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Abstract.
Purpose: Echocardiography is the most commonly used modality for assessing the heart in clinical practice. In

an echocardiographic exam, an ultrasound probe samples the heart from different orientations and positions, thereby
creating different viewpoints for assessing the cardiac function. The determination of the probe viewpoint forms an
essential step in automatic echocardiographic image analysis.

Approach: In this study, convolutional neural networks are used for the automated identification of 14 different
anatomical echocardiographic views (larger than any previous study) in a dataset of 8,732 videos acquired from 374
patients. Differentiable architecture search approach was utilised to design small neural network architectures for
rapid inference while maintaining high accuracy. The impact of the image quality and resolution, size of the training
dataset, and number of echocardiographic view classes on the efficacy of the models were also investigated.

Results: In contrast to the deeper classification architectures, the proposed models had significantly lower number
of trainable parameters (up to 99.9% reduction), achieved comparable classification performance (accuracy 88.4-
96.0%, precision 87.8-95.2%, recall 87.1-95.1%) and real-time performance with inference time per image of 3.6-
12.6ms.

Conclusion: Compared with the standard classification neural network architectures, the proposed models are
faster and achieve comparable classification performance. They also require less training data. Such models can be
used for real-time detection of the standard views.

Keywords: Deep Learning, Echocardiography, Neural Architecture Search, View Classification, AutoML.

*Neda Azarmehr, n.azarmehr@gmail.com

1 Introduction1

Echocardiography or cardiac ultrasound imaging is the modality of choice for the diagnosis of car-2

diac pathology. Echocardiographic (echo) measurements provide quantitative diagnostic markers3

of cardiac function. Portability, speed, and affordability are the advantages of echo.4

Echo examinations are typically focused upon protocols containing diverse probe positions and5

orientations providing several views of the heart anatomy. Standard echo views require imaging6

the heart from multiple windows. Each window is specified by the transducer position and includes7
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parasternal, apical, subcostal and suprasternal. The orientation of the echo imaging plane produces8

views such as long axis, short axis, four-chamber, and five-chamber.19

Interpretation of echo images begins with view detection. This is a time-consuming and man-10

ual process that requires specialised training and is prone to inter- and intra-observer variability.11

Echo images are very similar and can be particularly challenging for an operator to successfully12

categorise.13

Therefore, accurate automatic classification of heart views has several potential clinical appli-14

cations such as improving workflow, guiding inexperienced users, reducing inter-user discrepancy,15

and improving accuracy for high throughput of echo data and subsequent diagnosis.16

In most current clinical practice, images from different modalities are managed and stored in17

Picture Archiving and Communication Systems (PACS). Recently, add-on echo software packages,18

such as EchoPAC (GE Healthcare) and QLAB (Philips), attempt to automate the analysis and19

diagnosis process. However, they still necessitate human involvement in detecting relevant views.20

As previously stated, echocardiography image frames are not easily discernible by the operator,21

plus there is often background noise. Therefore, automatic view classification could be widely22

beneficial for pre-labelling large datasets of unclassified images.2, 3
23

Application of machine learning algorithms in computer vision has improved the accuracy and24

time-efficiency of automated image analysis, particularly automated interpretation of medical im-25

ages.4–7 However, traditional machine learning methods are constructed using complex processes26

and tend to have a restricted scope and effectiveness.8, 9 Recent advances in the design and appli-27

cation of deep neural networks have resulted in increased possibilities when automating medical28

image-based diagnosis.10, 11
29
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1.1 Approaches to neural network design30

Convolutional neural networks (CNNs) are extremely effective at learning patterns and features31

from digital images and have demonstrated success in many image classification tasks.12, 13 How-32

ever, this success has been accompanied by a growing demand for architecture engineering of33

increasingly more complex deep neural networks through a time-consuming and arduous man-34

ual process. Moreover, the developed architectures are usually dependent on the particular image35

dataset used in the design process, and adapting the architectures to new datasets remains a very36

difficult task that relies on extensive trial and error process and expert knowledge.37

Recently, increased attention has been paid to emerging algorithmic solutions, such as Neural38

Architecture Search (NAS), to automate the manual process of architecture design, and these have39

accomplished highly competitive performance in image classification tasks.14–17 NAS can actually40

be considered as a subfield of automated machine learning (AutoML).18
41

Pivotal to the NAS architecture is the creation of a large collection of potential network ar-42

chitectures. These options are subsequently explored to determine an ideal output with a specific43

combination of training data and constraints, such as network size. Initial NAS approaches, such as44

reinforcement learning19, 20 and evolution,21 search for complete network topology, thus involving45

extremely large search spaces comprised of arbitrary connections and operations between neural46

network nodes. Such complexity results in using massive amounts of energy and requiring thou-47

sands of GPU hours or million-dollar cloud compute bills22 to design neural network architectures.48

Successful NAS approaches, such as Efficient Neural Architecture Search (ENAS) from Google49

Brain15 and more recently Differentiable Architecture Search (DARTS),16 have been shown to re-50

duce the search costs by orders of magnitude, requiring ∼100x fewer GPU hours. These methods51
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leverage an important observation that popular CNN architectures often contain repeating blocks52

or are stacked sequentially. Their effectiveness is thus owing to the key idea of focusing on find-53

ing a small optimal computational cell (as the building block of the final architecture), rather than54

searching for a complete network. The size of the search space is therefore significantly reduced55

since the computational cells contain considerably fewer layers than the whole network architec-56

ture, which would make such approaches potentially viable for solving real-world challenges.57

The DARTS method has been shown to outperform ENAS in terms of the GPU hours required58

for the search process.16 While most NAS studies report experimental results using standard image59

datasets such as CIFAR and ImageNet, the effectiveness of DARTS on scientific datasets, including60

medical images, has also been demonstrated. In this study, the DARTS method for designing61

customised architectures has been adopted.62

1.2 Related work on echocardiography view classification63

Most previous studies on automatic classification of echocardiographic views have used hand-64

crafted features and traditional machine learning techniques, achieving varying degrees of success65

in classifying a limited number of common echocardiographic views.22–30 Following the recent66

success of deep convolutional neural networks in computer vision, and particularly for image clas-67

sification tasks, there has been a handful of reports on the application of deep learning for cardiac68

ultrasound view detection. Herein, we have focused on such studies.69

Gao et al.30 proposed a fused CNN architecture by integrating a deep learning network along70

the spatial direction, and a hand-engineered feature network along the temporal dimension. The71

final classification result for the two-strand-network was obtained through a linear combination of72

the classification scores obtained from each network. They used a dataset of 432 image sequences73
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acquired from 93 patients. For each strand of CNN network implemented using Matlab, it took74

2 days to process all images. Their model achieved an average accuracy rate of 92.1% when75

classifying 8 different echocardiographic views.76

In another study,31 view identification formed part of an automated pipeline designed for the77

interpretation of echocardiograms. The standard VGG architecture was employed as the CNN78

model, and 6 different echocardiographic views were included in the study. The class label for79

each video was assigned by taking the majority decision of predicted view labels on the 10 frames80

extracted from the video. The overall classification accuracy, calculated from the reported confu-81

sion matrix, was 97.7%, and no results for single image classification was reported. In a follow-up82

study,3 they included 23 views (9 of which were 3 apical planes, each one divided into ’no oc-83

clusions’, ’occluded LA’, and ’occluded LV’ categories) from 277 echocardiograms. The reported84

overall accuracy of the VGG model dropped to 84% at an individual image level, with the greatest85

challenge being distinctions among the various apical views. By averaging across multiple images86

from each video, higher accuracies could be achieved.87

Madani et al.32 proposed a CNN model to classify 12 standard B-mode echocardiographic88

views (15 views, including Doppler modalities) using a dataset of 267 transthoracic studies (90%89

used for training-validation, and 10% for testing). An inference latency of 21ms per image was90

achieved for images with a size of 60×80 pixels. They also reported an average overall accuracy91

of 91.7% for classifying single frames, compared to an average of 79.4% for expert echocardiog-92

raphers classifying a subset of the same test images. However, this may not be a fair comparison as93

the expert humans were given the same downsampled images that were fed into the CNN model,94

but the human experts are not trained and have no experience of working with such low-resolution95

images. Later on, they reported an improved classification accuracy of 93.64% by first applying96
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a segmentation stage, where the field of view was extracted from the images using U-net model33
97

and the isolated image segment was then fed into the classifier.34
98

In a more recent study,6 a CNN model was proposed with the aim to balance accuracy and99

effectiveness. The design was inspired by the Inception35 and DenseNet36 architectures. The per-100

formance of the model was examined using a dataset of 2559 image sequences from 265 patients,101

and an overall accuracy of 98.3% was observed for classifying 7 echocardiographic views. The102

reported inference time was 4.4 ms and 15.9 ms when running the model on the GPU and CPU,103

respectively, for images with a size of 128×128 pixels.104

Vaseli et al.37 reported on designing a lightweight model with the knowledge of three state-of-105

the-art networks (VGG16, DenseNet, and ResNet) for classifying 12 echocardiographic views. A106

maximum accuracy of 88.1% was observed using their lightweight models, with a minimum infer-107

ence time of 52µs for images with a size of 80×80 pixels. However, the reported accuracies are108

provided for classifying cine loops, and are computed as the average of the predictions for all con-109

stituent frames in each cine loop. It is unclear how many frames constituted a cine loop. For a cine110

loop containing 120 frames (time-window of 2s acquired at 60 frames/s), therefore, an inference111

time of ≥6.2ms would be required to achieve the reported accuracy. A more rigorous examina-112

tion of their models also seems necessary and, as apparent from the provided confusion matrices,113

a great majority of the reported misclassifications, seen as a failure of the models, occurred for114

parasternal short-axis views.115

1.3 Main contributions116

Given our two competing objectives of minimising the neural network size and maximising its117

prediction accuracy, this study aims to adopt the recent NAS solution of DARTS for designing118
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efficient neural networks. To the best of our knowledge, no other study has applied DARTS to the119

complex problem of echocardiographic views classification.120

In our study, we also aimed at including subclasses of a given echocardiographic view. In121

general, the more numerous the view classes, the more difficult the task of distinguishing the122

views for the CNN model. This is because if a group of images is considered as a single view in123

one study and as multiple views in another, those multiple views are likely to be relatively similar124

in appearance. Perhaps this is one of the primary reasons for the wide range of accuracies (84-97%)125

reported in the literature.126

We have previously reported on preparation and annotation of a large patient dataset, covering127

a range of pathologies and including 14 different echocardiographic views, which we used for128

evaluating the performance of existing standard CNN architectures.38 In this study, we will use129

this dataset to design customised network architectures for the task of echo view classification.130

The input image resolution could potentially impact the classification performance. In case131

of aggressively downsampled images, the relevant features may in fact be lost, thus lowering the132

classification accuracy. On the other hand, unnecessarily large images would result in more com-133

putations. Nevertheless, all previous reports considered one particular (but dissimilar in different134

studies) image resolution, the selection of which was always unexplained. Herein, we have thus135

looked at the impact of different input image resolutions.136

The accuracy of deep learning classifiers is largely dependent on the size of high-quality initial137

training datasets. Collecting an adequate training dataset is often the primary obstacle of many138

computer vision classification tasks. This could be particularly challenging in medical imaging139

where the size of training datasets are scarce, e.g. because the images can only be annotated by140

skilled experts. Hence, it would be advantageous to require less training data. Therefore, we141
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examined the influence of the size of training data on the model’s performance for each of the142

investigated networks in this study.143

No matter how ingenious the deep learning model, image quality places a ceiling on the reli-144

ability of any automated image analysis. Echocardiograms inherently suffer from relatively poor145

image quality. Therefore, we also looked at the impact of image quality on the classification per-146

formance.147

In light of the above, the main contributions of this study can be summarised as follows:148

• Inclusion of 14 different anatomical echocardiographic views (outlined in Figure 1); larger149

than any previous study. We also examined the cases when only 7 or 5 different views were150

included to investigate the impact of the number of views on the detection accuracy.151

• Analysis of three well-known network topologies and of a proposed neural network, ob-152

tained from applying NAS techniques to design network topologies with far fewer trainable153

parameters and comparable/better accuracy for echo view classification.154

• Analysis of computational and accuracy performance of the developed models using our155

large-scale test dataset.156

• Analysis of the impact of the input image resolution; 4 different image sizes were investi-157

gated.158

• Analysis of the influence of the size of training data on the model’s performance for all159

investigated networks.160

• Analysis of the correlation between the image quality and accuracy of the model for view161

detection.162
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Fig 1 The 14 cardiac views in transthoracic echocardiography: apical two-chamber (A2CH), apical three-chamber
(A3CH), apical four-chamber left ventricle focused (A4CH-LV), apical four-chamber right ventricle focused (A4CH-
RV), apical five-chamber (A5CH), parasternal long-axis (PLAX-Full), parasternal long-axis tricuspid valve focused
(PLAX-TV), parasternal long-axis valves focused (PLAX-Valves), parasternal short-axis aortic valve focused (PSAX-
AV), parasternal short-axis left ventricle focused (PSAX-LV), subcostal (Subcostal), subcostal view of the inferior
vena cava (Subcostal-IVC), suprasternal (Suprasternal), and apical left atrium mitral valve focused (LA/MV).

2 Dataset163

In this section, a brief account of the patient dataset used in this study is provided. A detailed164

description, including patient characteristics, can be found in Howard et al.38
165

A random sample of 374 echocardiographic examinations of different patients and performed166

between 2010 and 2020 was extracted from Imperial College Healthcare NHS Trust’s echocardio-167

gram database. The acquisition of the images was performed by experienced echocardiographers168

and according to standard protocols, using ultrasound equipment from GE and Philips manufac-169

turers.170

Ethical approval was obtained from the Health Regulatory Agency (Integrated Research Ap-171
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plication System identifier 243023). Only studies with full patient demographic data and without172

intravenous contrast administration were included. Automated anonymization was performed to173

remove all patient-identifiable information.174

The videos were annotated manually by an expert cardiologist (JPH), categorising each video175

into one of 14 classes which are outlined in Figure 1. Videos thought to show no identifiable176

echocardiographic features, or which depicted more than one view, were excluded. Altogether,177

this resulted in 9,098 echocardiographic videos. Of these, 8,732 (96.0%) videos could be classified178

as one of the 14 views by the human expert. The remaining 366 videos were not classifiable as a179

single view, either because the view changed during the video loop, or because the images were180

completely unrecognisable. The cardiologist’s annotations of the videos were used as the ground181

truth for all constituent frames of that video.182

DICOM-formatted videos of varying image sizes (480×640, 600×800, and 768×1024 pixels)183

were then split into constituent frames, and three frames were randomly selected from each video184

Fig 2 Distribution of data in the training, validation and test dataset; values show the number of frames in a given
class.
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to represent arbitrary stages of the heart cycle, resulting in 41,321 images. The dataset was then185

randomly split into training (24791 images), validation (8265 images), and testing (8265 images)186

sub-datasets in a 60:20:20 ratio. Each sub-datasets contained frames from separate echo studies to187

maintain sample independence.188

The relative distribution of echo view classes labelled by the expert cardiologist is displayed in189

Figure 2 and indicates an imbalanced dataset, with a ratio of 3% (Subcostal-IVC view as the least190

represented class) to 13% (PSAX-AV view as the dominant view).191

3 Method192

Details of the well-known classification network architectures investigated in this study (i.e., VGG16,193

ResNet18, and DenseNet201) can be found in relevant resources.36, 39, 40 Here, a detailed descrip-194

tion of the designed CNN models will be provided.195

3.1 DARTS method196

Proposed by Liu et al. in 2019,16 DARTS formulates the architecture search task in a differentiable197

manner. Unlike conventional approaches of applying evolution21, 41 or reinforcement learning14, 42
198

over a discrete and non-differentiable search space, DARTS is based on the continuous relaxation199

of the architecture representation, allowing an efficient search of the architecture using gradient200

descent.201

DARTS method consists of two stages: architecture search and architecture evaluation. Given202

the input images, it first embarks on an architecture search to explore for a computation cell (a203

small unit of convolutional layers) as the building block of the neural network architecture. After204

the architecture search phase is complete and the optimal cell is obtained based on its validation205
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performance, the final architecture could be formed from one cell or a sequential stack of cells.206

The weights of the optimal cell learnt during the search stage are then discarded, and are initialised207

randomly for retraining the generated neural network model from scratch.208

A cell, depicted in Figure 3, is an ordered sequence of several nodes in which one or multi-209

ple edges meet. Each node C(i) represents a feature map in convolutional networks. Each edge210

(i,j) is associated with some operation O(i,j), transforming the node C(i) to C(j). This could be a211

combination of several operations, such as convolution, max-pooling, and ReLU.212

Each intermediate node C(j) is computed based on all of its predecessors as:213

C (j) =
∑
i<j

O(i,j)
(
C(i)

)
(1)

Instead of applying a single operation (e.g., 5×5 convolution), and evaluating all possible oper-214

ations independently (each trained from scratch), DARTS places all candidate operations on each215

edge (e.g., 5×5 convolution, 3×3 convolution, and max-pooling represented in Figure 3 by red,216

blue, and green lines, respectively). This allows sharing and training their weights in a single pro-217

cess. The task of learning the optimal cell is effectively finding the optimal placement of operations218

at the edges.219

The actual operation at each edge is then a linear combination of all candidate operations O(i,j),220

weighted by the softmax output of the architecture parameters α(i,j):221

Ō(i,j)(C) =
∑
o∈∂

exp(αo
(i,j))∑

o′∈∂exp(α
(i,j)
o′ )

O(C) (2)

Optimization of the continuous architecture parameters α is carried out using gradient descent222
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Fig 3 Schematic of a DARTS cell. Left: a computational cell with four nodes C0-C3. Edges connecting the nodes
represent some candidate operations (e.g., 5×5 convolution, 3×3 convolution, and max-pooling represented in Fig-
ure 3 by red, blue, and green lines, respectively). Right: the best-performing cell learnt from retaining the optimal
operations. Figure inspired by Elsken et al.43

on the validation loss. The mixed operation Ō(i,j) is then replaced by the operation O(i,j) correspond-223

ing to the highest weight:224

O(i,j) = argmaxo∈∂ α
(i,j)
0 (3)

An example final cell architrave is displayed in the right panel, in Figure 3. The task of archi-225

tecture search is learning a set of continuous variables in vector α(i,j).226

The training loss Ltrain and validation loss Lval are determined by the architecture parameters227

α and the weights ω in the network. The learning of α is performed in conjunction with learning228

of ω within all the candidate operations (e.g., weights of the convolution filters).229

DARTS seeks to find the architecture α* that minimises Lval(ω*, α*), where the weights ω*230

associated with the architecture minimise the training loss ω* = argminω Ltrain(ω, α*), This indi-231
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cates a bi-level optimization problem as:232

min
α

Lval(ω∗(α), α) (4)

233

such.that ω∗(α) = argminω Ltrain(ω, α) (5)

It is computationally expensive to solve the optimization problem precisely; i.e., computing the234

true loss by training ω for each architecture. Utilising a one-step approximation, the training of α235

and ω is performed by alternating the gradient steps in the weights and the architecture parameters.236

The weights are optimized by descending in the direction∇ωLtrain(ω, α), while α is optimized237

by descending in the direction ∇αLval(ω - ξ∇ωLtrain(ω, α),α), where ξ is equal to the learning238

rate for the weights optimiser.239

Two types of cells are defined and optimized in DARTS:240

• Normal Cell which maintains the output spatial dimension the same as input241

• Reduction Cell which reduces the output spatial dimension while increasing the number of242

filters/channels243

The final architecture is then formed by stacking these cells.244

3.2 DARTS parameters for architecture search245

For the stage of architecture search, 80% of the dataset was held out for equally-sized training and246

validation subsets, and 20% for testing. Images were normalised and downsampled to 4 different247

14



sizes of 32×32, 64×64, 96×96, and 128×128 pixels, with corresponding batch sizes of 64, 14, 8,248

and 4, respectively.249

The following candidate operations were included in the architecture search stage: 3×3 and250

5×5 separable convolutions, 3×3 and 5×5 dilated separable convolutions, 3×3 max-pooling, 3×3251

average-pooling, skip-connection, and zero. For the convolutional operations, a ReLU-Conv-BN252

order was used. If applicable, the operations were of stride one. The convolved feature maps were253

padded to preserve their spatial size.254

A network of 8 cells was then used to conduct the search for a maximum of 30 epochs. The255

initial number of channels was 16 to make sure the network could fit into a single GPU. Stochastic256

Gradient Decent (SGD) with a momentum of 0.9, initial learning rate of 0.1, and weight decay of257

3× 10−4 was used to optimise the weights. To obtain enough learning signal, DARTS utilises zero258

initialization for architecture variables indicating the same amount of attention over all possible259

operations as it is taking the softmax after each operation.260

Adam optimiser44 with an initial learning rate of 0.1, momentum of (0.5, 0.999), and weight261

decay of 10−3 were used as the optimiser for α.262

3.3 Models training parameters263

Training occurred subsequently, using annotations provided by the expert cardiologist. It was264

carried out independently for each of the 4 different image sizes of 32×32, 64×64, 96×96, and265

128×128 pixels. Identical training, validation, and testing datasets were used in all network mod-266

els. The validation dataset was used for early stopping to avoid redundant training and overfitting.267

Each model was trained until the validation loss plateaued. The test dataset was used for the per-268

formance assessment of the final trained models. The DARTS models were kept blind to the test269
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dataset during the stage of architecture search.270

Adam optimiser with a learning rate of 10−4 and a maximum number of 800 epochs was used271

for training the models. The cross-entropy loss was used as the networks objective function. For272

training the DARTS model, a learning rate of 0.1 deemed to be a better compromise between speed273

of learning and precision of result and was therefore used. A batch size of 64 or the maximum274

which could be fitted on the GPU (if <64) was employed.275

It is evident from Figure 2 that the dataset is fairly imbalanced with unequal distribution of276

different echo views. To prevent potential biases towards more dominant classes, we used online277

batch selection where the equal number of samples from each view were randomly drawn (by278

over-sampling of underrepresented classes). This led to training on a balanced dataset representing279

all classes in every epoch. An epoch was still defined as the number of iterations required for the280

network to meet all images in the training dataset.281

3.4 Evaluation metrics282

Several metrics were employed to evaluate the performance of the investigated models in this study.283

Overall accuracy was calculated as the number of correctly classified images as a fraction of the284

total number of images. Macro average precision and recall (average overall views of per-view285

measures) were also computed. F1 score was calculated as the harmonic mean of the precision286

and recall. Since this study is a multi-class problem, F1 score was the weighted average, where the287

weight of each class was the number of samples from that class.288

PyTorch45 was used to implement the models. For the computationally intensive stage of archi-289

tecture search, a GPU server equipped with 4 NVIDIA TITAN RTX GPUs with 64 GB of memory290

was rented. For the subsequent training of the searched networks and also the standard models, the291
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Fig 4 Optimal normal and reduction cells for the input image size of 128×128 pixels, as suggested by the DARTS
method, where 3×3 and 5×5 dilated separable convolutions, 3×3 max-pooling, and skip-connection operations have
been retained from the candidate operations initially included. Each cell has 2 inputs which are the cell outputs in
the previous two layers. The output of the cell is defined as the depth-wise concatenation of all nodes in the cell. A
schematic view of the ”2-cell-DARTS”, formed from a sequential stack of 2 cells, is also displayed on the left. Stem
layer incorporates a convolution layer and a batch normalisation layer.

utilised GPU was an Nvidia QUADRO M5000 with 8 GB of memory, representing a more widely292

accessible hardware for real-time applications. Inference time (latency time for classifying each293

image) was also estimated with the trained models running on the GPU. To this end, a total of 100294

images were processed in a loop, and the average time was recorded. All training/prediction com-295

putations were carried using identical hardware and software resources, allowing for a fair com-296

parison of computational time-efficiency between all network models investigated in this study.297

The number of trainable parameters in the model, as well as the training time per epoch was298

also recorded for all CNN networks.299
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Table 1 Experimental results on the test dataset for input sizes of (32×32), (64×64), (96×96) and (128×128) and dif-
ferent network topologies. Accuracy is ratio of correctly classified images to the total number of images; precision and
recall are the macro average measures (average overall views of per-view measures); F1 score is the harmonic mean
of precision and recall. The values in bold indicate the best performance for each measure.* For these experiments, a
maximum batch size of <64 could be fitted on the GPU.

Network Accuracy Precision Recall F1 Score Parameters Inference Time Time/epoch
(%) (%) (%) (%) (thousands) (ms) (s)

(32×32)

1-cell-DARTS 88.4 87.8 87.1 87.4 58 3.6 41
2-cell-DARTS 93.0 92.5 92.3 92.3 411 7.0 46

ResNet18 90.6 89.9 89.7 89.8 11,177 11.8 184
Vgg16 90.7 89.9 89.5 89.6 134,316 8.3 210

DenseNet201 88.3 87.9 87.0 87.4 20,013 119 1303
(64×64)

1-cell-DARTS 90.0 89.4 88.7 89.0 92 6.5 81
2-cell-DARTS 95.0 94.7 94.2 94.4 567 12.6 121

ResNet18 92.1 91.5 91.7 91.5 12.0 185
Vgg16 92.4 91.5 92.2 91.8 8.5 240

DenseNet201 93.1 92.5 92.8 92.6 127.3 1322
(96×96)

1-cell-DARTS 93.2 92.8 92.3 92.5 101 7.2 141
2-cell-DARTS 95.4 95.1 94.9 94.9 669 14.2 264

ResNet18 93.1 92.4 92.2 92.3 12.1 186
Vgg16 93.6 92.9 93.0 92.9 8.6 276

DenseNet201 93.8 93.0 93.3 93.1 129.0 1336
(128×128)

1-cell-DARTS 92.5 92.3 91.4 91.8 89 5.9 180
2-cell-DARTS 96.0 95.2 95.1 95.1 545 11.8 380*

ResNet18 92.9 92.6 92.2 92.4 12.2 196
Vgg16 93.2 92.1 92.7 92.3 9.0 429*

DenseNet201 93.8 93.1 93.2 93.1 129.4 1605*
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4 Results and Discussion300

4.1 Architecture search301

The search took∼6, 23, 42, and 92 hours for image sizes of 32×32, 64×64, 96×96, and 128×128302

pixels, respectively, on the computing infrastructure described earlier (section 3.4). Figure 4303

displays the best convolutional normal and reduction cells obtained for the input image size of304

128×128 pixels. The retained operations were 3×3 and 5×5 dilated convolutions, 3×3 max-305

pooling, and skip-connection. Each cell is assumed to have 2 inputs which are the outputs from the306

previous and penultimate cells. The output of the cell is defined as the depth-wise concatenation307

of all nodes in the cell.308

Two network architectures were assembled from the optimal cell; ”1-cell-DARTS” comprised309

of one cell only, and ”2-cell-DARTS” formed from a sequential stack of 2 cells. Addition of310

more cells to the network architecture did not significantly improve the prediction accuracy, as311

reported in the next section, but increased the number of trainable parameters in the model and312

thus the inference time for view classification. Therefore, the models with more than 2 cells, i.e.313

architectures with redundancy, were judged as being comparatively inefficient and thus discarded.314

Figure 4 (left side) also displays the full architecture for the ”2-cell-DARTS” model for the input315

image size of 128×128 pixels.316

4.2 View classification317

Results for 5 different network topologies and different image sizes are provided in Table 1. De-318

spite having significantly fewer trainable parameters, the two DARTS models showed competitive319

results when compared with the standard classification architectures (i.e., VGG16, ResNet18, and320

DenseNet201). The 2-cell-DARTS model, with only ∼0.5m trainable parameters, achieves the321
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Fig 5 Confusion matrix for the 2-cell-DARTS model and input image resolution of 128×128 pixels.

best accuracy (93-96%), precision (92.5-95.2%), and recall (92.3-95.1%) among all networks and322

across all input image resolutions. Deeper standard neural networks, if employed for echo view323

detection, would therefore be significantly redundant, with up to 99% redundancy in trainable324

parameters.325

On the other hand, while maintaining a comparable accuracy to standard network topologies,326

the 1-cell-DARTS model has ≤0.09m trainable parameters and the lowest inference time amongst327

all models and across different image resolutions (range 3.6-7.2ms). This would allow processing328

about 140-280 frames per second, thus making real-time echo view classification feasible.329

Compared with manual decision making, this is a significant speedup. Although the identifi-330

cation of the echo view by human operators is almost instantaneous (at least for easy cases), the331

average time for the overall process of displaying/identifying/recording the echo view takes several332

seconds.333
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Fig 6 t-Distributed Stochastic Neighbor Embedding (t-SNE) visualisation of 14 echo views from the 2-cell-DARTS
model (128×128 image size). Each point represents an echo image from the test dataset, and different colored points
represent different echo view classes.

Having fewer trainable parameters, both DARTS models also exhibit faster convergence and334

shorter training time per epoch than standard deeper network architectures: 157±116s vs. 622±576s,335

respectively, for the training dataset we used.336

The confusion matrix for the 2-cell-DARTS model and image resolution of 128×128 pixels337

is provided in Figure 5. The errors appear predominantly clustered between a certain pair of338

views which represent anatomically adjacent imaging planes. The A5CH view proves to be the339

hardest one to detect (accuracy of about 80%), as the network is confused between this view and340

other apical windows. This is in line with previous observations that the greatest challenge lies in341

distinguishing between the various apical views.31
342

Interestingly, the two views the model found most difficult to correctly differentiate (A4CH-343

LV versus A5CH, and A2CH versus A3CH) were also the two views on which the two experts344
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Fig 7 Three different misclassified examples predicted by the 2-cell-DARTS model for the image resolution of
128×128 pixels.

disagreed most often.38 The A4CH view is in an anatomical continuity with the A5CH view. The345

difference is whether the scanning plane has been tilted to bring the aortic valve into view, which346

would make it A5CH. When the valve is only partially in view, or only in view during part of the347

cardiac cycle, the decision becomes a judgement call and there is room for disagreement. Similarly,348

the A3CH view differs from the A2CH view only in a rotation of the probe anticlockwise, again to349

bring the aortic valve into view350

It is also interesting to note that the misclassification is not fully asymmetrical. For instance,351

while 42 cases of A5CH images are confused with A4CH-LV, there are only 14 occasions of352

A4CH-LV images mistaken for A5CH.353

On the other hand, echo views with distinct characteristics are easier for the model to distin-354

guish. For instance, PLAX-full and Suprasternal seem to have higher rates of correct identification,355

and the network is confused only on one occasion between these two views.356

This is also evident on the t-Distributed Stochastic Neighbor Embedding (t-SNE) plot in Figure357

6, which displays a planar representation of the internal high-dimensional organization of the 14358

trained echo view classes within the network’s final hidden layer (i.e. input data of the fully359

connected layer). Each point in the t-SNE plot represents an echo image from the test dataset.360
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Noticeably, not only has the network grouped similar images together (a cluster for each view,361

displayed with different color), but it has also grouped similar views together (highlighted with a362

unique background color). For instance, it has placed A5CH (blue) next to A4CH (dark brown),363

and indeed there is some ”interdigitation” of such cases, e.g. for those whose classification between364

A4CH and A5CH might be debatable. Similarly, at the top right, the network has discovered that365

the features of the Subcostal-IVC images (green) are similar to the Subcostal images (red). This366

shows that the network can point to relationships and organizational patterns efficiently.367

Figure 7 shows examples of misclassified cases, when the prediction of the 2-cell-DARTS368

model disagreed with the expert annotation. The error can be explained by the inherent difficulty369

of deciding, even for cardiologist experts, between views that are similar in appearance to human370

eyes and are in spatial continuity (case of A4CH / A5CH mix-up), images of poor quality (case of371

A4CH / PSAX mix-up), or views in which a same view-defining structure may be present (case of372

PSAX-LV / PSAX/AV mix-up).373

4.3 Impact of image resolution, quality, and dataset size374

The models seem to exhibit a plateau of accuracy between the two larger image resolutions of375

96×96 and 128×128 pixels (Fig 8). On the other hand, for the smaller image size of 32×32376

pixels, the classification performance seems to suffer across all network models, with a 2.3-5.1%377

reduction in accuracy relative to the resolution of 96×96 pixels.378

Shown in Figure 9’s upper panel, is the class-wise view detection accuracy for various input379

image resolutions. Notably, not all echo views are affected similarly by using lower image reso-380

lutions. The drop in overall performance is therefore predominantly caused by a marked decrease381

in detection accuracy of only certain views. For instance, A4CH-RV suffers a sharp reduction of382
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Fig 8 Comparison of accuracy for different classification models and different image resolutions; image width of 32
correspond to the image resolution of 32×32 pixels.

>10% in prediction accuracy when dealing with images of 32×32 pixels.383

Figure 9’s lower panel shows the relative confusion matrix, illustrating the improvement asso-384

ciated with using image resolution of 96×96 versus 32×32 pixels. Being already a difficult view385

to detect even in higher resolution images, A5CH will have 47 more cases of misclassified images386

when using images of 32×32 pixels. Overall, apical views seem to suffer the most from lower387

resolution images, being mainly misclassified as other apical views. For instance, the two classes388

associated with the A4CH will primarily be mistaken for one another. This is likely because, with389

a decreased resolution, the details of their distinct features would be less discernible by the net-390

work. Conversely, parasternal views seem to be less affected, and still detectable in downsampled391

images. This could be owing to the fact that the relevant features, on which the model relies for392

identifying this view, are still present and visible to the model.393
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Fig 9 Accuracy of the 2-cell-DARTS model for various input image resolutions. Upper: class-wise prediction accu-
racy. Lower: relative confusion matrix showing improvement associated with using image resolution of 96×96 versus
32×32 pixels.

Overall, and for almost all echo views, the image size of 96×96 pixels appeared to be a good394

compromise between classification accuracy and computational costs.395

To examine the influence of the size of the training dataset on the model’s performance, we396
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Fig 10 Comparison of accuracy of different classification models for image size of 128×128 versus different fragments
of training dataset used when training the models. For each sub-dataset, all models were retrained from scratch.

conducted an additional experiment where we split the training data into sub-datasets with strict397

inclusion relationship (i.e., having the current sub-dataset a strict subset of the next sub-dataset),398

and ensured all the sub-datasets were consistent (i.e., having the same ratio for each echo view as in399

the original training dataset). We then retrained all targeted neural networks on these sub-datasets400

from scratch, and investigated how their accuracy varied with respect to the size of the dataset401

used for training the model. The size of the validation and testing datasets, however, remained402

unchanged.403

Figure 10 shows a drop in the classification accuracy across all models when smaller sizes of404

training data are used for training the networks. However, various models are impacted differently.405

Suffering from redundancy, deeper neural networks require more training data to achieve similar406

performances. DenseNet, with the largest number of trainable parameters, appears to be the one407

which suffers the most, with a 20% reduction in its classification accuracy, when only 8% of the408

training dataset is used.409
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However, the DARTS-based models appear to be relatively less profoundly affected by the size410

of the training dataset, where both models demonstrate no more than 8% drop in their prediction411

accuracy when deprived of the full training dataset. When using fewer than 12,400 images (i.e.,412

50% of the training dataset), both DARTS-based models exhibit superior performance over the413

deeper networks.414

Additionally, we hypothesised that the more numerous the echo view classes, the more difficult415

the task of distinguishing the views for deep learning models, e.g. because of more chances of416

misclassifications among classes. This is potentially the underlying reason for the inconsistent417

accuracies (84-97%) reported in the literature when classifying between 6 to 12 different view418

classes. To investigate this premise, we considered cases when only 5 or 7 different echo views419

were present in the dataset. To this end, rather than reducing the number of classes by merging420

several views to create new classes which may not be clinically very helpful, we were selective in421

choosing some of the existing classes. For each study, we aimed at including views representing422

anatomically adjacent or similar imaging planes such as apical windows (thus challenging for the423

models to distinguish), as well as other echo windows. The list of echo views included in each424

study is provided in Table 2.425

The results show an increase in the overall prediction accuracy for the two DARTS-based426

models, when given the task of detecting fewer echo view classes and despite having relatively427

smaller training datasets to learn from. The 1-cell-DARTS model shows 8% improvement in its428

performance when the number of echo views is reduced from 14 to 5. The 2-cell-DARTS model429

reaches a maximum accuracy of 99.3%, i.e. higher than any previously reported accuracies for430

echo view classification. This highlights the fact that for a direct comparison of the classification431

accuracy between the models reported in literature, the number of different echo windows included432
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Table 2 The dependence of overall accuracy on the number of echo views; experimental results on the test dataset with
5, 7, and 14 classes for different network topologies, and image resolution of 64×64 pixels. The 7-class study included
A2CH, A3CH, A4CH-LV, A5CH, PLAX-full, PSAX-LV, Subcostal-IVC, and a total of 24464 images. The 5-class
study included A4CH-LV, PLAX-full, PSAX-AV, Subcostal, Suprasternal, and a total of 18896 images. Accuracy is
ratio of correctly classified images to the total number of images; precision and recall are the macro average measures
(average overall views of per-view measures); F1 score is the harmonic mean of precision and recall.
Network Accuracy Precision Recall F1 Score Parameters Inference Time Time/epoch

(%) (%) (%) (%) (thousands) (ms) (s)

1-cell-DARTS

14-classes 90.0 89.4 88.7 89.0 92 6.5 81
7-classes 96.4 96.1 96.1 96.1 110 7.8 58
5-classes 98.1 98.3 97.9 98.1 85 6.6 38

2-cell-DARTS

14-classes 95.0 94.7 94.2 94.4 567 12.6 121
7-classes 97.0 96.9 96.7 96.8 709 15.6 85
5-classes 99.3 99.3 99.1 99.2 556 12.9 55

Fig 11 Correlation between the classification accuracy and the image quality (judged by the expert cardiologist) of
A4CH-LV view in the test dataset. Area of the bubbles represent the relative frequency of the images in that quality
score category. Results correspond to the the 2-cell-DARTS model and image resolution of 128×128 pixels. Here,
p-value is the probability that the null hypothesis is true; i.e., the probability that the correlation between image quality
and classification accuracy in the sample data occurred by chance.

in the study must be taken into account.433

Finally, in order to study the impact of image quality on the classification performance, we434
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asked a second expert cardiologist to provide an assessment of image quality in the A4CH-LV435

views, and assign a quality label to each image where the quality was classified into 5 grades:436

very poor, poor, average, good, and excellent. Figure 11 displays the relationship between the437

classification accuracy of the 2-cell-DARTS model and the image quality in the test dataset. The438

area of the bubbles represents the relative frequency of the images in that quality score category,439

with the ”good” category as the dominant grade. This is likely because the image acquisition had440

been performed mainly by experienced echocardiographers.441

The correlation between the classification accuracy and the image quality is evident (p-value of442

0.01). Images labelled as having ”excellent” quality, indicated the highest classification accuracy443

of ∼100%. It is apparent that the discrepancy between the model’s prediction and the expert444

annotation is higher in poor quality images. This could potentially be due to the fact that poorly445

visible chambers with a low degree of endocardial border delineation could result in some views446

being mistaken for other apical windows.447

4.4 Study limitations and future work448

This study sheds light on several possible directions for future work. Herein, we have focused on449

the rapid and accurate classification of individual frames from an echo cine loop. Such a task will450

be crucial for a real-time view detection system in clinical scenarios where images need to be pro-451

cessed while they are acquired from the patient and/or where the system is to be used for operator452

guidance. However, for offline studies and when the entire cine loop is available, classification of453

the echo videos could also be of practical use. Some studies have attempted video classification454

using the majority vote on some or all frames from a given video.6, 34 However, this approach does455

not use the temporal information available in the cine loop, such as the movement of structures456
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during the cardiac cycle. Therefore, a future study could look into using all available information457

for view detection.458

Our study investigated 2D echocardiography as the clinically relevant modality. Currently,459

3D echocardiography suffers from a considerable reduction in frame rate and image quality, and460

this has limited its adoption into routine practice over the past decade.46–48 When such issues are461

resolved, automatic processing of the 3D modality could also be explored. In the meantime, 2D462

echocardiography remains unrivalled, particularly when high frame rates are needed.463

We investigated the impact of image quality on the classification accuracy for apical four-464

chamber views only. A more comprehensive examination of the image quality and its influence on465

the detection of different echo views would be informative.466

The dataset used in this study was comprised of images acquired using ultrasound equipment467

from GE and Philips manufacturers. Although the proposed models do not make any a priori468

assumptions on data obtained from specific vendors and therefore should be vendor-neutral, echo469

studies using more diverse ultrasound equipment should still be explored.470

Similar to all previous studies, our dataset originated from one medical centre, i.e. Imperial471

College Healthcare NHS Trust’s echocardiogram database. Representative multi-centre patient472

data will be essential for ensuring that the developed models will scale up well to other sites and473

environments.474

Interpreting the results of the proposed models alongside other proposed architectures in the475

literature (with a wide range of reported accuracies) was not feasible. This is due to the fact that a476

direct comparison of the classification accuracy would require access to the same patient dataset.477

At present, no echocardiography dataset and corresponding annotations for view detection are478

publicly available.479
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In order to address such broadly acknowledged shortcomings in the application of deep learn-480

ing to echocardiography, we are now developing Unity (data.unityimaging.net), a UK collabora-481

tive of cardiologists, physiologists and computer scientists, under the aegis of the British Society482

of Echocardiography. An image analysis interface has been developed in the form of a web-based,483

interactive, real-time platform to capture carefully-curated expert annotations from numerous echo484

specialists, with patient data provided by over a dozen sites across the UK, thus ensuring cover-485

age of multiple vendors, systems and environments. All developed models designed using this486

annotation biobank (e.g., automated cardiac phase detection,49 left ventricular segmentation,50 and487

view classification in current study), will be made available under open-source agreements on488

intsav.github.io.489

5 Conclusion490

In this study, efficient CNN architectures are proposed for automated identification of the 2D491

echocardiographic views. The DARTS method was used in designing optimized architectures492

for rapid inference while maintaining high accuracy. A dataset of 14 different echocardiographic493

views was used for training and testing the proposed models. Compared with the standard classi-494

fication CNN architectures, the proposed models are faster and achieve comparable classification495

performance. Such models can thus be used for real-time detection of the standard echo views.496

The impact of image quality and size of the training dataset on the efficacy of the models was497

also investigated. Deeper neural network models, with a large number of redundant trainable pa-498

rameters, require more training data to achieve similar performances. A direct correlation between499

the image quality of classification accuracy was observed.500

The number of different echo views to be detected has a direct impact on the performance of501
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the deep learning models, and must be taken into account for a fair comparison of classification502

models.503

Aggressively downsampled images will result in losing relevant features, thus lowering the504

prediction accuracy. On the other hand, while much larger images may be favoured for some505

fine grained applications (e.g., segmentation), their use for echo view classification would offer506

only slight improvements in performance (if any) at the expense of more processing and memory507

requirements.508
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