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ABSTRACT Fifth Generation (5G) cellular networks aim to overcome the pressing demands posed by
dynamic Quality of Service (QoS) constraints, which have primarily remained unaddressed using con-
ventional network infrastructure. Cellular networks of the future necessitate the formulation of efficient
resource allocation schemes that readily meet throughput requirements. The idea of combining Device-to-
Device (D2D), Mobile Edge Computing (MEC), and Network slicing (NS) can improve spectrum utilization
with better performance and scalability. This work presents a spectrum efficiency optimization problem in
D2D based 5G-Heterogeneous Cellular Network (5G-HCN) with NS. Owing to the shortage of resources,
we propose an underlay model where macro-cell users (MUs), small-cell users (SUs), and D2D users (DUs)
reuse the resources while considering the effects of interference. The goal is to maximize the average
network spectrum efficiency (SE) and throughput without degrading the system performance. The problem at
hand is naturally a non-convex mixed-integer non-linear programming (MINLP) problem that is intractable.
Therefore, we have suggested a distributed resource allocation strategy with an edge computing (DRA-EC)
approach to find the sub-optimal solution. In distributed augmented Lagrange method, each edge router
located at BS will solve its problem locally, and the consensus algorithm will find the global solution using
these local estimates. The central slice controller will cut the customized network slices according to the
bandwidth requirements of each user type with optimized spectrum information. The simulation outcomes
prove that our proposed method is near the central optimization scheme with low computational complexity.
It is much better because it reduces the computational time and system overhead.

INDEX TERMS Network slicing, 5G cellular networks, mobile edge computing, device-to-device,
distributed optimization, consensus algorithm.

I. INTRODUCTION
For 5G and beyond 5G, the elastic redesign of conventional
networks is expected to shift the pattern with which human
beings and machines interact. Ericsson Mobility Report [1]
predicts that out of ten, every fourth user will have 5Gmobile
subscriptions by 2026, which is about 60% of the world’s
population. 5G cellular networks will have enhanced speeds
and a minimum delay than the previous generations [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

The spectrum shortage due to full occupancy of frequency
bands is the main hurdle behind 5G cellular networks. The
major challenge in research is assigning the resources effi-
ciently that will optimize the spectrum utilization [3]. The
scarcity in the spectrum is an outcome of inefficient and
random spectrum allocation techniques. HCNs comprising
macro-cells underlaid with multiple small-cells offer tremen-
dous capability to improve the reuse of frequency and net-
work capacity [4]. Furthermore, D2D-based communication
offers a promising solution as it remains the primary method
for improving the performance of 5G cellular networks.
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The concept of D2D is to allow direct connection among
the devices that are close enough with very little or no BS
involvement. Therefore, this is an important technique to
offload the BS traffic [5]. Due to proximity, the users in D2D
communication have low power, and less transmission delay,
resulting in increased SE and throughput. Examples include
sharing files, audio or videos, online gaming, disaster man-
agement, and traffic offloading. However, the integration of
D2D in the system opens many challenges, including mode-
selection, energy consumption, device discovery, interfer-
ence, mobility management, and network security [6].

The exponential increase in the number of devices is a test
for future research due to their diverse needs of reliability,
speed, and latency [7]. For this, NS is the distinct character-
istic of 5G system architecture that creates flexible logical
networks over typical hardware infrastructure [8]. With the
continuous progress in 5G, NS will be the future’s next big
thing enabling service-based customized end-to-end logical
networks called network slices [9]. Slices can be allocated
depending on specific QoS like throughput, latency, or reli-
ability [10]. The core reason behind the prevalence of NS
today is the reduced system capital expense (CAPEX) and
operational expenditure (OPEX) because of efficient spectral
utilization [11], [12]. 5G NS facilitates the customers to
enjoy the processing of data and other services that have a
substantial commercial perspective [13].

MEC is an evolving paradigm. It enables the central cloud
computing network functionality at the edge node proximal
to the end devices. MEC can provide an advantage in the
effective utilization of system backhaul, computational, and
storage resources. The researchers are expecting that from
2020; the edge nodes will manage about 45% of the data
instead of a central cloud system [14]. MEC can optimize
the network resources by processing and managing the data
at the edge server before sending it to the central cloud.
This will result in offloading [15] with improved system
performance [16].

The latest emerging idea is to integrate D2D, NS, and
MEC technology in future network designs, as proposed
in our previous work [8]. In this work, we have proposed
a system to optimize the SE and throughput in D2D and
NS-based 5G-HCN by using the distributed MEC solution.
This system will then send the optimized value of SE to
the central network slice controller that will cut the network
slices according to the data received from the edge layer.
The goal of this research work is to solve the problem of
resource allocation in 5G-HCN using edge computing, which
is a perfect option instead of a central scheme because it
will reduce the computation time and offload the system
resources.

Section II discusses the related work, and Section III
depicts the gaps in research and the motivation of our
work. Then Section IV is about our main research contri-
butions. Section V explains in detail the proposed system
model. Further, Section VI demonstrates the problem formu-
lation and optimization. Section VII derives the expression

of the proposed technique for solving the optimization
problem. Section VIII is related to simulation results and
discussion. Finally, Section IX is on conclusion and future
recommendations.

II. RELATED WORK
5G with HCNs design has emerged as the promising topic of
research due to their enhanced capability of resource man-
agement and utilization [17]. Recently, work done in [18]
provided the detailed survey on resource allocation in 5G
HCNswith an explanation of existing literature, future trends,
and possible challenges. The authors in [19] proposed a het-
erogeneous network scheme that guaranteed theQoS and fair-
ness of all users while minimizing the interference. Similarly,
the work proposed in [20] investigated the resource allocation
scheme in heterogeneous networks considering the system
robustness and interference efficiency. In [21], the researchers
optimized the robust energy efficiency problem with security
information.

Many researchers have studied and proposed techniques to
meet the challenges of resource allocation and managing the
ever-increasing network load demands because of the spec-
trum scarcity [22]. Heterogeneous network deployment with
a macro cell and many small cells can improve the spectrum
efficiency [23], [24]. The work in D2D communication has
gained researcher’s attention from the past few years with
the evolution towards 5G [25]. There are two categories of
D2D communications modes: licensed and unlicensed bands.
The licensed frequency bands can be further divided into
two types based on the frequency sharing method among the
cellular users and D2D as underlay and overlay mode [26].
The proposed work is based on the underlay mode in which
the cellular and D2D users share the frequency/channel
resulting in interference which is the major problem in the
heterogeneous environment for achieving the spectrum effi-
ciency [27], [28]. The work done by [29] is to increase the
capacity by efficient spectrum allocation using the coalition
game to overcome the interference. The research in D2D
was initially on conventional networks, but the works from
the past few years have shown tremendous growth of adding
them in virtualized networks [30]. The study done in [31] was
on resource sharing in D2D based systems, [32] investigated
D2D systems using joint spectrum and power assignment for
both central and distributed techniques for resource alloca-
tion. Similarly, [33] proposed a semi-decentralized approach
to maximize the sum rate considering interference. The MEC
and D2D are essential technologies for offloading the high
data rate traffic from the central network. [34] investigated
MEC-D2D combination to maximize the no. of supported
devices. [35] worked on D2D based 5G heterogeneous net-
works using MEC. The authors in [36]–[38] investigated the
advantage of using MEC to improve the system performance
and minimize the delay.

Many works have been done to achieve efficient radio
resource management in virtual networks [39], [40]. Existing
literature on NS has two main categories: (1) Infrastructure
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TABLE 1. List of notations.

based slicing and (2) Resource spectrum-based slicing. The
work proposed in [41] was to maximize the profit of
MVNO by joint power allocation and slice resource alloca-
tion considering the backhaul capacity and user’s QoS. [42]
proposed the resource (power and channel) allocation tech-
niques to optimize the network throughput in multi-slices
and multi-user cases. These works [41]–[43] were better
in performance, but the approaches burdened the central
controller because each slice must allocate resources individ-
ually. In [44], the authors proposed the virtualization frame-
work for resource block allocation to its users using the
auction-based game method but did not consider spectrum
efficiency with D2D and edge computing. [45] discussed two
cases of slicing; one is based onQoS to create dedicated slices
depending on different services, and the second on infras-
tructure sharing in which the resource sharing is among the
multi-tenants.

The work in [46] considered hierarchical resource alloca-
tion using NS in fog networks which overcome the issues
of core layer load in which the global resource manager
first assigns resources to the local resource manager in the
slices, and these resources are then efficiently allocated to
users using Stackelberg game. This scheme optimized the
spectrum efficiency, but D2D and edge computing were
missing. The problem of optimizing energy efficiency in
the wireless heterogeneous virtualized network was proposed
in [47]. However, this work focused on maximizing the rev-
enue of infrastructure providers (InPs) and mobile virtual
network operators (MVNO) instead of assigning resources
by improving spectrum efficiency and adding D2D. In [48],
the authors introduced a resource management technique in
multi-tenant cloud-based radio access networks to perform
the resource slicing considering QoS and interference, but
this work also did not consider D2D communication and
spectrum efficiency optimization. Similar work was proposed
in [49] for resource slicing in two-tier HCNs and allocate
the resources based on QoS. This scheme efficiently com-
puted the optimum bandwidth slicing ratio in a virtualized
HCN but did not use an edge computing-based approach

with D2D for spectrum efficiency optimization. The work
proposed in [31] investigated the centralized method of max-
imizing the D2D pairs sum rate without disturbing the data
rate requirements of CUs using subchannel sharing, but it
did not consider the HCN with NS and distributed com-
puting. In [33], the authors proposed the semi-decentralized
method of optimized resource allocation and power con-
trol with interference-aware D2D setup. However, HCN
and NS with edge-based computation were missing in that
work.

All the research works described above on 5G cellu-
lar networks with network slicing were mainly focused on
increasing the overall system utility and revenue. Primarily,
the researchers goal was to design such a system that would
benefit business models. None of them considered improving
the spectrum efficiency with D2D based system for network
slicing and to solve the resource allocation problem using
distributed edge based computing.

III. RESEARCH GAPS & MOTIVATION
The key motivation towards this research is that to the best of
our knowledge, there is no singlework on improving the spec-
tral efficiency in 5G-HCN with D2D and NS. Furthermore,
to solve such a problem using distributed MEC technique.
Previous works mainly exploited the SE in these technologies
individually or with two of them. Like resource management
for 5G-HCN with or without D2D, with or without NS,
and with or without MEC. Similarly, D2D with virtualized
networks and D2D with MEC scenario. Therefore in [8],
we have proposed an architecture that will integrate D2D,
MEC, and NS technology to meet most of the requirements of
future 5G networks. All future research focuses on designing
techniques that wisely use the spectrum. D2D and network
slicing are the critical enablers for achieving this for enhanced
system performance and reduced cost (less hardware). The
main concern is the interference management so that resource
allocation will not affect the SINR (Signal to Interference and
Noise Ratio) requirements of users.
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IV. CONTRIBUTION
The significant contribution in this work is that no previ-
ous research considered solving SE maximization combining
D2D, NS, and MEC in 5G-HCNs. This work is the first
attempt to solve such a problem using distributed edge com-
puting optimization approach called DRA-EC. Previously,
the researchers have mainly proposed resource allocation
by centralized methods that burden the central system and
cause a delay in transmission. Our proposed scheme solves
the problem of ever-increasing spectrum demand in less
time.

• To develop a system model for D2D based 5G-HCN
with randomly distributed users (MUs and SUs). The
proposed model has two layers: the upper and the lower
layer.

• In the upper layer, firstly, a less complex and sub-optimal
solution solves the base station to user equipment
(BS-UE) association problem using a greedy algorithm
based on achievable SNR (Signal to Noise ratio). Sec-
ondly, the D2D mode switching problem is solved using
a joint distance-dependent algorithm.

• In the lower layer, we formulate the resource allocation
problem using the distributed edge computing method
to maximize the throughput and spectrum efficiency of
the 5G HCN considering the interference and SINR
constraints.

• The proposed problem is a non-convex MINLP problem
transformed and decomposed into a convex problem.
The problem is then solved by using the augmented
Lagrange multiplier and consensus algorithm. The sim-
ulation results are compared with the other schemes and
concluded that the computation time and load improves
considerably.

V. SYSTEM MODEL
A. NETWORK LAYOUT
Fig.1 represents the detailed network architecture of our
proposed scheme. In this work, we have considered a
5G-HCN comprising one macro-cell and several small cells
at random locations within the coverage area. The proposed
work considers the downlink scenario with a single MBS
(macro base station)M located in the center of the cell having
high transmit power andwide-area coverage. There are J SBS
(small base stations) given as J = { 1, 2 . . . j . . .J } having
smaller coverage and low transmit power. The small cells
coverage area is assumed to be non overlapping circles within
the macro cell. Both MBS and SBSs have edge routers (MEC
servers) shown in Fig.1 with local computational capabilities
connected via wired backhaul link to the central edge-server
of the core network. Each edge server collects the desired data
and sends the information to a central server. Slice controller
then processes this data through network management and
orchestration to cut the desired network slices. The total
number of users admitted in the network are U where U =
{ 1, 2 . . . u, . . .U}.

B. CHANNEL CHARACTERISTICS
The total channel bandwidth is distributed into several sub-
channels, each of them occupying a band of 180kHz fre-
quency [50]. The Noise power for the system is Additive
White Gaussian Noise (AWGN) represented by σ given as:

σ = NO ∗ NF ∗ β (1)

NO is noise power spectral density, NF represents noise
figure, and β is the sub-channel bandwidth.
Shadowing and Rayleigh random variables are used for

channel modeling to evaluate the fading in combination with
the path loss models between transmitter and receiver. The
distance-dependent path loss models considered are Okumu-
raHata model [51]:

PLk = 128.1+ 37.6log(d[km])dBm (2)

PLj = 140.7+ 36.7log(d[km])dBm (3)

PLdp = 148.1+ 40log(d[km])dBm (4)

where PLk ,PLj and PLdp is the path loss received by macro-
cell, small-cell and D2D users respectively. d is the distance
from the BS to its associated UE. In case of D2D, this is the
distance between the D2D transmitter and receiver.

The complete system is in frequency reusemodewithMBS
and SBS sharing a similar set of sub-channels denoted by
R = { 1, 2 . . . r, . . .N }. However, we have assumed that
the same type of UEs (user equipment) associated with one
BS do not reuse the sub-channel. Therefore, alleviating the
co-tier interference, but the cross-tier interference is there.
For each sub-channel r ∈ R, the predefined threshold level
for maximum allowable interference �r

Max is set to protect
the SINR of each UE. The CSI (channel state information)
from feedback control channels decides this threshold value.
The sub-channel will be assigned only if the cross-tier inter-
ference is below �r

Max . Let Pm,Pj, and Pd is the maxi-
mum allowable transmission power of MBS, SBS, and D2D,
respectively.

C. BS-UE ASSOCIATION
To solve the upper layer, the first step is the BS-UE associ-
ation. The purpose of this is to associate the UEs with their
respective BS (base station) (MBS or SBS), which can deliver
high channel quality. The wide-band SNR received by UE u
associated with BS c is estimated as follows:

SNRc,u =
Pc,ugc,u
σ 2 (5)

where c = 0, if the BS is MBS and c = 1, if the BS is SBS,
Pc,u is the transmission power from base station to UE, gc,u
denotes the channel gain from BS to UE and σ represent the
channel noise.

For any user u ∈ {U}, the achievable data rate, Rc,u is
given by Shannon Equation:

Rc,u = βlog(1+ SNRc,u) (6)

β is the sub-channel bandwidth.
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FIGURE 1. System model.

Next, the BS-UE association problem formulation can be
performed as:

max
ac,u

∑
c∈C

∑
u∈U

ac,uSNRc,u (7)

subject to
∑
u∈U

ac,uRmin,u ≤ Qtot , ∀c ∈ C, (8)∑
c∈C

ac,u = 1, ∀u ∈ U (9)

ac,u ∈ {0, 1}, ∀u ∈ U , ∀c ∈ C (10)

where Qtot in eq. (8) refers to the total available system
capacity (backhaul/ fronthaul), and it ensures that the total
UE data rate is bounded by its capacity on the link [48].
The constraint in (8) guarantees that the backhaul/ fronthaul
link can at least carry the minimum data rate required by the

associated UEs, (9) ensures that each BS can only attach one
UE at a time.
Proposition 1: The optimization problem (BS-UE asso-

ciation) depicted in (7) is NP-complete 0-1 multiple-
knapsacks [52].

Proof: Refer to Appendix A.
The dynamic methods for programming are not efficient

for a multiple-knapsack case because of larger computational
complexity [48]. To find the feasible sub-optimal solution,
we have proposed a greedy method as in Algorithm 1. The
UEs are associated with that particular BS which provides
them with the highest SNR. For that purpose, we compute the
achievable SNR from all the base stations to that particular
user. The BS that delivers the highest value of SNR will
be nominated to assess the (8). If it satisfies, the user will
associate itself with the desired BS. Otherwise, it will select
the next highest value of SNR from BS to UE and repeat
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Algorithm 1 BS-UE Association (Greedy Algorithm)
Set Crem = C,Qrem,c = Qtot,c, ac,u = 0, 0c = 0

for all u ∈ U do
for all c ∈ C do

Step-1: Calculate SNRc,u
0c = SNRc,u

end for
Find c = argmaxi∈Crem0i
while Qrem,c ≥ Rmin,c do

if Qrem,c ≥ Rmin,c then
Set ac,u = 0 and update
Qrem,c = Qrem,c −Rmin,c

else
Crem = Crem/[c]

end if
end while
Step-2: Find the user association with cell,

SNRmax
∑∑

au0c,u
end

the process for all the users. We assumed that every UE
must be attached to the BS. Qrem,c in algorithm 1 represent
the remaining system capacity. It is basically the variable in
which the updated value is stored. Initially, Qrem,c = Qtot
which means that the remaining system capacity is the same
as the total available capacity. Once the process of BS-UE
association begins, the value of Qrem,c starts decreasing, and
the value is updated in this variable. This process continues
until the full system capacity is utilized or all the users are
associated with their respective BS. The constraint (8) must
fulfill for the algorithm to run smoothly.

The BS-UE association will result in two types of UEs.
The set of K macro-cell users (MUE) K = { 1, 2 . . . k . . .K}
associated with MBS and the set of L small-cell users (SUE)
L = { 1, 2 . . . l . . .L} also associated with their respective
SBS.

D. D2D MODE SWITCHING
The next step is to determine the possible D2D pairs in
the system. This is executed by D2D mode switching as in
Algorithm 2. Utot refers to the total users in the system before
D2D mode switching. Utot = Umbs + Usbs which means
total users in the system are equal to no. of MBS and SBS
users respectively. Rtot refers to the total no. of available
resources (channels) in the system and Rtot < Utot means
that the total available resources are less than total users in
our model.

D2D mode selection will switch particular users from
cellular to D2D mode based on distance criteria. Using the
Euclidean distance calculations [53], the algorithm calculates
the distance of each user u from all the other users and
generates the list of users that are equal to, or below certain
threshold D2D distance dthres. If the two users are in the range
of dthres, the resource is available and their link gain is higher

only then they are eligible to switch to D2Dmode; otherwise,
they will remain in cellular mode. The value of dthres is set
initially when the system model is defined and it is not fixed
and can be varied for analysis. The set of D DUs is given as:
D = { 1, 2, . . . dp, . . . dq, . . .D}.

Algorithm 2 D2D Mode (Distance-Dependent Algorithm)
Set Utot = Umbs + Usbs
Rtot = R 3 Rtot < Utot
Step-1: Find the proximal distance d between devices
for i = 1 : Utot

for j = 1 : Utot
du = |Ui − Uj|

end
end
if
(
du ≤ dthres

)
if
(
resource r is available

)
if
(
D2D mode link gain is higher

)
then

the UE U will select the D2D mode
else

the UE U will select the cellular mode
end

end
end

After the D2D mode switching, we now have three types
of users (1) MUE, (2) SUE, and (3) DUE.

VI. PROBLEM FORMULATION
This section formulates the resource allocation problem for
efficiently assigning spectrum to each user considering their
interference and QoS requirements as all the users reuse the
spectrum resources [54]. The respective resource allocation
indicator functions are given as:

ark =

{
1 if MUE k in MBS is assigned r
0 otherwise

(11)

arj,l =

{
1 if SUE l in SBS j is assigned r
0 otherwise

(12)

ardp =

{
1 if D2D user dp is assigned r
0 otherwise

(13)

The SINR λrk received by kth MUE associated with MBS
using rth sub-channel is given as:

λrk =
arkPmg

r
m,k

�r
k + σ

2 (14)

�r
k =

∑
s=1→J

Psgrs,k +
∑
∀d

Pdgrd,k (15)

λrk =
arkPmg

r
m,k∑

s=1→J Psg
r
s,k +

∑
∀d
Pdgrd,k + σ

2 (16)

where �r
k represents the interference experienced by MUE.

Pm, Pj and Pdp is the transmit power of MBS, SBS and D2D
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user respectively. grm,k is the channel gain fromMBS to MUE
k , grs,k , g

r
d,k is the gain from all SBS and D2D transmitters

using same sub-channel r , σ 2 is noise.
Similarly, the SINR λrj,l received by lth SUE associated

with jth SBS using rth sub-channel is given as:

λrj,l =
arj,lPjg

r
j,l

�r
j,l + σ

2 (17)

�r
j,l = Pmgrm,l +

∑
s=1→L s6=j

Psgrs,l +
∑
∀d

Pdgrdp,l (18)

λrj,l =
arj,lPjg

r
j,l

Pmgrm,l +
∑

s=1→L s6=j Psg
r
s,l +

∑
∀d
Pdgrdp,l + σ

2

(19)

where, �r
j,l represents the interference experienced by SUE.

grj,l is the channel gain from SBS to SUE l, grm,l , g
r
s,l , g

r
dp,l is

the channel gain from MBS, other SBS and D2D transmitter
to SUE l using resource r .

And the acheivable SINR λrdp of dpth D2D user using rth
sub-channel is given as:

λrdp =
ardp Pdg

r
dp,dr

�r
dp + σ

2 (20)

�r
dp = Pmgrm,dp +

∑
s=1→J

Psgrs,dp +
∑
∀dq

Pdqg
r
dq,dp (21)

λrdp =
ardp Pdg

r
dp,dr

Pmgrm,dp +
∑

s=1→J Psg
r
s,dp +

∑
∀dq

Pdqg
r
dq,dp + σ

2

(22)

where, �r
dp represents the interference experienced by DUE.

grdp,dr is the channel gain between D2D pair, grm,dp , g
r
j,dp is

the channel gain from MBS and SBS to dpth D2D user using
same sub-channel r .
Thus the total achievable throughput by MUE from MBS,

SUE from jth SBS and DUE respectively is given below:

Rr
k = βlog(1+ λ

r
k ) (23)

Rr
j,l = βlog(1+ λ

r
j,l) (24)

Rr
dp = βlog(1+ λ

r
dp ) (25)

β in equation (23), (24) and (25) is the same sub-channel
bandwidth for MBS and SBS which is 180KHz.

The spectrum efficiency (SE) in each case can be repre-
sented in equation (26), (27) and (28):

SE rk = Rr
k/β (26)

SE rj = Rr
j /β (27)

SE rdp = Rr
dp/β (28)

The decision variable δdp indicates if any user will select
the D2D mode or not.

δdp =

{
1 if any user dp uses the D2D mode
0 otherwise

(29)

The decision variable δc represents if any user is in cellular
mode.

δc =

{
1 if cellular user c is assigned, c ∈ {M, J}
0 otherwise

(30)

In case the small cell user is considered, δc transforms into
δj while for macrocell user it is δk .

A. OPTIMIZATION PROBLEM
Objective is to maximise the average system throughput by
efficiently allocating spectrum to all the users considering
interference. The optimization problem P1 is given as:

P1 : max
δ,a

∑
r∈R

(∑
k∈K

δkRr
k +

∑
j∈J

∑
l∈L

δjRr
j,l +

∑
dp∈D

δdpRr
dp

)
(31)

subject to:
∑
k∈K

ark ≤ 1, ∀r ∈ R (32)∑
l∈L

arj,l ≤ 1, ∀r ∈ R, ∀j ∈ J (33)∑
dp∈D

ardp ≤ 1, ∀r ∈ R, ∀dp ∈ D (34)

�r
kδk ≤ �

r
max , ∀r ∈ R, ∀k (35)

�r
j,lδj ≤ �

r
max , ∀r ∈ R, ∀j j ∈ J (36)

�r
dpδdp ≤ �

r
max , ∀r ∈ R, ∀dp dp ∈ D (37)

δk ∈ {0, 1}, k ∈ K (38)

δj ∈ {0, 1}, j ∈ J (39)

δdp ∈ {0, 1}, dp ∈ D (40)

The problem P1 in (31) is a maximization of the overall
system throughput. The constraint in (32), (33) and (34)
ensures that one type of user can reuse up to one channel
resource and one channel resource can be reused by at most
one user type. The constraint (35), (36) and (37) limits the
interference and guarantees that the interference experienced
by each user type reusing sub-channel r must be below
maximum allowable value. Therefore, it must meet each type
of user (MUE, SUE, and DUE). The constraint (38), (39),
and (40) is mode selection indicators that can be either 0 or 1
if the user is in cellular or D2D mode.

VII. PROPOSED TECHNIQUE
In order to examine the complexity of P1 in (31), we
considered:
Proposition 2:The optimization problem in (31) is NP hard

and difficult to solve in direct way.
Proof: Refer to Appendix B.

P1 is a non-convex MINLP (mixed-integer non-linear)
programming problem that is computationally problematic.
Therefore, finding a solution for such a problem is unfea-
sible [55], [56]. To find the solution, we must convert it
into a convex optimization problem. For our system model,
the size of the solution becomes significant with the increase
in no. of small cells and users. Therefore, we have proposed
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the distributed optimizationmethod (DRA-EC) called the dis-
tributed resource allocation using edge computing. Recently,
the distributed optimization-based solutions have emerged as
the highly prevalent research area [57], [58]. Furthermore,
to solve such a problem using Lagrange multiplier has been
proved in [50] and [60].

Therefore, we transformed the original problem P1 to
make it separable, and multiple local copies of global vari-
ables are defined. We can now divide the optimization prob-
lem (31) into three subproblems based on three types of users
in the system. Let x, y, and z represent three subproblems:
macro-cell, small cell, and D2D case, respectively. x repre-
sents the data rate equation for a macro cell, y for a small
cell, and z for D2D users. The idea of dividing this is that we
are solving the optimization problem in a distributive manner.
Each edge router located at each type of base stationwill solve
its optimization problem locally.∑

r∈R

(∑
k∈K

δkRr
k︸ ︷︷ ︸

x

+

∑
j∈J

∑
l∈L

δjRr
j,l︸ ︷︷ ︸

y

+

∑
dp∈D

δdpRr
dp

)
︸ ︷︷ ︸

z

(41)

f (δ, x, y, z) = f (δk , x)+ f (δj, y)+ f (δdp , z) (42)

f (δk , x) =
∑
r∈R

∑
k∈K

δkRr
k (43)

f (δj, y) =
∑
r∈R

∑
j∈J

∑
l∈L

δjRr
j,l (44)

f (δdp , z) =
∑
r∈R

∑
dp∈D

δdpRr
dp (45)

Consider that we have E edge servers located at each BS
used to solve the distributed optimization problem. Hence the
overall problem (31) become divided into E sub-problems.

When we decompose the problem, the constraints
from (35) - (37) become local constraints which means
that each edge router will solve its optimization problem
locally considering these interference constraints. These local
constraints are now transformed as below:

�r
kδk ≤

�r
max

E
, ∀r ∈ R, ∀k k ∈ K (46)

�r
j δj ≤

�r
max

E
, ∀r ∈ R, ∀j j ∈ J (47)

�r
dpδdp ≤

�r
max

E
, ∀r ∈ R, ∀dp dp ∈ D (48)

E denotes the edge router. Each edge router located at each
base station will solve its optimization problem considering
the QoS requirement of users.

The constraints from (32) - (34) become global constraints
and can be defined as consensus constraint.

Let u ∈ {k, l, dp}.

subject to
∑
u∈U

aru ≤ 1, ∀r ∈ R, ∀u ∈ U (49)

In our solution, we first find the local approximate
of the previous global constraint functions (35) - (37).
An augmented Lagrangian multiplier method is used for

each local constraint to find the local maxima. Then
the consensus-based algorithm is used with finite steps
among iterations to gain a joint agreement on these local
approximates [61], [62].
Proposition 3: The augmented Lagrangian multiplier

method with consensus algorithm converges at a faster rate
practically as compared to other distributed techniques.

Proof: Refer to Appendix C.
Remarks: The theoretical analysis confirms that the given

algorithm approach converges at a rate of O(1/k) and pro-
duces a steady-state error that is manageable by various
consensus-based steps.

A. SOLVING LOCAL VARIABLE
From above discussion, we get the local constraints from (46)
- (48) solved by each edge server or agent individually.
The edge servers will optimize the problem to find local
maxima. Following augmented langrangian steps, the partial
lagrangian for MUE can be represented by:∑

r∈R

Lr (xrk , η
r
k ) (50)∑

r∈R

Lr (xrk , η
r
k ) =

∑
k∈K

ark βlog(1+ λ
r
k )

+ ηrk

(
δk�

r
−
�r
max

E

)
(51)

Partial Lagrangian for SUE can be represented by:∑
r∈R

Lr (yrj,l, η
r
l ) (52)∑

r∈R

Lr (yrj,l, η
r
l ) =

∑
j∈J

∑
l∈L

arj,l βlog(1+ λ
r
j,l)

+ ηrl

(
δj�

r
−
�r
max

E

)
(53)

Partial Lagrangian for D2D users can be represented by:∑
r∈R

Lr (zrdp , η
r
dp ) (54)

Lr (zrdp , η
r
dp ) =

∑
dp∈D

ardp βlog(1+ λ
r
dp )

+ ηrdp

∑
dp∈D

δdp�
r
−
�r
max

E

 (55)

where ηrk , η
r
l and η

r
dp are Lagrangian multipliers.

Overall Partial Lagrangian can be represented by:∑
r∈R

Lr (x, y, z, ηru), (56)

where u ∈ {k, l, dp}

Lr (x, y, z, ηru)

=

∑
r∈R

[∑
k∈K

ark βlog(1+ λ
r
k )+ η

r
k

(
δk�

r
−
�r
max

E

)
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+

∑
j∈J

∑
l∈L

arj,l βlog(1+ λ
r
j,l)+ η

r
l

(
δj�

r
−
�r
max

E

)

+

∑
dp∈D

ardp βlog(1+λ
r
dp )+η

r
dp

∑
dp∈D

δdp�
r
−
�r
max

E

]
(57)

f (ηru)

=


maxark Lr (x

r
k , η

r
k )+maxarj,l Lr (y

r
j,l, η

r
l )

+maxardp Lr (zrdp , η
r
dp )

subject to :
∑

u∈U a
r
u ≤ 1

u ∈ {k, l, dp} ∀r ∈ R, ∀k ∈ K , ∀l ∈ L, ∀dp ∈ D (58)

B. SOLVING GLOBAL VARIABLE
In a multi-agent system, each agent must have the infor-
mation of global constraint. The global constraint agrees
upon the consensus by using the local estimates as calcu-
lated above [61]. For our system, the global constraint 49)
is coupled, and all agents must cooperatively determine it by
administering mutual consensus.

Consider the reformulation of (53) in closed form as
follows:

max
y1,y2...ye

e∑
i=1

cTk yk (59)

where for all edge servers k = 1, 2 . . . e, yk is decision vector
of each edge server and ck is it local cost. While the coupled
constraint in (58) can be expressed in closed form as:

e∑
i=1

Akxk ≤ 1 (60)

li(k) =
∑
j∈Ni(k)

{aij(k)γj(k)} (61)

xi(k + 1) ← arg maxxi∈vert(Xi) (c
T
i + li(k)TAi)xi (62)

ϕi(k) = maxj∈Ni(k){ρi(k)} (63)

ζ̄i(k + 1) = max [ζ̄i(k), Aixi(k + 1)] (64)

ζi(k + 1) = min [ζi(k), Aixi(k + 1)] (65)

ρi(k + 1) = max[Qi(k), ρ{ζ̄i(k + 1)− ζi(k + 1)}] (66)

The results of the optimization problem give us optimum
throughput and SE values through the distributed method.
Each edge router solves its resource optimization problem,
like for MUE, SUE, and D2D users. These resulting values
are then used by the slice controller, specializing in creating
and deleting slices. The slice orchestrator will then cut the
network slices according to the network requirements and
optimum spectrum allocations.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of any algorithm can be
calculated depending on the overall number of flops it
takes to execute the process. The work in [63] explains in
detail the representation of a flop by simple floating-point

operations. Each operation in the algorithm has its subse-
quent number of flops: multiplication, addition, division,
logical operator, assignment operator, matrix multiplication,
Etc. To compute the complexity of our proposed scheme
DRA-EC, we first have to determine the number of iterations,
variables, and constraints. As explained in Section IV our
system is divided into two layers. The upper layer com-
plexity can be analyzed from Algorithm 1 (BS-UE asso-
ciation), whose complexity can be counted as O(|C||U |)
and from Algorithm 2 (D2D mode switching), the com-
plexity is: O(|R||U |). The lower layer involves the resource
allocation method using augmented Lagrange multipliers
defined as S and T , respectively. The complexity of this
during each iteration can be computed for channel assignment
as O(|K||M||N |) operations. Accordingly, the updates in
Lagrangemultipliers needO(|K||M||N |) operations accord-
ing to (51), (53) and (54). Here, T is a polynomial function
for sum iterations O(T (|K||M||N |)2). Hence the total com-
putational complexity of the proposed algorithm is counted
as O(ST (|K||M||N |)2 + 3|D|).

D. CONVERGENCE ANALYSIS
The convergence of an algorithm depends on the number of
iterations it takes for the output to become closer and closer
to a particular estimate or limit. For iterative algorithms, there
is a separate error in each stage, and the algorithm’s goal
is to minimize the error. The algorithm converges when the
error becomes smaller and smaller value. The global optimum
of an algorithm is when the system has the least possible
error. Such an algorithm converges to the optimum global
value.The computation of feasible region or global maxima
is challenging for resource allocation problems in cellular
networks. At the same time, it is significant to analyze in
order to guarantee the algorithm’s convergence. We proposed
the DRA-EC scheme, the process of updating the spectrum
allocation and Lagrangemultiplier is repeated until the lowest
possible error, and the algorithm converges.

Proof: Please see the reference [64] for the proof of
algorithm convergence.

Our proposed distributed algorithm converges at a faster
rate than the central algorithm because it is tough to compute
the global maxima of a single complex central system with
different types of users and their needs. Such a system will
take a much longer time to converge, or in some cases,
it may diverge. Therefore, we have distributed this complex
system so that edge routers present at each type (macro,
small and D2D) will compute their local maxima first. All
these tasks are done in parallel, and the values obtained from
local maxima are then analyzed to find the global maxima.
Thus this algorithm converges faster with fewer chances of
errors.

VIII. SIMULTAION AND RESULTS
A. SIMULATION PARAMETERS
In this work, we have considered a single cell 5G-HCN that
consists of one MBS located in the center with four SBS
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TABLE 2. Simulation parameters.

randomly distributed within the cell. We assumed that the
total no. of users in the system is 200. Each BS can be
associated with a maximum of 40 UEs. The coverage radius
of MBS and SBS is 1000m × 1000m and 200 m, respec-
tively. The channel is assumed to be with zero-mean and unit
variance. The path-loss models considered are discussed in
Section V-B [51]. The summary of performance parameters
used in simulations are in Table 2.

B. RESULTS AND DISCUSSION
This subsection demonstrates the theoretical expressions
numerically to evaluate the simulation results. The sim-
ulations are performed on MATLAB latest version using
1000 Monte-Carlo simulations. We used Intel(R) Core(TM)
i5-6200U CPU @ 2.40GHz 16GB RAM with 64-bit Win-
dows 10 operating system. The proposed setup is for maxi-
mizing the overall system throughput and spectral efficiency.

Initially, we evaluate the performance of the proposed
DRA-EC scheme in 5G-HCN without using D2D users.
Fig. 2 is the graphical representation of average throughput
vs. no. of cellular users in the system. It shows that the
average system throughput value for both MBS and all SBSs
increases with the increase in the no. of users, and this value
is highest for MBS users because of its high transmission
power (43 dBm). The transmit power of all the SBSs is the
same (30 dBm); that is why their average received through-
put values appear identical but actually, they are different.
By zooming the plot, we can conclude that values are very
close, with a slight difference.

Similarly, Fig. 3 illustrates the comparison of average SE
achieved vs. no. of cellular users in each BS (MBS and SBS).
It is clear from the plot that the average SE curve for both

FIGURE 2. Avg. Throughput vs. Cellular users.

FIGURE 3. Avg. SE vs. Cellular users.

MBS and all SBSs increases with the increase in the no. of
users. As explained above, the higher value of MBS is due to
the more significant value of MBS transmit power compared
to SBSs. The portion of the graph is zoomed to show that
there is a difference in values of each SBS, but they are very
close.

Fig. 4 represents the analysis of the proposed DRA-EC
scheme with D2D users. In Fig. 4, we have compared the
effect on the average throughput by increasing the no. of D2D
pairs in each BS. We varied the no. of D2D pairs allowed
in each BS from 0 to 10 and then computed the average
received throughput in each case. The rest of the parameters
are kept the same as in Table 2. We observed that the system
throughput and efficiency increase by adding the D2D pairs
to the cellular network. Further, we concluded that the trend
increases with the number of D2D pairs in the system because
more users can reuse the spectrum. It is noted that the cellular
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FIGURE 4. Avg. Throughput vs. No. of users with D2D.

users must meet the minimum SINR criteria when increasing
the number of D2D pairs.

We compared our proposed DRA-EC scheme with other
centralized and distributed methods to evaluate the perfor-
mance.

1) RA-CO: Resource allocation with central optimiza-
tion. We performed a simulation analysis of our pro-
posed system model using central optimization in this
scheme. The rest of the parameters are the same as with
distributed.

2) RA-SD [33]: This scheme is on resource allocation
using a semi-distributed method for D2D based cellular
networks.

3) JSPA-CO [31]: Joint spectrum and power allocation
scheme to observe the system performance by using a
centralized optimization scheme.

4) JSPA-DO [31]: The decentralized approach to com-
pare the system (joint spectrum and power allocation)
performance in D2D based system.

5) RO: Random optimization scheme is designed by
randomly assigning resources without optimization
technique.

Fig. 5 demonstrates the comparison of average through-
put with no. of users. We considered six different schemes
for evaluation. It is concluded from the results that our
proposed scheme DRA-EC with D2D users is near to the
RA-CO. The average throughput of both these schemes
is highest compared to others due to heterogeneous and
D2D based network design. The throughput value decreases
when DRA-EC and RA-CO schemes are considered without
D2D. The curve for JSPA-CO has the lowest value because
it is based on a single macrocell instead of a heteroge-
neous network design. The significance of this figure is
that the heterogeneous cellular network setup with macro-
cells, small cells, and D2D is most efficient in managing the
spectrum.

FIGURE 5. Avg. Throughput vs No. of users.

FIGURE 6. Avg. SE vs. No. of D2D pairs.

Fig. 6 depicts the analysis of average achievable SE vs.
no. of D2D pairs. We compared our results with different
schemes as mentioned earlier for evaluation. It is concluded
that our proposed system outperforms in performance and
SE compared to all the other methods except RA-CO. The
SE [b/s/Hz] values in the DRA-EC scheme are very close to
the central optimization, which is fair enough. However, our
proposed distributed system (DRA-EC) performs better than
the central (RA-CO) due to its computational efficiency. All
the calculations will be done in parallel by edge computing
in each BS and then sent to the central controller in the
distributed scheme. This will save time and reduce the load on
the central system. On the other hand, the central optimization
method will take more time in computation, and the entire
load is on a central system.

Fig. 7 demonstrates the relation of average SE achieved vs.
D2D transmit power. The results of the proposed system are
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FIGURE 7. Avg. SE vs. D2D transmit power.

FIGURE 8. Algorithm computation time vs. No. of iterations.

comparedwith other schemes.We varied the value of transmit
power from -5dBm to 30dBm, and the rest of the parameters
are the same as in Table 2. The SE for all the cases increases
with the increase in D2D transmit power, and the value is
highest for both proposed schemes DRA-EC and RA-CO.
The results of distributed optimization are very close to the
central optimization scheme. However, the power should be
increased in a controlled manner because above a specific
value, it will start interfering with the cellular users and will
degrade their performance requirements.

Fig. 8 represents the analysis of computational time taken
by both the schemes DRA-EC and RA-CO. The plot shows
the trend of algorithm computation time vs. no. of iterations.
It can be concluded that the time taken in DRA-EC is sig-
nificantly less than RA-CO because the latter performs all
the processing tasks centrally. This will burden the system
by increasing computation complexity. On the other hand,

in DRA-EC, each base station has its edge computing server
to compute the tasks in parallel. Thus the optimization prob-
lem is solved in a distributed manner so that it will take less
time.

C. PERFORMANCE EVALUATION
We analyzed in detail the performance gap of both algorithms
RA-CO (central) and DRA-EC (distributed) theoretically and
analytically. The primary significance of our proposed dis-
tributed scheme (DRA-EC) is that its performance results are
very close to the central optimization, taking less computation
time than other methods. From the results in Fig. 6, Fig. 7
and Fig. 8 we have proved that our proposed scheme is better
in performance as compared to others. In RA-CO, the central
slice controller gathers data like CSI and interference fromBS
before the resource allocation. This process is very complex
for networks with constantly varying CSI, and when this
information exchange has to repeat many times, that will
burden the network. All the processing performed is central,
which will take a longer time to execute and will slow down
the system performance. On the other hand, the computa-
tional load in our proposed (DRA-EC) scheme is substan-
tially less. Each BS has an edge router in this scheme that
collects the CSI (interference) at the edge layer and optimizes
its resource allocation problem locally. The computational
tasks are distributed in parallel, and the information needed at
each edge router is only from its respective link. The central
controller will then cut the required optimized network slice
according to the results received from each edge server. This
method will save much time and offload the core network,
which will considerably improve system performance. In the
RA-CO approach, the system must know the interference
information among D2D pairs and cellular users (MUs and
SUs) to D2D receivers. This data collection is very com-
plicated practically and will involve much overhead, while
this data is collected locally only in DRA-EC. The iterations
might cause additional overhead, which is pretty low as the
BS is only interested in data collection and broadcasting.

IX. CONCLUSION AND FUTURE RECOMMENDATIONS
This work presents a distributed scheme with resource (spec-
trum) optimization in D2D based under-laying 5G-HCN
with network slicing. The complete system reuses the spec-
trum while considering the effect of interference upon allo-
cating resources to each type of user (MUE, SUE, and
DUE). We have proposed a multi-layered framework for
our model comprising upper and lower layers. The upper
layer solves the UE-BS association problem using a greedy
algorithm and a D2D mode switching problem using a
distance-dependent algorithm. The lower layer solves the
spectrum optimization problem of a complete systemwith the
DRA-EC approach. The proposed scheme distinguishes itself
from existing models because distributed edge computing
devices solve the underlying resource optimization problem.
This approach reduces the load of a central controller and
minimizes the computational time. The results of SE and
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throughput are very close as in the centralized process which
is good enough. After optimization, these results can be used
by central slice controller for efficient utilization of spectrum
by slicing the network according to system demands. Our
proposed scheme can be extended to function at the core
layer of the network to relate backhaul capacitywith spectrum
efficiency and develop techniques for efficient network slic-
ing. In the future, we can create application-based scenarios
for D2D and MEC platforms such as content caching and
information-centric networks. Furthermore, we can formulate
new intelligent schemes of resource allocation in 5G net-
works leveraging machine learning and deep reinforcement
learning techniques.

APPENDIX A
‘‘PROOF OF PROPOSITION 1’’
The 0-1 multiple knapsacks are defined to be as a combina-
torial optimization problem in mathematics as follows:
Definition:Let us assume thatV andW are the sets of items

and knapsacks, respectively. Each item i ε V has a weight
of yi and provides a non-negative profit value of zi, whereas
each knapsack j ε W has a capacity of Yj. The solution to a
given problem is to fill all the knapsacks with the available
items. This technique will maximize the overall profit for
each knapsack without surpassing the total capacity.

By evaluating the above definition for Eq. (7), we get
variables mapping in terms of our problem as:

V = Ua,W = C, i = u, j = c, yi = Rmin,u,Yj = Qma§,

zi = 0c,u.

APPENDIX B
‘‘PROOF OF PROPOSITION 2’’
Let us suppose that the possible (ak ), (aj,l), (adp ) and (δ) are
given.

If we consider Eq. (31) subject to (32) - (40). Obviously,
the proposed function and all its constraints are smooth.
The throughput equations Rk , Rj,l and Rdp are non-linear
logarithmic functions with non-convex constraints (35) - (37).
Therefore,(31) is a smooth, non-linear and non-convex opti-
mization problem. These types of programming problems
have been demonstrated as commonly NP-hard and are com-
putationally troublesome [55]. Moreover, the problem can be
regarded as a throughput (Data-rate) maximization problem
which has already been proved to be NP-hard in [56] and [65]
that further justified the NP-hardness of (31).

APPENDIX C
‘‘PROOF OF PROPOSITION 3’’
[61] investigated the solution of multi-agent constrained
problem using the distributed algorithm. They proved that
the method of augmented Lagrangian multiplier method
converges at a faster rate practically as compared to other
distributed techniques [62]. The convergence relies on the
separability of the global constraints into local constraints.
Once we find the local maxima/minima, then to achieve

the global maxima, we use the consensus-based algorithm.
It is a method to attain an agreement on a particular value
between various distributed procedures. Consensus is built
in a multi-agent system to ensure the reliability of a system.
Finding Solutions for such types of problems are significant
in distributed and multiple nodes systems as proved in [61].
Similarly, our proposed approach can solve this following
these steps.
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