The interictal data is converted to frequency domain using a 30 s non-overlapping window.
Figure 3 shows a visual representation of the overlapping and non-overlapping windows.
Statistical moments have been extracted as handcrafted features, and CNN is applied for
feature extraction. A custom, three-layer CNN is used that takes a 65 × 117 × 23 matrix
as the input size. Batch normalization is used to minimize internal covariate shift. Dense
layers of the CNN architecture are removed. A feature vector containing both handcrafted
and automated features has been created and given to the LSTM for classification.

Figure 3. Non-overlapping/overlapping window selection.
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4. Preprocessing

PREP pipeline can be summarized as: (1) Line-noise removal without restricting to
a single filtering technique; (2) Robust referencing of the signal relative to an approximation
of the “true” average reference; (3) Detection and interpolation of bad channels; and (4) Re-
tention of sufficient data to allow users to use another method or to reverse interpolation
of any channel. In theory, line noise is presumed to be at 60 Hz, but practically, the exact
line frequency is unknown and variable. A regression model is applied across a range of
frequencies centered on each potential line-noise frequency, and the line-noise frequency
that maximizes the SNR is selected. This approach is advantageous over notch filtering
because it only removes deterministic line components and preserves the spectral energy.
Extensive testing proved that the line-noise removal algorithms did not yield good results
if no high-pass filtering was done [76]. Thus, a high-pass filter at 1 Hz was applied before
removing line-noise.

Short time Fourier transform (STFT) is used to transform EEG signals from the time to
frequency domain. EEG signals are not stationary in nature, so STFT provides better results
of preprocessing by capturing changes of short duration. In this study, we applied short
term Fourier transform on a window of 30 for the data of the preictal state. The window
used for preictal class was a 15 s overlap window, and a 30 s non-overlapping window was
used for data of the interictal state to cater to the class imbalance problem. This conversion
from time domain into frequency domain resulted in a spectrogram as shown in Figure 3.
This spectrogram is given as input to the CNN to extract features.

5. Feature Extraction

Statistical moments have been extracted from all 23 channels as handcrafted fea-
tures and include mean [77], standard deviation, and skewness [78], and are given by
Equations (4)–(6), respectively.

β =
1
N

N

∑
i=1

(xi − µ)3 (4)

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (5)

µ =
1
N

N

∑
i=1

(xi) (6)

where xi denotes the selected window of the EEG signal, and the total number of samples is
given by N. After extraction of these handcrafted features, a custom CNN architecture was
also used for feature extraction. CNNs are widely used for automated extraction of features
and to classify time series and image data. Typical CNNs have multiple convolutional
layers with different numbers of filters. Afterwards, the size of the layer is reduced by using
a pooling layer that is then fed to fully connected layers used for classification. The last
layer of such systems has neurons equal to the number of classes. Weight updating was
as follows:

∆Wl(t + 1) = − xλ

r
Wl −

x
n
(

∂C
∂Wl

) + m∆Wl(t)) (7)

∆Bl(t + 1) = − x
n
(

∂C
∂Bl

) + m∆Bl(t). (8)

Weight values are denoted by W, l represents the layer number, bias is denoted by B,
and x and m are regularization parameters. After convolution, an activation function is used;
some of the commonly used activation functions are rectified linear unit, sigmoid activation
function, and the softmax activation function, and is computed using following equations.

y =
1

1 + e+−x (9)
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σ(z) =
ez

∑k
i=1 ezj

(10)

f (x) = max(0, x). (11)

A custom, three-layered CNN was proposed to extract machine-learned features. The
first convolutional layer consists of 16 filters of 3 × 3, the second layer has 32 filters of
3 × 3, and the final convolutional layer is comprised of 64 filters of 3 × 3. All these layers
are followed by ReLU activation function and batch normalization. A flattened layer is
then applied to get the machine-learned features to a size of 7192. Figure 4 presents the
proposed architecture of the CNN, which consists of three layers of convolution, and the
number of parameters to be trained in each layer is listed in Table 2.

Figure 4. Proposed CNN.

Table 2. Model summary of convolutional neural network designed to extract features.

Layer Name Output Shape Parameters

conv2d (Conv2D) (None, 65, 117, 16) 9216
maxpooling2d (MaxPooling2D) (None, 32, 58, 16) 0
batch-normalization (BatchNo) (None, 32, 58, 16) 64
conv2d1 (Conv2D) (None, 32, 58, 32) 4640
maxpooling2d1 (MaxPooling2) (None, 31, 57, 32) 0
batch-normalization1 (Batch No) (None, 31, 57, 32) 128
conv2d2 (Conv2D) (None, 31, 57, 64) 18,496
maxpooling2d2 (MaxPooling2) (None, 30, 56, 64) 0
flatten (Flatten) (None, 107,520) 0
dense (Dense) (None, 256) 27,525,376
dense1 (Dense) (None, 1) 257

6. Classification

For classification, we propose LSTM, a version of a recurrent neural network [79].
After concatenating statistics and CNN features, the combined feature set is transformed to
a sequence length of 50 and fed into an LSTM for classification. The LSTM has many gates,
including a forget gate and input gates, for storing and forgetting prior cell information.
Forget ( f (t)), input (i(t)), and previous LSTM layer (Ht−1) weights [80], plus cell states and
new weights are computed as follows:

f (t) = σ(W f ·[ht−1, xt] + b f ) (12)

i(t) = σ(Wi·[ht−1, xt] + bi) (13)

Ĉ(t) = tanh(WC·[ht−1, xt] + bC) (14)

C(t) = ft ∗ Ct−1 + it ∗ Ĉt (15)

o(t) = σ(Wo·[ht−1, xt] + bo) (16)

ht = ot ∗ tanh(Ct) (17)
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The suggested method uses an LSTM with 256 neurons at the input and 02 neuron
at the output to classify preictal state and interictal state EEG patterns. For classification
using LSTM, the proposed approach includes 775,682 trainable parameters.

7. Results and Discussion

This study proposes a patient-specific seizure prediction system using data from
22 subjects, including 17 males and 5 females. Scalp EEG signals were used to classify
between interictal, which is the normal EEG state, and preictal, which is the state a few
minutes prior to the beginning of the seizure, states. Preictal class samples were labeled as
the positive class, so it is imperative to achieve higher TPR and low false positives. Sensi-
tivity and specificity have been used to validate the proposed method and are computed
using the the following equations:

Sensitivity = TP/(TP + FN) (18)

Specificity = TN/(TN + FP) (19)

where TP stands for true positive, TN denotes true negative, FP is false positive, and
FN represents false negative. The first experiment was devised to monitor the effects of
different preprocessing techniques. Multiple experiments were performed to identify an
optimal window size varying between 5 s to 120 s, and showed that a non-overlapping
window of 30 s better characterizes the EEG signals. Therefore, a non-overlapping window
(NOW) of 30 s was selected for both the interictal and preictal state segments. We then
applied short time Fourier transform on the selected window, and no noise removal was
done. Features were extracted using CNN, and the fully connected/dense layers at the end
of the CNN were applied for classification. The results obtained in this setting are 64.5%
sensitivity and 62.6% specificity.

In the second experimental setting, bandpass/bandstop filtering was applied to re-
move line noise in the preprocessing, while the rest of the settings were kept the same as in
the previous experimental setup. We applied Butterworth bandstop filters from 47–53 Hz
and 109–112 Hz to remove line noise. Butterworth bandstop filters give a maximally flat
response. A high-pass filter was also applied at 1 Hz to remove the DC component. In this
experiment, 72.4% sensitivity and 70.3% specificity were achieved. In the third experiment,
the filter setting was kept the same, and the issue of class imbalance was targeted. There is a
class imbalance issue in the dataset as the ratio of interictal and preictal class samples is 10:1.
With the help of an overlapping window (OW) for preictal state segments with an overlap
of 15 s, the ratio can be reduced to 5:1. This oversampling greatly improved the results.
NOW for interictal and OW for preictal classes (15 s overlap), bandpass filtering, CNN for
feature extraction, and ANN for classification yielded the best results, with 78.3% sensitivity
and 76.1% specificity. These settings were kept constant in subsequent experiments. Table 3
shows the different experimental settings and the results achieved in each experiment.

Table 3. Results of various preprocessing techniques used in the proposed system.

Preprocessing Feature Extraction Classification Sensitivity Specificity

NOW interictal, preictal, STFT CNN ANN 64.5 62.6

NOW interictal–preictal, STFT, BPF/BSF CNN ANN 72.4 70.3

NOW interictal, OW preictal (15 s overlap), TFT, BPF/BSF CNN ANN 78.3 76.1

The second experiment was devised to select the best automated feature extraction
model. In the first iteration, we kept the preprocessing settings the same as the first
experiment and selected the state-of-the-art Resnet-50, a deep neural network with 50 layers,
for feature extraction. Residual learning was also introduced using skip connections.
After feature extraction, classification was done using fully-connected layers. The results
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obtained using this approach were not comparable to the state-of-the-art. A sensitivity
of 67.4% and a specificity of 54.3% was achieved. In the second iteration, a much smaller
network, Visual Geometry Group-16 was used. In this iteration, the same settings were
used as in the first iteration, with the only difference being the use of VGG-16 in place of
Resnet. Similarly, ANN was used for classification. The results improved drastically with
this change, and sensitivity of 87.3% and specificity of 83.2% were achieved. The results
obtained using this setting were on par with the state-of-the-art systems, but to further
enhance and analyze the effects of different feature extraction models, we designed a
custom convolutional neural network with fewer layers. Similar architectures were also
found in the literature after thorough study. The details of this network are explained in
the Proposed Method section. The best results were achieved with this network, where
a sensitivity of 89.3% and a specificity of 85.2% was achieved. This network was kept
constant along with the preprocessing in the subsequent experiment. Table 4 shows the
settings and the results achieved in each iteration in tabular form.

Table 4. Results of various feature extraction techniques used in the proposed system.

Preprocessing Feature
Extraction Classification Sensitivity Specificity

NOW interictal
OW preictal (15 s overlap) STFT
BPF/BSF

Resnet-50 ANN 67.4 54.3

NOW interictal
OW preictal (15 s overlap) STFT
BPF/BSF

VGG-16 ANN 87.3 83.2

NOW interictal
OW preictal (15 s overlap) STFT
BPF/BSF

Custom-CNN ANN 89.3 85.2

The third experiment was devised to analyze the efficiency of different classifiers.
In this experiment, we fixed the two best settings from the previous experiments, i.e.,
non-overlapping window for the interictal class and overlapping window of 15 s for the
preictal class, with STFT and bandpass/bandstop filtering and the custom CNN for feature
extraction. In the first iteration, we used ANN, which is similar to the third iteration of
Experiment 2. In the second iteration, we used decision tree and achieved sensitivity of
81.2% and specificity of 76.4%. In the third iteration, support vector machine was used
after feature extraction. The results obtained by application of LSTM for classification were
sensitivity of 92.8% and specificity of 90.7%. Table 5 shows the settings and the results
achieved in each iteration in tabular form.

Different deep learning approaches were tried for automated feature extraction, includ-
ing Resnet-101, Resnet-50, and VGG-16. Table 6 gives a comparison of these approaches
with respect to sensitivity and specificity. Preprocessing was kept the same for all three
experiment, with a non-overlapping window of 30 s for the interictal state and a 15 s
overlapping window for the preictal state and PREP pipeline to remove the noise; k-fold
cross-validation was applied for validation of results by keeping the value of k = 10.
The proposed system achieved an average accuracy of 94%, 93.8% sensitivity, 91.2% speci-
ficity with standard deviation ranges between 1 to 1.5% for k folds in all performance
measures. Table 7 shows the results of k-fold cross-validation achieved from the proposed
method. An average prediction time of 19.5 min was achieved. Figure 5 and Table 8
compare the results of the proposed system with the current state-of-the-art systems.
Singh et al. [52] achieved better results in terms of accuracy; however, they did not reported
the average anticipation time, which is of prime importance in epilepsy prediction systems,
as achieving greater accuracy with less time to control the seizure limits the usefulness of
that method. Therefore, the proposed system performs better both in terms of specificity
and sensitivity.
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Table 5. Results of various classifiers used in the proposed system.

Preprocessing Feature Extraction Classification Sensitivity Specificity

NOW interictal
OW preictal (15 s overlap)
STFT BPF/BSF

Custom-CNN ANN 89.34 85.4

NOW interictal
OW preictal (15 s overlap)
STFT BPF/BSF

Custom-CNN DT 81.2 76.4

NOW interictal
O.W preictal (15 s overlap)
STFT BPF/BSF

Custom-CNN LSTM 92.8 90.7

Table 6. Comparison of various deep learning models for feature extraction.

Feature Extraction Sensitivity Specificity

Resnet-101 68.4 59.6

Resnet 50 78.4 71.3

VGG-16 93.8 91.2

Table 7. The k-fold cross-validation results of the proposed method.

k 1 2 3 4 5

Sensitivity (%) 93.3 93.7 94 93 94.2

Specificity (%) 91 92 91 91.1 91.5

k 6 7 8 9 10 Average

Sensitivity (%) 94.5 92.3 93.3 94.3 95.4 93.8

Specificity (%) 94.4 90 91 90 90 91.2

Table 8. Comparison of Sensitivity, Specificity and Average Anticipation time with recent techniques
proposed by researchers.

Method Sensitivity (%) Specificity (%) Average Prediction Time

[36] 83.8 83.5 19.8 min

[37] 70.5 75 1 min

[38] 86.7 86.67 45.3 min

[39] 81.2 84 5 min

[41] 87.8 85.8 -

[42] 89.5 89.75 -

[43] 90.3 85.2 22.63 min

[44] 81 61 38.35 min

[45] 80.54 80.50 -

[46] 76.8 90 -

[52] 98.51 97.78 -

[74] 89.0 80.2 -

Proposed Method 93.8 91.2 19.5 min
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Figure 5. Comparison of results with recent techniques proposed by researchers [36–39,41–46,74].

The receiver operating characteristics curves of state-of-the-art systems and the pro-
posed technique are shown in Figure 6. The sensitivity of the system is plotted against the
FPR in these receiver operating characteristics curves to compare the overall performance
of several state-of-the-art approaches. This allows us to determine whether or not the
performance is satisfactory. If an increase in sensitivity does not result in an increase in
false positive alarms, the system is said to be working well. The suggested system clearly
beats the current state-of-the-art systems in terms of achieving high TPR with low FPR. It
is concluded from the aforementioned evidence that the system proposed in this study is
an effective seizure prediction method.

Figure 6. Analysis of ROC curves with existing methods [36–39,41–46,74].
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8. Conclusions and Future Work

This research proposes a method for seizure prediction in epileptic patients using
scalp EEG. Patients that have epilepsy can lead a risk-free life if timely and accurate seizure
prediction is ensured. In comparison to existing methods, the proposed method uses
a regression-based alternative to notch filtering to increase SNR, then combines automated
feature extraction with CNN and handcrafted features and performs classification with
an LSTM classifier to achieve better sensitivity and specificity. The model was trained
and validated on the CHB-MIT scalp EEG dataset, and it achieved 94% accuracy, 93.8%
sensitivity, and 91.2% specificity. In the future, intelligent algorithms such as CNN and
GAN-based denoising methods [49] can be used to preprocess the data to further increase
the SNR. From the deep learning aspect, large numbers of parameters need to be learned;
research can be done to make the algorithms more efficient by reducing the number of
operations and learnable parameters, which will lead to less-computationally intense
models. This study proposes patient-specific seizure prediction; a lot of research can be
done to develop a patient nonspecific seizure prediction method.
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