

UWL REPOSITORY repository.uwl.ac.uk

Comprehensive analysis of transcriptomics and metabolomics to understand the flesh quality regulation of crucian carp (Carassius auratus) treated with short term micro-flowing water system

Du, H, Xiong, S, Lv, H, Zhao, S and Manyande, Anne ORCID: https://orcid.org/0000-0002-8257-0722 (2021) Comprehensive analysis of transcriptomics and metabolomics to understand the flesh quality regulation of crucian carp (Carassius auratus) treated with short term micro-flowing water system. Food Research International, 147. p. 110519. ISSN 0963-9969

http://dx.doi.org/10.1016/j.foodres.2021.110519

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/7957/

Alternative formats: If you require this document in an alternative format, please contact: <u>open.research@uwl.ac.uk</u>

Copyright: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy: If you believe that this document breaches copyright, please contact us at <u>open.research@uwl.ac.uk</u> providing details, and we will remove access to the work immediately and investigate your claim.

1	Comprehensive analysis of transcriptomics and metabolomics to understand the flesh
2	quality regulation of crucian carp (Carassius auratus) treated with short term micro-flowing
3	water system
4	Hongying Du ^{a, b} ; Shanbai Xiong ^{a, b, *} ; Hao Lv ^a ; Siming Zhao ^{a, b} ; Anne Manyande ^c
5	
6	^a Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food
7	Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
8	^b National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei
9	430070, P.R. China
10	^c School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
11	
12	
13	* Corresponding author

14 Shanbai Xiong: Email: xiongsb@mail.hzau.edu.cn; Phone: 86-27-87288375;

15 Abstract

The short term micro-flowing purification system (STMFPS) has been shown to improve the flesh 16 17 quality of freshwater fish. However, few studies have focused on the involved underlying mechanisms. This study explored the effect of STMFPS on the flesh quality of market-size 18 19 freshwater fish based on the combination of metabolomics and transcriptomics methods. The 20 UPLC-QTOF/MS based metabolomics method was utilized to screen metabolites and predict the 21 possible major metabolic pathways during different STMFPS treatment periods (0 d, 1 d, 5 d and 9 22 d). Furthermore, the transcriptomic data demonstrated that the differentially expressed genes 23 detected in crucian carp muscle were 2915,7852 and 7183 after 1 d, 5 d and 9 d STMFPS treatment. Results showed that the TCA cycle, ornithine cycle, purine metabolism and amino acid catabolism 24 25 play important roles in improving the flesh quality of crucian carp. This study may help to 26 understand the mechanism of improving the flesh quality of aquatic products using STMFPS. 27

Keywords: Freshwater fish, Mass spectrometry (MS); Genes; Metabolites; Principal component
 analysis (PCA); Orthogonal partial least squares discriminant analysis (OPLS-DA)

1 **1. Introduction**

2 Crucian carp (Carassius auratus) is an omnivorous and important economic freshwater fish 3 which is widely farmed in China (Ling et al., 2019), due to its palatability, fast growth rate, and high nutritional quality (Cui et al., 2020; Wu, 2020). The aquaculture of crucian carp has rapidly grown 4 5 over the last two decades, and it has become one of the most important economic sources in China. 6 Currently, high-density cultivation is the most popular method used for crucian carp production (Su, 7 Luo, Jiao, & Wu, 2017). However, the rearing conditions or cultivation of microorganisms in aquatic 8 environments could easily result in the accumulation of undesirable flavors in the fish, which in turn 9 would affect to some extent the degree of acceptance by consumers of the crucian carp (Fuentes, 10 Fernández-Segovia, Serra, & Barat, 2010; Rincón et al., 2016). In other words, the quality of crucian 11 carp could have obvious disadvantages, such as loose muscle tissue, poorer taste etc. (Grigorakis, 12 Taylor, & Alexis, 2003). In order to solve the poor quality of farmed freshwater fish under high-13 density cultivation, a variety of depuration treatments are used to improve the quality and acceptability of market-size fish before sales. The quality of numerous kinds of fish was 14 15 significantly improved by depuration or purging and recirculating aquaculture systems, including 16 halibut (Drake, DRAKE, Sanderson, Daniels, & Yates, 2010), atlantic salmon (Burr, Wolters, Schrader, & Summerfelt, 2012), rainbow trout (Schrader, Davidson, & Summerfelt, 2013), common 17 18 carp (Zajic, Mraz, Sampels, & Pickova, 2013), grass carp (Lv, Hu, Xiong, You, & Fan, 2018) and 19 so on. But there are few studies that have reported the mechanism which improved fish flesh quality 20 by the depuration system treatment, thus further researches are still needed.

21 Metabolomics is the study of metabolites within organic tissues and biofluids to 22 comprehensively identify and quantify all endogenous and exogenous low-molecular-weight

23	(<1000 m/z) molecules in a high-throughput manner, for observing the changes of the small
24	molecules with metabolic fingerprinting (changes of the metabolic patterns) or metabolic profiling
25	(changes of a group of metabolites or a specific pathway) due to endogenous and exogenous factors
26	(Feizi, Hashemi-Nasab, Golpelichi, Saburouh, & Parastar, 2021; Johnson, Sidwick, Pirgozliev, Edge,
27	& Thompson, 2019). Metabolomics has been extensively applied to food sciences with two major
28	aims, including the development of accurate and rapid food quality control methods and
29	investigation of nutritional effects of selected foods or food components (Gil, 2017). Non-targeted
30	metabolomics focus on finding as many small molecules as possible and global metabolic profiles,
31	so that they are particularly useful when differences between sample sets are very small, or finding
32	which compounds or classes of compounds are affected by the factor under investigation with
33	various detection technologies, such as nuclear magnetic resonance spectroscopy (NMR) (Labine
34	& Simpson, 2020), mass spectrometry (MS), etc. (Torres Santiago, Serrano Contreras, Meléndez
35	Camargo, & Zepeda Vallejo, 2019; Zhu et al., 2019). Among these different kinds of detection
36	technologies, the NMR-based method is a valuable tool for quantitatively identifying the different
37	metabolites in tissues, due to advantages, such as highly reproducible, minimal sample preparation
38	steps, nonrequirement of standards and qualitative and quantitative measurement (Labine &
39	Simpson, 2020). Compared with the NMR-based method, the MS-based methods could offer higher
40	sensitivity than the NMR and also require much fewer samples (Sugimoto, Kawakami, Robert, Soga,
41	& Tomita, 2012). Currently, several types of MS techniques have been widely used in metabolomics
42	analysis, such as liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-
43	mass spectrometry (GC-MS). Among these, LC-MS represented by UHPLC-Q-TOF-MS and
44	UHPLC-Q-Orbitrap HRMS dominates the metabolomics arena due to its high resolution and

sensitivity (Wang et al., 2014). Therefore, LC-MS based metabolomics fingerprinting approaches
have advantages on the evaluation of metabolic differences during various environmental systems
or feeding modes of aquatic products based on metabolic patterns and correlation with the alteration
of certain metabolic pathways (Cappello et al., 2016; Gika, Virgiliou, Theodoridis, Plumb, & Wilson,
2019; Zhang et al., 2019).

50 Transcriptomics is a high performance method used to study the differences which are implicit 51 in fish living in different environments at the mRNA level. Transcriptomics analysis can effectively 52 screen the differentially expressed genes (DEGs) of fish exposed to various environmental 53 pollutants (Zhang et al., 2019), pathogenic microbial invasion (Long et al., 2015), stress responses 54 (Petitjean et al., 2019) and their corresponding mechanisms. For example, short-term 17α -55 ethynylestradiol exposure in sardine (Sardinops sagax) and mackerel (Scomber japonicus) disrupted 56 the basic biological processes and pathways and the corresponding diagnostic biomarkers that 57 monitor ocean environmental health were uncovered through transcriptomic analysis (Renaud et al., 2019). Transcriptomics sequencing explores the mechanism of Grass carp reovirus infection, which 58 59 is involved in adsorption at the cell surface, followed by endocytosis into cells, transport of 60 lysosomes which eventually results in cell necrosis and/or apoptosis (Chen et al., 2018). A former 61 study (Sánchez et al., 2011) used transcriptomics to examine gene expression in different organs of 62 rainbow trout caused by temperature, salinity, crowding and hypoxia, a change of single nucleotide 63 polymorphism. The transcriptomic method has been applied to study the effects of long term 64 starvation and diet composition on the expression of mitochondrial oxidative phosphorylation gene 65 expression in gilthead sea bream (Silva-Marrero et al., 2017). In addition, transcriptomics can be 66 used to determine the ecological diversity, genetic diversity and evolution of fish (Hughes et al.,

67	2017; Sin-Yeon et al., 2017). Therefore, the application of transcriptomics to the analysis of genes
68	related to metabolic differences in the purification process of freshwater fish can clarify the
69	regulatory mechanism of the purification treatment that improves the quality of freshwater fish.
70	In the present study, metabolomics and transcriptomic responses in the flesh of market-size
71	crucian carp under treatment with short term micro-flowing purification system (STMFPS) were
72	investigated for up to 9 days and then the possible representative metabolites and different signal
73	pathways involved in the improvement of flesh quality for crucian carp were examined.
74	
75	2. Materials and Methods
76	2.1 Chemical reagents
77	HPLC grade 2-Chloro-L-phenylalanine, methanol, acetonitrile and formic acid were obtained
78	from Sigma Aldrich (St. Louis, MO, USA). Biochemical reagent creatinine was purchased in
79	Biosharp (Hefei, Anhui, P.R. China). MS-222 (3-Aminobenzoic acid ethyl ester methanesulfonate)
80	was obtained from Shanghai Yuanye Bio-Technology Co., Ltd (Shanghai, P.R. China), which was
81	used to induce anesthesia in fresh crucian carp. The water used in all experiments was ultrapure
82	water from a Milli-Q system (Millipore, Billerica, MA, USA). All chemical reagents used and water
83	are chromatographic grade.
84	2.2 Experimental design structure
85	All animal standard operation procedures were approved by the Animal Care and Use
86	Committee of Huazhong Agricultural University and performed in accordance with the Guidelines

- 87 for Care and Use of Laboratory Animals of Huazhong Agricultural University. The whole
- 88 experimental design procedures are illustrated in Fig. 1. Briefly, the freshwater fish were obtained

89	from Honghu city (Hubei, P.R. China) and transferred to the short term micro-flowing water system.
90	The fish was depurated for different periods, and fresh muscle was obtained and extracted for the
91	metabolomics and transcriptomics studies. The detailed information is provided below.
92	2.3 Fish sample preparation
93	The fresh crucian carp (250~400 g) from the freshwater fish farming area in Honghu Deyan
94	Aquatic Product Company LTD were transported in troughs (Long \times Width \times Height: 7.0 m \times 2.0
95	m \times 0.8 m) with STMFPS. There were ${\sim}130$ kg fish placed in each trough, the fish-water mass ratio
96	was 1:30, and the water was continuously replaced with groundwater as the source of water supply.
97	During the treatment period, the amount of water changed in each through was about 15.6 m ³ /d,
98	around 400% (v/v), the temperature of water was 19.0±0.6 °C, and all fish were deprived of food
99	during the whole period. During the period of depuration, five crucian carps of similar size were
100	randomly collected at every period of 0 d, 1 d, 5 d, 9 d. The sampled fish was anaesthetized using
101	the anesthetic MS - 222 (100 mg/L) and was unconscious before slaughter. Fish were immediately
102	gutted and segmented. At the end, the dorsal muscle of each fish was taken and immediately frozen
103	with liquid nitrogen and stored at -80 °C for further analysis.

104 **2.4 Metabolites extraction and UPLC-QTOF-MS based metabolomics analysis**

105 The fish muscle samples (\sim 50 mg) were extracted with methanol. Briefly, methanol (800 μ L)

- and the internal standard 2-chlorophenylalanine (2.8 mg/mL, $10 \,\mu$ L) were added to the sample. Then,
- all fish samples were grinded for 90 s at 65 Hz, vortexed for 30 s and centrifuged for 15 min (12000
 rpm, 4 °C).

109 The Acquity UPLC-QTOF system was used to separate and detect the metabolites of fish sample.
110 The UPLC system was equipped with a binary pump, micro degasser, an autosampler and a

111	temperature-controlled column compartment. Chromatographic separations were performed on an
112	ACQUITY UPLC HSS T3 column (1.8 $\mu m, 2.1$ mm \times 100 mm; Waters, Ireland). 200 μL supernatant
113	was transferred to sample vials for UPLC-MS platform analysis, and compounds were eluted using
114	a binary phase at a flow rate of 0.35 mL/min, where solvent A was water containing 0.1% formic
115	acid (v/v) and solvent B was acetonitrile containing 0.1% formic acid (v/v) . The following linear
116	gradient elution program was used: 0-2 min, 95% A; 2-12 min, 95–5% A; 12-15 min, 5% A; 15-17
117	min, 5–95% A; 17-20 min, 95% A. The column was maintained at 40 °C and the injection volume
118	was 0.6 μ L. To avoid the effects of fluctuations in instrument detection signals, samples were
119	analyzed in random order. At the same time, quality control (QC) samples, which were prepared by
120	mixing all the samples, were inserted into the sample queue to monitor system stability and ensure
121	reliability of experimental data. The separated components were detected with a Xevo® G2-S QTof
122	mass spectrometer (Waters Corp., Mil-ford, MA, USA) operating in negative and positive
123	electrospray ionization (ESI) mode. Both ESI ion modes and conditions were collected as follows:
124	Cone gas, 50 L/h; Ion source temperature, 120 °C (+)/110 °C(-); Desolvation gas temperature,
125	350 °C; Capillary voltage, 1.4 kV(ESI+)/1.3 kV(ESI-); Sample cone, 40 V(ESI+) or 23 V(ESI-);
126	Gas flow, 600 L/h; Collision energy, 10–40 V; Ion energy: 1 V; Scan time: 0.03 s; Inter scan time:
127	0.2 s; Scan range 50–1500 m/z(Wang et al., 2019).
128	The raw data of UPLC-QTOF/MS were converted into mzML format using ProteoWizard, and
129	XCMS was successively processed by peak alignment, peak detection, peak picking, peak filling,

- 130 isotope elimination, normalization and peak area extraction. Then, principal component analysis
- 131 (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of metabolome data
- 132 was performed in SIMCA-P 13.0 software (Umetrics AB, Umea, Sweden). With the data from both

ionization modes, the supervised multivariate data analysis approach OPLS-DA was used to screen
the significant different metabolites among the crucian carp samples in various purification periods.
A statistically explicit threshold based on the variable importance of projection (VIP) and the
student's *t*-tests (*p*-value) were used to identify metabolites with significant differences between the
control and STMFPS treated groups. The corresponding metabolic pathways analysis were
conducted using the MetaboAnalyst 4.0 software (http://www.metaboanalyst.ca/).

139 **2.5 RNA extraction and transcriptomic analysis**

140 To explore changes in mRNA levels of crucian carp after STMFPS treatment, fish samples (0 141 d, 1 d, 5 d, 9 d, n = 5 for every group) depurated in troughs were collected and used for RNA extraction and RNA sequence analysis. The total RNA was isolated by TRIzol™ Reagent 142 143 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's protocol. The TruSeq RNA 144 sample preparation kit from Illumina (San Diego, CA, USA) was used for cDNA library preparation. The cDNA library construction and sequencing and RNA-seq library preparation were performed 145 on an Agilent 2100 Bioanalyzer and ABI StepOnePlus™ Real-Time PCR System as described 146 147 previously (Trapnell et al., 2012). The obtained raw reads were cleaned by removing reads adapter 148 sequences, ploy-N strands and low-quality reads. High quality clean reads were used for 149 transcriptome de novo assembly using Trinity software (Wagner, Fulton, & Henschel, 2016). Clean 150 reads were aligned to carp (Cyprinus carpio) reference genome sequences by hierarchical indexing 151 for spliced alignment of transcripts with the application of HISAT2 (Kim, Langmead, & Salzberg, 152 2015). Gene expression was calculated using fragments per kilobase of exon per million mapped 153 reads (FRKM) approach. DESeq2 R package was utilized to illustrate the differential expressions 154 between the control group and treated groups (Varet, Brillet-Guéguen, Coppée, & Dillies, 2016).

160	2.6 Statistical analysis
159	Genomes (KEGG) pathway annotations. Each treatment had five biological replicates.
158	Ontology (GO) (http:// www.geneontology.org/) and the Kyoto Encyclopedia of Genes and
157	by red, green and blue dots. These DEGs were then used to perform enrichment analysis of the Gene
156	were drawn to exhibit the overall distribution of the DEGs in different treatment groups represented
155	Genes with an adjusted p -value < 0.05 obtained by DESeq2 were assigned as DEGs. Volcano plots

161 Statistical analysis was performed with SPSS 22.0 (IBM, New York, USA) using one-way 162 ANOVA. Significant differences between treatments were analyzed by Student's t-tests run in SPSS, 163 p-value < 0.05 was considered statistically significant. A statistical power analysis was used to estimate the sample size for significant differences, which was implemented in freeware GPower 164 165 (Erdfelder, Faul, & Buchner, 1996), and metabolite network was constructed based in KEGG 166 pathways.

167

3. Results and discussion 168

169 **3.1 UPLC-QTOF/MS analysis**

170 To investigate the metabolite compositions during different purification periods, the nontargeted metabolite profiling of extracts was detected. The flesh samples were collected from the 171 crucian carp under different purification periods (0 d, 1 d, 5 d and 9 d). The metabolites extracted 172 from muscles were screened with UPLC-QTOF/MS. In order to show differences in spectra among 173 different types of samples, a series of liquid chromatography are illustrated in Fig. S1A-S1D. Under 174 175 optimized elution conditions of ultra-high performance liquid chromatography, the elution periods of the main period were around 0.9 min-3.6 min, 8.5 min-12.0 min, 13.0 min-16.5 min and ~18.0 176

177 min.

178	Based on m/z values and the standard libraries (METLIN, and HMDB – Human Metabolome
179	Database) by comparison, there were 342 metabolites (Putatively annotated compounds (Sumner et
180	al., 2007)) identified in the samples, including 71 amino acids and amino acid derivatives, 107 lipids,
181	52 nucleic acid hydrolysates and their derivatives, and 109 sugars and carbon sources chemicals. As
182	examples, a series of EIC (extracted ion chromatograms, Fig. S1E-S1H) and MS spectra (Fig. S1I-
183	S1L) were collected to show the steps of identification of metabolites, such as urea, pyruvate, retinol
184	and vitamin D3. It was very clear to see that there exists obvious differences among TIC
185	chromatograms from different types of samples. However, it was difficult to extract the potential
186	different metabolic markers in fish samples by intuitionally comparing the chromatograms from the
187	purified and control samples. Thus, the application of PCA and the pattern recognition method
188	(OPLS-DA) were used to visualize the characteristic changes.

189

3.2 Principal component analysis

To initially evaluate the differences among fish samples from different purification periods, a non-supervised multivariate analysis method, PCA was used to analyze the multidimensional data and provide a comprehensive view of the clustering among different samples.

The UPLC-QTOF/MS data under ES+ mode was first utilized to conduct an overview of the clustering models and search possible outliers among samples. After reducing dimensions of the metabolic data matrix by dropping unnecessary information, the first two principal components PC1 and PC2 were obtained for these four different groups. The total contribution of the first two major components was 49.2% of the variance for all variables, and the scatter plot for PC1 (34.4%) and PC2 (14.8%) is illustrated in Fig. 2A. It clearly can be seen that fish samples were clustered together

after five or nine days' purification. The one-day purification treatment also influenced the 199 200 components of the samples, as the samples were disperse distributed in the 2D space, one sample 201 was out of space, and the samples were not clustered with samples in the control group. Then, the PCA models of 0 d vs. 1 d, 0 d vs. 5 d, and 0 d vs. 9 d were further conducted and illustrated in Fig. 202 203 2B (PC1: 30.4%; PC2: 21.1%), 2C (PC1: 53.1%; PC2: 13.9%) and 2D (PC1: 43.4%; PC2: 17.1%), 204 respectively. The results are similar to the findings in Fig. 2A. The statistical parameters (R^2 and Q^2) 205 of all PCA models are collected in Table 1. To screen the different metabolites among the control 206 and treatment groups with short-term purification periods, the different metabolites were further 207 explored with OPLS-DA methods.

208 3.3 OPLS-DA analysis

209 The OPLS-DA models were achieved by making comparisons between 0 d vs. 1 d; 0 d vs. 5 d 210 and 0 d vs. 9 d. The evaluation parameters of these models (R^2Y and Q^2) are demonstrated in Table 211 1. The permutation test plots from the OPLS-DA models based on the positive ion mode are 212 illustrated in Fig. 2E-2G. The models for comparisons of 0 d vs. 5 d and 0 d vs. 9 d under positive 213 and negative ion mode data showed that the classification models were stable and reliable (R^2 and 214 $Q^2 \ge 0.5$). The values of $R^2 Y$ sufficiently explained the differences between these two groups and the values of Q^2 indicate the predictive abilities of the constructed classification models. Furthermore, 215 216 the models for comparisons of 0 d vs. 1 d under different ion modes explained the differences 217 between these two groups ($R^2 Y > 0.9$), but there was over-fitting in the negative ion mode ($Q^2 < 0.5$).

218 **3.4 Identification of different metabolites of crucian carp during STMFPS treatment**

219 The different metabolic patterns between every comparison were recognized according to their 220 VIP > 1.5 and p < 0.05 values. Finally, the metabolic numbers for these three different comparisons (0d vs. 1d, 0d vs. 5d and 0d vs. 9d) were 22, 81 and 64 of various metabolites, respectively. To
analyze the efficiency of the short-term purification treatment, the different metabolites under two
different periods were annotated.

224 To further identify the biomarkers at different short-term purification periods, the different 225 metabolites and their relative contents among different groups were identified and analyzed. The 226 selected metabolites were identified using m/z information of the metabolites and the Tandem MS 227 database (METLIN and HMDB) and KEGG database. The identified results are shown in Table 2. 228 Results of the statistical power were also calculated and displayed in this table, which was used to estimate the sample size to determine the significant difference (*: ≥0.8 for sufficient power 229 230 validation). Finally, there were 10 metabolites which changed during the whole purification period; 231 and 31 metabolites changed in two different treatment periods (Table 2). Changes can be seen in the 232 types and contents of different metabolites of crucian carp muscles under different treatment periods. 233 The metabolic pathways that underwent significant changes during microfluidic treatment 234 mainly include TCA cycle, ornithine cycle, purine metabolism and amino acid catabolism. Among 235 them, the metabolic changes related to the TCA cycle mainly showed that pyruvate, succinic acid, 236 and coenzyme O2 significantly decreased on days 5 and 9 after purification (as shown in Fig. 3A-237 3C) and AMP (Adenosine monophosphate) significantly increased after purification (Fig. 3D). The 238 purine metabolism changes mainly indicated that the content of guanosine, guanine, and adenine 239 increased significantly after 5 days' treatment (Fig. 3E-3G) and the content of ornithine, a product 240 of purine catabolism, decreased significantly after 5 days of treatment (Fig. 3H). The difference in 241 ornithine cycle metabolism is mainly due to the accumulation of oxalic acid and arginine succinic 242 acid (Fig. 3I-3J) and the significant reduction in citrulline content after 5 days of microfluidic

treatment (Fig. 3K). The difference in amino acid metabolism is mainly manifested as changes in the content of free amino acids such as proline, tyrosine, tryptophan, and lysine after microfluidic treatment. Among them, the contents of serine and tyrosine increased after treatment, while the contents of tryptophan and lysine decreased. At the same time, a large amount of monoacylphospholipid molecules were observed during the microfluidic treatment process, indicating that the carp muscle phospholipid metabolism was active during the treatment process.

249 Due to changes in metabolites and the reported pathway of the metabolites in the KEGG 250 database, the changes of the metabolic pathway of the crucian carp muscle during the short-term 251 purification periods were obtained (Fig. 4). After the crucian carp was transferred from the 252 aquaculture/transportation water to the STMFPS purified water, the ornithine cycle metabolism 253 related to ammonia nitrogen excretion changed, at the same time, due to lack of food, the TCA cycle 254 in the muscles of crucian carp weakened, causing changes in amino acid metabolism and purine metabolism to compensate for the required energy that maintain normal life activities. During this 255 256 process, ornithine, arginine succinic acid and some purine nucleosides and purine bases accumulated 257 affecting the flesh quality of crucian carp.

258 **3.5 Metabolic mechanism of STMFPS to improve the flesh quality of crucian carp**

259 Changes in differential metabolites of crucian carp indicate that the ornithine cycle metabolic 260 pathway underwent significant changes during STMFPS treatment. Generally, seven key enzymes 261 including carbamyl phosphate synthetase (CPS-1), ornithine carbamoyltransferase (OTC), spermine 262 succinate synthetase (argininosuccinate synthetase, ASS), argininosuccinate lyase (ASL), arginase 263 (arginase), N-acetyl glutamate synthetase (N- acetylglutamate synthetase) and ornithine 264 aminotransferase (OAT) are involved in ornithine cycle metabolism in the animal body and responsible for the synthesis of related substrates and related transport proteins for transmembranetransport (Morris, 2002).

267 When the crucian carp was transferred to clean water for a short period of treatment, with changes in ammonia nitrogen concentration gradient in the environment, the direct excretion of 268 269 ammonia was inhibited and the activity of urea cycle-related enzymes and the synthesis of ornithine 270 to citrulline rose, including CPS-1 in the liver and synthesis of arginine succinic acid in the liver and arginine succinate lyase (Saha & Ratha, 2007). Thus, the content of citrulline in muscle was 271 272 significantly reduced, while the content of ornithine and arginine succinic acid increased. Ornithine 273 in the body may also derive from the metabolism of glutamate and glutamine (Blachier, Boutry, Bos, 274 & Tomé, 2009), and the synthesis and accumulation of glutamine is one of the defense mechanisms of freshwater fish against a high ammonia nitrogen environment. A study reported a similar finding 275 276 that glutamine may accumulate in many tissues of crucian carp during the cultivation or 277 transportation process (Zhang, Zhang, Wang, Gu, & Fan, 2017). As blood ammonia nitrogen levels 278 decrease in STMFPS, glutamine produces ornithine under the action of glutaminase and P5C 279 synthetase, which may be one of the major reasons for the increase in ornithine content in crucian 280 carp flesh. Ornithine is an important flavor precursor and its derivative 1-pyrroline is one of the 281 important substrates for Maillard reaction (Corral, Leitner, Siegmund, & Flores, 2016). Furthermore, 282 ornithine can also reduce the bitterness of other amino acids in the food system to improve the flavor 283 of food (Wan, Xiong, Zhang, & Zhu, 2013). Therefore, the accumulation of ornithine could be responsible for the enhancement of the crucian carp flavor during the STMFPS treatment. 284

285 **3.6 Transcriptomics profiling and DEGs**

286 The RNA-seq results indicate that the total number of genes expressed were distinct in the

287 control group and STMFPS-treated groups. In order to reflect the correlation of gene expression 288 between the samples, the Pearson correlation coefficient of all gene expression levels between each 289 of two different experimental groups was calculated. The correlation between the detected gene 290 expression profiles of STMFPS-treated groups and control groups are presented in Fig. 5. The 291 correlation is better when the correlation coefficient is closer to 1.00. Therefore, this figure could 292 directly display the significant difference between the different treatment groups making the 293 grouping clear. From Fig. 5, it can be seen that the correlation of samples between 0 d (control group) 294 and 1 d was high (p>0.975), indicating that the expression levels of different genes or 295 transcriptomics profiling in the crucian carp muscles were similar. The correlation coefficients 296 between the samples STMFPS-treated at 0 d and 5 d, 0 d and 9 d were low, demonstrating that the 297 expression levels of various genes in crucian carp samples greatly changed after 5 d and 9 d 298 STMFPS treatment.

299 Comparing with the control group, the DEGs were identified with the following statistical values 300 for the genes: p < 0.05 and $|\log 2FC$ (fold change) $| \ge 2$. The number of DEGs which overlapped 301 between different STMFPS-treated periods and control groups are shown in the Venn diagram (Fig. 302 6A). Finally, there were 5917, 15085, 14183 DEGs identified between the 1 d, 5 d, 9 d STMFPS 303 treated group and the control group (Ctr), and 3246 identical genes were found for these three 304 different comparisons. The MA plots were drawn to intuitively represent the DEGs distribution or 305 the degree of variation of these DEGs between different STMFPS treated and control groups (Fig. 306 6B). The abscissa represents A value (Average log CPM, log2 (counts -per-million)) used to measure 307 the amount of gene expression. Vertical axis represents the M value (log2FC) used to estimate the 308 up- and down-regulation of gene expression. The red dots indicate the upregulated expressed genes

309	$(\log 2FC \text{ (fold change}) \ge 2, q \le 0.001)$, the blue dots represent the downregulated expressed genes
310	$(Log2FC(fold change) \le -2, q \le 0.001)$, and the grey dots, the nondifferential expressed genes (abs
311	$(Log2FC(fold change)) \le 2, q > 0.001)$. As it can be seen from Fig. 6B, compared with the untreated
312	samples, most of DEGs in the crucian carp muscle samples after STMFPS treatment were up-
313	regulated and the number of up-regulated genes elevated to the highest level at 5 d STMFPS
314	treatment. The M values of most DEGs are distributed in -4 \sim 3, -4 \sim 6 and -4 \sim 5 between the
315	control groups versus 1 d, 5 d and 9 d STMFPS treated groups. The number of DEGs increased with
316	the range of M values, so the number of DEGs between Ctr vs. Day5 was the largest during the
317	STMFPS treatment. Results of transcriptomic analysis indicate that the STMFPS treatment affected
318	the expression of many genes in the crucian carp muscle. Compared with the control group, there
319	were 4776, 14174, 13211 upregulated genes and 1141, 911, 972 downregulated genes found for
320	different STMFPS-treated groups (1 d, 5 d, 9 d), respectively.
321	The expression levels of genes of all samples (control, 1 d, 5 d and 9 d) were produced with five
322	biological replicates per treatment and are shown in the clustered heatmap (Fig. 6C). The gene
323	expression status of crucian carp muscles under different purification periods was mainly divided
324	into two parts, the gene expression of crucian carp samples treated on 0 d and 1 d is very similar
325	and the transcription profiling of crucian carp samples treated on 5 d and 9 d by STMFPS bear a
326	resemblance. Furthermore, there exist a big difference between 5 d/9 d STMFPS treated crucian
327	carp samples and 0 d/1 d samples in gene expression levels. Basically, the transcriptome profiles of

- 328 three STMFPS treatment groups were different compared with the control group.
- 329 **3.7 GO enrichment analyses of DEGs**
- 330 The classification and enrichment of DEGs help us to understand the functional properties of

331 DEGs detected in crucian carp muscle samples during different STMFPS treatment periods. 332 Generally, gene ontology (GO) can be classified into three functional categories, including the 333 molecular function, cellular component and biological process (Chen et al., 2018). Results of the GO function classification of DEGs under different treatment periods are plotted in Fig. 7. It can be 334 335 seen that the cellular process, single-organism process and metabolic process are the top three functional classes of DEGs during the STMFPS treatment. For the metabolic process, there were 336 337 1322, 3299, 3026 DEGs identified between the control and the other three different STMFPS 338 treatment groups (1 d, 5 d and 9 d), respectively. Furthermore, it can clearly be noticed that the 339 number of DEG in crucian carp flesh is affected by the period of STMFPS treatment. Moreover, the 340 number of DEGs involved in the metabolic process in crucian carp flesh reached a maximum at 5 d 341 STMFPS treatment, and then it tended to stabilize after 9 d STMFPS treatment.

342 **3.8 KEGG Metabolic Pathway analysis of DEGs**

343 In order to compare the transcriptome and metabolome data, the metabolic pathways of DEGs involved in the KEGG database were further analyzed. The detailed metabolic pathway and the 344 345 corresponding number of DEGs of each metabolic pathway are listed in Table 3. As can be seen, 346 purine metabolism, pyrimidine metabolism and glycerophospholipid metabolism represent the majority of metabolic pathways, which take up the top three number of DEGs between the control 347 348 group and the other three STMFPS treatments groups. It means that STMFPS treatment mainly 349 resulted in changes in nucleotide and phospholipid metabolism in the muscle of crucian carp flesh. 350 Transcriptomics analysis indicates that STMFPS treatment can affect the purine metabolism of 351 freshwater fish, which induced the accumulation of single nucleotides IMP and AMP in crucian carp 352 flesh, reduced the content of xanthine, hypoxanthine and other single nucleotide degradation

- products, thus affecting the flesh quality of freshwater fish. Therefore, the results of transcriptomics
 were in good accord with the results of metabolomics of crucian carp treated with STMFPS.
- According to the results of DEGs in the metabolic classification, combined with the ornithine 355 cycle-related metabolic pathways in the KEGG database, the expression of ornithine cycle-related 356 357 genes was analyzed. The DEGs are shown in Table 4. It can be seen that the STMFPS treatment led 358 to differential expression of seven enzyme genes related to the ornithine cycle in the flesh of crucian 359 carp. Among these, the ornithine oxoaminotransferase gene was down-regulated and the other enzyme genes were up-regulated. The expressions of arginine succinate synthetase and arginine 360 361 succinate lyase were up-regulated, which is in accordance with results of the metabolomics study, 362 in other words, STMFPS induced citrulline and metabolized more arginine succinate in freshwater fish flesh. Furthermore, the upregulated genes of enzymes including N-alpha-acetyltransferase, 363 364 pyrroline-5-carboxylate reductase, delta-1-pyrroline-5-carboxylate synthetase and carbamoyl-365 phosphate synthase were intermediate catalytic enzyme genes for the synthesis of ornithine by 366 glutamic acid and proline, respectively. Therefore, the results of DEGs related to the ornithine cycle 367 in this study support the results of changes in the content of related metabolites. In this regard, 368 STMFPS treatment affected the ornithine cycle metabolic pathways in freshwater fish and led the content of ornithine and spermine aminosuccinic acid to increase significantly, however the contents 369 370 of citrulline, proline, urea decreased significantly, thereby affecting the flesh quality of crucian carp. 371

372 **4. Conclusion**

In summary, the current integrative application of transcriptome and metabolome approacheshas potential implications for understanding the effect of flesh quality improvement with STMFPS

375 treatment. UPLC-QTOF MS based metabolomics showed that STMFPS affected TCA cycle, 376 ornithine cycle, purine metabolism, amino acid metabolism and fatty acid metabolism pathways in 377 crucian carp flesh. Results of transcriptome were basically in agreement with the metabolome and to explore insights to understanding the flesh quality improvement of market size crucian carp, 378 379 STMFPS treatment was used. Transcriptome showed that STMFPS treatment induced significant 380 changes in various genes involved in purine and arginine metabolism pathways. These results provided some information for understanding the main metabolic mechanism for improving the 381 382 flesh quality of crucian carp of STMFPS treatment.

383

384 Credit authorship contribution statement

385 Hongying Du: Investigation, Writing - original draft and review, Formal analysis, Visualization,

386 Conceptualization, Funding acquisition; Shanbai Xiong: Funding acquisition, Supervision,

387 Conceptualization; Hao Lv: Investigation, Formal analysis, Validation, Methodology; Siming Zhao:

388 Investigation; Anne Manyande: Writing - review & editing.

389

390 Conflict of interest

391 The authors declare that there is no conflict of interest

392

393 Acknowledgement All authors express their appreciation to Dr. Yunlong Wang and Dr. Jianxun

- 394 Zhou from the Shanghai Sensichip Infotech Co. (Shanghai, China) for the detection of the samples.
- 395 This research was financially supported by the Agriculture Research System of China (CARS-45-
- 28); the National Natural Science Foundation of China (No. 31772047), and the Fundamental

397 Research Funds for the Central Universities of China (No. 2662019PY031 and 2662017PY021).

398

399 References

- Blachier, F., Boutry, C., Bos, C., & Tomé, D. (2009). Metabolism and functions of I-glutamate in the
 epithelial cells of the small and large intestines. *The American Journal of Clinical Nutrition*,
 90(3), 814S-821S. doi: https://doi.org/10.3945/ajcn.2009.27462S
- Burr, G. S., Wolters, W. R., Schrader, K. K., & Summerfelt, S. T. (2012). Impact of depuration of
 earthy-musty off-flavors on fillet quality of Atlantic salmon, Salmo salar, cultured in a
 recirculating aquaculture system. *Aquacultural Engineering*, *50*, 28-36. doi:
 https://doi.org/10.1016/j.aquaeng.2012.03.002
- 407 Cappello, T., Brandão, F., Guilherme, S., Santos, M. A., Maisano, M., Mauceri, A., . . . Pereira, P. 408 (2016). Insights into the mechanisms underlying mercury-induced oxidative stress in gills 409 of wild fish (Liza aurata) combining 1H NMR metabolomics and conventional biochemical of 410 Science The Total Environment, *548-549*, 13-24. doi: assays. 411 https://doi.org/10.1016/j.scitotenv.2016.01.008
- Chen, G., He, L., Luo, L., Huang, R., Liao, L., Li, Y., . . . Wang, Y. (2018). Transcriptomics Sequencing
 Provides Insights into Understanding the Mechanism of Grass Carp Reovirus Infection. *International Journal of Molecular Sciences, 19*(2), 488-498. doi:
 https://doi.org/10.3390/ijms19020488
- Corral, S., Leitner, E., Siegmund, B., & Flores, M. (2016). Determination of sulfur and nitrogen
 compounds during the processing of dry fermented sausages and their relation to amino
 acid generation. *Food Chemistry, 190*, 657-664. doi:
 https://doi.org/10.1016/j.foodchem.2015.06.009
- Cui, D., Zhang, P., Li, H., Zhang, Z., Luo, W., & Yang, Z. (2020). Biotransformation of dietary
 inorganic arsenic in a freshwater fish Carassius auratus and the unique association
 between arsenic dimethylation and oxidative damage. *Journal of Hazardous Materials, 391*, 122153. doi: https://doi.org/10.1016/j.jhazmat.2020.122153
- Drake, S. L., DRAKE, M. A., Sanderson, R., Daniels, H. V., & Yates, M. D. (2010). The effect of purging
 time on the sensory properties of aquacultured southern flounder (paralichthys
 lethostigma). *Journal of Sensory Studies, 25*(2), 246-259. doi:
 https://doi.org/10.1111/j.1745-459X.2009.00255.x
- 428 Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: A general power analysis program. *Behavior*429 *Research Methods, Instruments, & Computers, 28*(1), 1-11. doi:
 430 https://doi.org/10.3758/BF03203630
- 431 Feizi, N., Hashemi-Nasab, F. S., Golpelichi, F., Saburouh, N., & Parastar, H. (2021). Recent trends in 432 application of chemometric methods for GC-MS and GC×GC-MS-based metabolomic 433 studies. TrAC Trends in Analytical Chemistry, *138*, 116239. doi: 434 https://doi.org/10.1016/j.trac.2021.116239
- Fuentes, A., Fernández-Segovia, I., Serra, J. A., & Barat, J. M. (2010). Comparison of wild and
 cultured sea bass (Dicentrarchus labrax) quality. *Food Chemistry*, *119*(4), 1514-1518. doi:
 https://doi.org/10.1016/j.foodchem.2009.09.036

- Gika, H., Virgiliou, C., Theodoridis, G., Plumb, R. S., & Wilson, I. D. (2019). Untargeted LC/MS-based
 metabolic phenotyping (metabonomics/metabolomics): The state of the art. *Journal of Chromatography B, 1117*, 136-147. doi: https://doi.org/10.1016/j.jchromb.2019.04.009
- Gil, A. M. (2017). Metabonomics in Food Science. In J. C. Lindon, G. E. Tranter & D. W. Koppenaal
 (Eds.), *Encyclopedia of Spectroscopy and Spectrometry (Third Edition)* (pp. 790-796).
 Oxford: Academic Press.
- Grigorakis, K., Taylor, K. D. A., & Alexis, M. N. (2003). Organoleptic and volatile aroma compounds
 comparison of wild and cultured gilthead sea bream (Sparus aurata): sensory differences
 and possible chemical basis. *Aquaculture, 225*(1), 109-119. doi:
 https://doi.org/10.1016/S0044-8486(03)00283-7
- Hughes, L. C., Somoza, G. M., Nguyen, B. N., Bernot, J. P., González-Castro, M., Díaz de Astarloa,
 J. M., & Ortí, G. (2017). Transcriptomic differentiation underlying marine-to-freshwater
 transitions in the South American silversides Odontesthes argentinensis and
 O. bonariensis (Atheriniformes). *Ecology and evolution*, 7(14), 5258-5268. doi:
 https://doi.org/10.1002/ece3.3133
- 453 Johnson, A. E., Sidwick, K. L., Pirgozliev, V. R., Edge, A., & Thompson, D. F. (2019). The use of 454 metabonomics to uncover differences between the small molecule profiles of eggs from 455 cage and barn housing systems. Food Control, 100, 165-170. doi: 456 https://doi.org/10.1016/j.foodcont.2019.01.023
- Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory
 requirements. *Nature Methods*, *12*(4), 357-360. doi: https://doi.org/10.1038/nmeth.3317
- 459 Labine, L. M., & Simpson, M. J. (2020). The use of nuclear magnetic resonance (NMR) and mass 460 spectrometry (MS)-based metabolomics in environmental exposure assessment. Current 461 Environmental Health, 15. 7-15. doi: Opinion in Science R 462 https://doi.org/10.1016/j.coesh.2020.01.008
- Ling, X.-d., Dong, W.-t., Zhang, Y., Qian, X., Zhang, W.-d., He, W.-h., . . . Liu, J.-x. (2019).
 Comparative transcriptomics and histopathological analysis of crucian carp infection by
 atypical Aeromonas salmonicida. *Fish & Shellfish Immunology, 94*, 294-307. doi:
 https://doi.org/10.1016/j.fsi.2019.09.006
- Long, M., Zhao, J., Li, T., Tafalla, C., Zhang, Q., Wang, X., . . . Li, A. (2015). Transcriptomic and
 proteomic analyses of splenic immune mechanisms of rainbow trout (Oncorhynchus
 mykiss) infected by Aeromonas salmonicida subsp. salmonicida. *Journal of Proteomics, 122*, 41-54. doi: https://doi.org/10.1016/j.jprot.2015.03.031
- 471 Lv, H., Hu, W., Xiong, S., You, J., & Fan, Q. (2018). Depuration and starvation improves flesh quality
 472 of grass carp (Ctenopharyngodon idella). *Aquaculture Research*, *49*(9), 3196-3206. doi:
 473 https://doi.org/10.1111/are.13784
- 474 Morris, S. M. (2002). Regulation of enzymes of the urea cycle and arginine metabolism. *Annual*475 *Review of Nutrition, 22*(1), 87-105. doi:
 476 https://doi.org/10.1146/annurev.nutr.22.110801.140547
- Petitjean, Q., Jean, S., Gandar, A., Côte, J., Laffaille, P., & Jacquin, L. (2019). Stress responses in fish:
 From molecular to evolutionary processes. *Science of The Total Environment, 684*, 371380. doi: https://doi.org/10.1016/j.scitotenv.2019.05.357
- 480 Renaud, L., Agarwal, N., Richards, D. J., Falcinelli, S., Hazard, E. S., Carnevali, O., . . . Hardiman, G.
 481 (2019). Transcriptomic analysis of short-term 17α-ethynylestradiol exposure in two

- 482Californian sentinel fish species sardine (Sardinops sagax) and mackerel (Scomber483japonicus).EnvironmentalPollution,244,926-937.doi:484https://doi.org/10.1016/j.envpol.2018.10.058
- Rincón, L., Castro, P. L., Álvarez, B., Hernández, M. D., Álvarez, A., Claret, A., . . . Ginés, R. (2016).
 Differences in proximal and fatty acid profiles, sensory characteristics, texture, colour and
 muscle cellularity between wild and farmed blackspot seabream (Pagellus bogaraveo). *Aquaculture, 451*, 195-204. doi: https://doi.org/10.1016/j.aquaculture.2015.09.016
- 489 Sánchez, C. C., Weber, G. M., Gao, G., Cleveland, B. M., Yao, J., & Rexroad, C. E. (2011). Generation
 490 of a reference transcriptome for evaluating rainbow trout responses to various stressors.
 491 *BMC Genomics, 12*(1), 626-636. doi: https://doi.org/10.1186/1471-2164-12-626
- 492 Saha, N., & Ratha, B. K. (2007). Functional ureogenesis and adaptation to ammonia metabolism in
 493 Indian freshwater air-breathing catfishes. *Fish Physiology & Biochemistry, 33*(4), 283-295.
 494 doi: https://doi.org/10.1007/s10695-007-9172-3
- Schrader, K. K., Davidson, J. W., & Summerfelt, S. T. (2013). Evaluation of the impact of nitratenitrogen levels in recirculating aquaculture systems on concentrations of the off-flavor
 compounds geosmin and 2-methylisoborneol in water and rainbow trout (Oncorhynchus
 mykiss). *Aquacultural Engineering*, 57, 126-130. doi:
 https://doi.org/10.1016/j.aquaeng.2013.07.002
- Silva-Marrero, J. I., Sáez, A., Caballero-Solares, A., Viegas, I., Almajano, M. P., Fernández, F., . . .
 Metón, I. (2017). A transcriptomic approach to study the effect of long-term starvation
 and diet composition on the expression of mitochondrial oxidative phosphorylation genes
 in gilthead sea bream (Sparus aurata). *BMC Genomics, 18*(1), 768-779. doi:
 https://doi.org/10.1186/s12864-017-4148-x
- Sin-Yeon, Kim, Maria, M., Costa, Anna, ... Velando. (2017). Transcriptional mechanisms underlying
 life-history responses to climate change in the three-spined stickleback. *Evolutionary Applications, 10*, 718-730. doi: https://doi.org/10.1111/eva.12487
- 508 Su, J., Luo, Y., Jiao, X., & Wu, J. (2017). Effect of the ecological fish farming technique on the muscle 509 quality of crucian carp (*Carassius auratus*). *Journal of Aquaculture, 38*(4), 22-25.
- Sugimoto, M., Kawakami, M., Robert, M., Soga, T., & Tomita, M. (2012). Bioinformatics Tools for
 Mass Spectroscopy-Based Metabolomic Data Processing and Analysis. *Current Bioinformatics, 7*(1), 96-108. doi: Doi 10.2174/157489312799304431
- Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., . . . Viant, M. R. (2007).
 Proposed minimum reporting standards for chemical analysis. *Metabolomics, 3*(3), 211221. doi: 10.1007/s11306-007-0082-2
- Torres Santiago, G., Serrano Contreras, J. I., Meléndez Camargo, M. E., & Zepeda Vallejo, L. G.
 (2019). NMR-based metabonomic approach reveals changes in the urinary and fecal
 metabolome caused by resveratrol. *Journal of Pharmaceutical and Biomedical Analysis*, *162*, 234-241. doi: https://doi.org/10.1016/j.jpba.2018.09.025
- Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., ... Pachter, L. (2012). Differential
 gene and transcript expression analysis of RNA-seq experiments with TopHat and
 Cufflinks. *Nature Protocols, 7*(3), 562-578. doi: https://doi.org/10.1038/nprot.2012.016
- Varet, H., Brillet-Guéguen, L., Coppée, J. Y., & Dillies, M. A. (2016). SARTools: A DESeq2- and
 EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. *Plos One, 11*, e0157022. doi: https://doi.org/10.1371/journal.pone.0157022

- Wagner, M., Fulton, B., & Henschel, R. (2016). *Performance Optimization for the Trinity RNA-Seq Assembler*, Cham, 29-40.
- Wan, H., Xiong, Y., Zhang, J., & Zhu, C. (2013). Research progress in products exploitation and
 application of L-ornithine. *China Brewing*, *32*, 8-12. doi: https://doi.org/02545071(2013)01-0008-05
- Wang, H., Li, S., Qi, L., Xu, W., Zeng, Y., Hou, Y., . . . Sun, C. (2014). Metabonomic analysis of
 quercetin against the toxicity of chronic exposure to low-level dichlorvos in rats via ultraperformance liquid chromatography–mass spectrometry. *Toxicology Letters, 225*(2), 230239. doi: https://doi.org/10.1016/j.toxlet.2013.12.017
- Wang, Y., Li, C., Li, L., Yang, X., Chen, S., Wu, Y., ... Yang, D. (2019). Application of UHPLC-Q/TOFMS-based metabolomics in the evaluation of metabolites and taste quality of Chinese fish
 sauce (Yu-lu) during fermentation. *Food Chemistry, 296*(OCT.30), 132-141. doi:
 https://doi.org/10.1016/j.foodchem.2019.05.043
- Wu, S. (2020). Dietary Astragalus membranaceus polysaccharide ameliorates the growth
 performance and innate immunity of juvenile crucian carp (Carassius auratus). *International Journal of Biological Macromolecules, 149*, 877-881. doi:
 https://doi.org/10.1016/j.ijbiomac.2020.02.005
- Zajic, T., Mraz, J., Sampels, S., & Pickova, J. (2013). Fillet quality changes as a result of purging of
 common carp (Cyprinus carpio L.) with special regard to weight loss and lipid profile. *Aquaculture, 400-401*, 111-119. doi: https://doi.org/10.1016/j.aquaculture.2013.03.004
- Zhang, W., Tan, B., Ye, G., Wang, J., Dong, X., Yang, Q., . . . Zhang, H. (2019). Identification of potential biomarkers for soybean meal-induced enteritis in juvenile pearl gentian grouper,
 Epinephelus lanceolatus & × Epinephelus fuscoguttatus ? . *Aquaculture, 512*, 734337. doi: https://doi.org/10.1016/j.aquaculture.2019.734337
- Zhang, Y., Zhang, H., Wang, L., Gu, B., & Fan, Q. (2017). Impact factors of ammonia toxicity and
 strategies for ammonia tolerance in air-breathing fish: A review. *Acta Hydrobiologica Sinica, 41*(5), 1157-1167. doi: https://doi.org/10.7541/2017.144
- Zhu, H., Wang, Z., Wu, Y., Jiang, H., Zhou, F., Xie, X., . . . Hua, C. (2019). Untargeted metabonomics
 reveals intervention effects of chicory polysaccharide in a rat model of non-alcoholic fatty
 liver disease. *International Journal of Biological Macromolecules, 128*, 363-375. doi: https://doi.org/10.1016/j.ijbiomac.2019.01.141

557

- 559 Figure legends:
- 560 **Fig. 1** Flow diagram of the experimental design.
- Fig. 2 Results of PCA analysis (A-D) and the permutation test plots (E-G) from the OPLS-DA
 models for the metabolites detected using UPLC-QTOF/MS equipped with both ESI+ mod
- 563 which were obtained from crucian carp muscle during different depuration periods. *Note: A:*

All samples in four groups; B: Control vs. 1 d; C: Control vs. 5 d; D: Control vs. 9 d; E:

- 565 Control vs. 1 d; F: Control vs. 5 d; G: Control vs. 9 d. The criteria for validity of the OPLS-
- 566 *DA* model are indicated as following: All blue Q^2 -values to the left are lower than the
- 567 original points to the right; or the blue regression line of the Q^2 -pints intersected the vertical 568 axis (on the left) or below zero.
- Fig. 3: Comparative contents of different metabolites in crucian carp muscle during the depuration
 procedure ("*": <0.05; "**": p<0.01; "***": p<0.001). Note: A-D: Related with energy
 metabolism; E-H: Related with the purine metabolic cycle; I-K: Related with the ornithine
 metabolic cycle.
- Fig. 4 Effect of the depuration on metabolic pathways of crucian carp muscle. Note: *Different colors of metabolites represent change of comparative content, red: increased; blue: did not significantly change; green: decreased.*
- Fig. 5 Correlation heatmap of the Pearson correlation coefficient of all gene expressions in four
 different groups (Ctr1-Ctr5: Control; Day1: 1 d; Day5: 5 d; Day9: 9 d).
- Fig. 6 (A) Venn diagram of significantly enriched DEGs in different group comparisons representing
 the unique and overlapping DEGs. (B) MA plot distribution of DEGs of crucian carp muscle
 during different deputation periods. The red and blue dots indicate that the genes were
 differently expressed, and the grey dots indicate that the genes were not differentially expressed.
 The positive and negative values represent the up- and downregulation of DEGs, respectively.
 (C) Clustered heatmap for DEGs detected from different groups with rows representing DEGs
- and columns representing samples. Note: Columns represent every gene set that was
 significantly up-regulated (red) or down-regulated (blue) in different groups (Ctr1-Ctr5:
 Control; Day1: 1 d; Day5: 5 d; Day9: 9 d).
- Fig. 7 GO classification of DEGs. (A) GO functional classification of DEGs between control (Ctr)
 and Day1. (B) GO functional classification of DEGs between Ctr and Day5. (C) GO functional
 classification of DEGs between Ctr and Day9. (Ctr, Day1, Day5, Day9 represent 0 d, 1 d, 5 d
 and 9 d STMFPS treatment groups, respectively).
- 591

Table 1: Collection of parameters of PCA and OPLS-DA models for the comparisons of

Iona modaa	Comparisons –	Р	CA		OPLS-DA		
Tons modes		R^2X	Q^2	R^2X	R^2Y	Q^2	
	A vs. B	0.705	0.112	0.386	0.944	0.648	
ESI+	A vs. C	0.670	0.351	0.658	0.999	0.983	
	A vs. D	0.611	0.341	0.543	0.999	0.972	
	A vs. B	0.584	-0.00327	0.238	0.997	0.287	
ESI-	A vs. C	0.621	0.349	0.691	0.998	0.915	
	A vs. D	0.547	0.234	0.494	0.998	0.961	

metabolites in crucian carp muscle treated at different depuration periods

(Note: A, B, C, D represents the different groups treated at different depuration periods, such as 0 d, 1 d, 5 d、 9 d)

Table 2: Collection of different metabolites in crucian carp muscle during different depuration periods. *Note, Data was calculated as the ratio of the relative concentrations of the metabolites between depurated samples and the control samples.* A/B/C/D *was represented the relative concentrations of samples under various depuration periods - 0/1/5/9 days; Different metabolites were screened out according to VIP values (VIP>1.5) in the OPLS-DA models and p value in t-test* (p<0.05); *: *The statistical power was bigger than 0.8.*

NO	Namo	MW	Retention	n Relative amount		
NU	Name	(Da)	time(min)	B/A	C/A	D/A
1	Urea	60.03	15.540	0.227*	0.039*	0.051*
2	Pyruvate	88.02	18.223	0.657*	0.543*	0.549*
3	Oxalic acid	90.00	18.223	0.668	0.539*	0.524*
4	Isovaleric acid	102.07	15.529	0.116*	0.032*	0.038*
5	Ribitol	152.07	15.530	0.117*	0.023*	0.026*
6	Citrulline	175.10	15.530	0.110*	0.014*	0.015*
7	Retinol	286.23	13.745	0.457*	0.355*	0.513*
8	Stearic acid	284.27	13.002	0.490*	0.498*	0.595*
9	Vitamin D3	384.34	15.671	0.391*	0.106*	0.145*
10	LysoPE(0:0/20:0)	509.35	11.536	1.285	1.246	1.539*
11	Thymine	126.04	0.978	0.777		0.668
12	TXB2	370.24	14.021	0.756*		0.661*
13	LysoPE(0:0/22:2(13Z,16Z))	533.35	11.856	1.611		1.648*
14	LysoPE(0:0/22:1(13Z))	535.36	12.322	1.441		1.565*
15	Succinic acid	118.03	18.186		0.662*	0.716*
16	Creatine	131.07	3.443		4.482*	4.182*
17	Ornithine	132.09	3.471		6.264*	6.017*
18	Caprylic acid	144.12	1.884		7.820*	4.425*
19	L-Tyrosine	181.07	3.446		4.278*	4.018*
20	D-Sorbitol	182.08	11.463		2.768*	2.925*
21	L-Cystathionine	222.07	11.391		2.870*	3.090*
22	L-Tryptophan	204.09	11.209		0.391*	0.541*
23	Myristic acid	228.21	11.595		0.484*	0.651*
24	Guanosine	283.09	3.460		7.524*	6.447*
25	Argininosuccinic acid	290.12	18.117		1.834	1.766*
26	β-estradiol	272.18	0.953		3.156*	2.703
27	Alpha-CEHC	278.15	11.442		2.593*	2.751*
28	Cortisone	360.19	11.455		1.756*	1.880*
29	Adenosine monophosphate	347.06	0.867		3.489*	1.869
30	PGA1	336.23	11.447		0.416*	0.554*
31	Nutriacholic acid	390.28	14.222		0.490*	0.537*
32	MG(0:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)	404.29	13.096		0.603*	0.610
33	Vitamin D2	396.34	10.260		2.702*	2.869*

34	LysoPE(0:0/14:0)	425.25	9.817	0.491* 0.550*
35	LysoPE(0:0/18:3(6Z,9Z,12Z))	475.27	10.080	1.324* 1.556*
36	LysoPE(0:0/18:2(9Z,12Z))	477.29	10.467	1.348 1.509*
37	LysoPE(0:0/20:4(5Z,8Z,11Z,14Z))	501.29	10.522	1.247* 1.510*
38	PE(14:0/18:2(9Z,12Z))	687.48	14.375	0.590 0.358*
39	PC(14:0/P-16:0)	689.54	14.707	0.474* 0.329*
40	PE(14:0/20:5(5Z,8Z,11Z,14Z,17Z))	709.47	14.065	0.531 0.490*
41	PE(14:0/20:3(5Z,8Z,11Z))	713.50	14.521	0.571 0.424*

Table 3 KEGG Metabolism Pathway of DEGs in the flesh of carp during different STMFPS

607 treatments

The number of DEGs						
D. d	Ctr	Ctr	Ctr	All-	Pathway	T 11
Pathway	vs. 1	vs. 5	vs. 9	gene	ID	Level 1
		d	d			
Metabolic pathways	503	1163	1040	4521	ko01100	Global and overview maps
Purine metabolism	83	194	168	807	ko00230	Nucleotide metabolism
Pyrimidine metabolism	61	136	118	440	ko00240	Nucleotide metabolism
Glycerophospholipid metabolism	44	107	92	424	ko00564	Lipid metabolism
Lysine degradation	41	91	89	371	ko00310	Amino acid metabolism
N-Glycan biosynthesis	49	87	72	227	ko00510	Glycan biosynthesis and metabolism
Oxidative phosphorylation	28	87	52	332	ko00190	Energy metabolism
Inositol phosphate metabolism	40	80	82	345	ko00562	Carbohydrate metabolism
Carbon metabolism	33	78	78	393	ko01200	Global and overview maps
Glycerolipid metabolism	24	62	51	206	ko00561	Lipid metabolism
Sphingolipid metabolism	25	61	44	204	ko00600	Lipid metabolism
Amino sugar and nucleotide sugar metabolism	19	56	43	188	ko00520	Carbohydrate metabolism
Arginine and proline metabolism	18	53	43	224	ko00330	Amino acid metabolism
Cysteine and methionine metabolism	19	52	41	192	ko00270	Amino acid metabolism
Ether lipid metabolism	24	49	43	191	ko00565	Lipid metabolism
Arachidonic acid metabolism	19	47	39	205	ko00590	Lipid metabolism
Biosynthesis of amino acids	20	47	39	213	ko01230	Global and overview maps
Glutathione metabolism	13	45	44	194	ko00480	Metabolism of other amino acids
Mannose type O-glycan biosynthesis	28	38	41	97	ko00515	Glycan biosynthesis and metabolism
Glycolysis / Gluconeogenesis	13	38	0	196	ko00010	Carbohydrate metabolism
Other types of O-glycan biosynthesis	23	37	39	108	ko00514	Glycan biosynthesis and metabolism
Pyruvate metabolism	13	35	38	174	ko00620	Carbohydrate metabolism
Fatty acid metabolism	13	34	34	185	ko01212	Global and overview maps
Retinol metabolism	15	33	31	146	ko00830	Metabolism of cofactors and vitamins
Porphyrin and chlorophyll metabolism	14	33	28	97	ko00860	Metabolism of cofactors and vitamins
Valine, leucine and isoleucine degradation	13	33	28	116	ko00280	Amino acid metabolism
Tryptophan metabolism	10	32	33	118	ko00380	Amino acid metabolism
Fructose and mannose metabolism	10	32	32	116	ko00051	Carbohydrate metabolism

Glycosaminoglycan biosynthesis - heparan sulfate / heparin	14	31	30	116	ko00534	Glycan biosynthesis and metabolism
Drug metabolism - cytochrome P450	7	30	30	125	ko00982	Xenobiotics biodegradation and metabolism
Glycosphingolipid biosynthesis - lacto and neolacto series	10	28	27	124	ko00601	Glycan biosynthesis and metabolism
Alanine, aspartate and glutamate metabolism	11	28	25	122	ko00250	Amino acid metabolism
Nicotinate and nicotinamide metabolism	9	27	28	112	ko00760	Metabolism of cofactors and vitamins Xenobiotics
Drug metabolism - other enzymes	15	26	29	130	ko00983	biodegradation and metabolism
Metabolism of xenobiotics by cytochrome P450	10	26	28	124	ko00980	biodegradation and metabolism
Citrate cycle (TCA cycle)	7	26	25	143	ko00020	Carbohydrate metabolism
One carbon pool by folate	11	25	28	156	ko00670	Metabolism of cofactors and vitamins
Other glycan degradation	13	25	24	60	ko00511	Glycan biosynthesis and metabolism
Glyoxylate and dicarboxylate metabolism	8	24	34	132	ko00630	Carbohydrate metabolism
Steroid hormone biosynthesis	12	24	26	133	ko00140	Lipid metabolism
Pentose phosphate pathway	13	24	19	95	ko00030	Carbohydrate metabolism
Glycosaminoglycan biosynthesis- chondroitin sulfate/dermatan sulfate	12	24	18	105	ko00532	Glycan biosynthesis and metabolism Xenobiotics
Drug metabolism - cytochrome P450	7	30	30	125	ko00982	biodegradation and metabolism
Glycosphingolipid biosynthesis - lacto and neolacto series	10	28	27	124	ko00601	Glycan biosynthesis and metabolism
Alanine, aspartate and glutamate metabolism	11	28	25	122	ko00250	Amino acid metabolism
Nicotinate and nicotinamide metabolism	9	27	28	112	ko00760	Metabolism of cofactors and vitamins
Drug metabolism - other enzymes	15	26	29	130	ko00983	biodegradation and metabolism
Metabolism of xenobiotics by cytochrome P450	10	26	28	124	ko00980	Xenobiotics biodegradation and metabolism
Citrate cycle (TCA cycle)	7	26	25	143	ko00020	Carbohydrate metabolism
One carbon pool by folate	11	25	28	156	ko00670	Metabolism of cofactors and vitamins

Other glycan degradation	13	25	24	60	ko00511	Glycan biosynthesis and metabolism
Glyoxylate and dicarboxylate metabolism	8	24	34	132	ko00630	Carbohydrate metabolism
Steroid hormone biosynthesis	12	24	26	133	ko00140	Lipid metabolism
Pentose phosphate pathway	13	24	19	95	ko00030	Carbohydrate metabolism
Glycosaminoglycan biosynthesis -						Glycan biosynthesis and
chondroitin sulfate / dermatan sulfate	12	24	18	105	ko00532	metabolism
Mucin type O-glycan biosynthesis	13	23	21	119	ko00512	Glycan biosynthesis and
Machi type of giyean biosynthesis	15	23	21	117	K000312	metabolism
Fatty acid degradation	10	23	16	132	ko00071	Lipid metabolism
Glycosylphosphatidylinositol (GPI)-anchor	12	22	26	85	ko00563	Glycan biosynthesis and
biosynthesis	12	22	20	65	K000505	metabolism
Glycine, serine and threonine metabolism	7	22	25	114	ko00260	Amino acid metabolism
Terpenoid backbone biosynthesis	12	22	21	54	ko00900	Metabolism of terpenoids
	-	10	14	112	100052	Carb abardanta match aliana
	5	19	14	70	K000052	
The second glucuronate interconversions	8	18	20	/9	K000040	
Tyrosine metabolism	/	18	19	90	K000350	Amino acid metabolism
Propanoate metabolism	11	18	17	90	ko00640	Carbohydrate metabolism
Starch and sucrose metabolism	4	18	17	128	ko00500	Carbohydrate metabolism
Selenocompound metabolism	8	17	12	39	ko00450	Metabolism of other amino acids
alpha-Linolenic acid metabolism	8	17	10	91	ko00592	Lipid metabolism
Fatty acid elongation	3	15	18	92	ko00062	Lipid metabolism
Glycosphingolipid biosynthesis - globo and	4	15	1.4	C 0	1 00/02	Glycan biosynthesis and
isoglobo series	4	F 15 14 69 KOU	K000603	metabolism		
Linoleic acid metabolism	6	15	12	88	ko00591	Lipid metabolism
Histidine metabolism	5	14	12	53	ko00340	Amino acid metabolism
	10	12	10	96	1 00410	Metabolism of other
beta-Alanine metabolism	12	13	19	80	K000410	amino acids
Ascorbate and aldarate metabolism	6	13	17	70	ko00053	Carbohydrate metabolism
Fatty acid biosynthesis	5	13	16	68	ko00061	Lipid metabolism
	0	12	1.4	50	1 00770	Metabolism of cofactors
Pantotnenate and CoA biosynthesis	8	13	14	55	K000770	and vitamins
Glycosphingolipid biosynthesis-ganglio	5	13	13	73	ko00604	Glycan biosynthesis and
series	5	15	10	15	Roooool	metabolism
Glycosaminoglycan degradation	4	12	19	62	ko00531	Glycan biosynthesis and metabolism
Butanoate metabolism	5	12	11	48	ko00650	Carbohydrate metabolism
						Metabolism of cofactors
Folate biosynthesis	1	12	11	45	ko00790	and vitamins
Sulfur metabolism	3	12	9	38	ko00920	Energy metabolism
Primary bile acid biosynthesis	7	11	14	57	ko00120	Lipid metabolism
Biosynthesis of unsaturated fatty acids	4	11	13	79	ko01040	Lipid metabolism
Glycosaminoglycan biosynthesis - keratan sulfate	4	11	13	91	ko00533	Glycan biosynthesis and metabolism

Steroid biosynthesis	3	11	8	56	ko00100	Lipid metabolism
Thiamine metabolism	2	11	7	50	ko00730	Metabolism of cofactors and vitamins
Phenylalanine metabolism	7	10	12	42	ko00360	Amino acid metabolism
Ubiquinone and other terpenoid-quinone biosynthesis	3	10	11	30	ko00130	Metabolism of cofactors and vitamins
Arginine biosynthesis	3	10	9	64	ko00220	Amino acid metabolism
Riboflavin metabolism	6	10	8	24	ko00740	Metabolism of cofactors and vitamins
Phosphonate and phosphinate metabolism	2	9	10	71	ko00440	Metabolism of other amino acids
2-Oxocarboxylic acid metabolism	1	7	5	54	ko01210	Global and overview maps
Taurine and hypotaurine metabolism	4	6	8	42	ko00430	Metabolism of other amino acids
Vitamin B6 metabolism	2	5	7	16	ko00750	Metabolism of cofactors and vitamins
Synthesis and degradation of ketone bodies	1	4	5	13	ko00072	Lipid metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis	2	4	4	18	ko00400	Amino acid metabolism
Valine, leucine and isoleucine biosynthesis	0	4	2	11	ko00290	Amino acid metabolism
Nitrogen metabolism	1	3	11	56	ko00910	Energy metabolism
D-Glutamine and D-glutamate metabolism	1	3	3	16	ko00471	Metabolism of other amino acids
Monobactam biosynthesis	1	3	1	7	ko00261	Biosynthesis of other secondary metabolites
Biotin metabolism	1	2	2	9	ko00780	Metabolism of cofactors and vitamins
Insect hormone biosynthesis	1	2	2	14	ko00981	Metabolism of terpenoids and polyketides
C5-Branched dibasic acid metabolism	0	2	0	6	ko00660	Carbohydrate metabolism
Lipoic acid metabolism	0	1	2	8	ko00785	Metabolism of cofactors and vitamins
Caffeine metabolism	2	1	1	8	ko00232	Biosynthesis of other secondary metabolites
D-Arginine and D-ornithine metabolism	0	1	1	6	ko00472	Metabolism of other amino acids
Neomycin, kanamycin and gentamicin biosynthesis	1	1	1	13	ko00524	Biosynthesis of other secondary metabolites
Polyketide sugar unit biosynthesis	0	1	0	2	ko00523	Metabolism of terpenoids and polyketides

	Constitutionale	Pathway		DEGs ^a		Email of a second	M-4-h-1:4
	Genetic code	No.	1 d	5 d	9 d	Expression of enzymes	Metabolites
-	100070501	1-01040	+1.0	127	ND	argininosuccinate synthase	citruline to
	109070301	K01940	+1.0	+2.7	ND	[EC:6.3.4.5]	arginosuccinate
	109058290	k21121	ND	+1 4	+1.2	N-alpha-acetyltransferase 60	glutamate to N-
	107058270	K21121	ND	⊤1.4	+1.2	[EC:2.3.1.259]	acteyl-glutamate
	1000/155/15	k01755	ND	⊥1 7	⊥ 1 0	argininosuccinate lyase	arginosuccinate to
	107043343	K01755	ND	+1.7	+1.0	[EC:4.3.2.1]	arginine
						delta-1-pyrroline-5-carboxylate	glutamate to
	109056660	k12657	+1.2	+1.8	+1.4	synthetase	glutamate 5-
						[EC:2.7.2.11]/[1.2.1.41]	semialdehyde
						ornithingoxo-acid	ornithine to
	109088420	k00819	ND	-2.1	-2.3	transaminase [FC·2 6 1 13]	glutamate 5-
							semialdehyde
						pyrroline-5-carboxylate	proline to 1-
109113777	k00286	ND	+1.3	+1.3	reductase [EC:1.5.1.2]	pyrroline-5-	
						feduciase [EC.1.5.1.2]	carboxylate
			ND	+1.1	+1.1	carbamovi-phosphata synthase	glutamine to
	109054371	k11540				IFC 6 3 5 5]	carbomyl-
							phosphate

Table 4: DEGs related to ornithine cycle in crucian carp muscle during depuration

611 (Note, ^a value is presented as the differential expression multiple after log2 conversion. Positive value indicates

612 that the sample group was up-regulated compared with the control group (depurated for 0 day). Negative value shows

613 that the sample group was down-regulated compared with the control group (depurated for 0 day).)

614

τεσ

632 Fig. 1 Results of PCA analysis (A-D) and the permutation test plots (E-G) from the OPLS-DA

633 models for the metabolites obtained from crucian carp muscle during different depuration periods

and detected using UPLC-QTOF/MS in both ionization modes. *Note: A: All samples in four*

635 groups; B: Control group vs. 1 d group; C: Control group vs. 5 d group; D: Control group vs. 9 d

636 group; E: Control group vs. 1 d group; F: Control group vs. 5 d group; G: Control group vs. 9 d

637 group. The criteria for validity of the OPLS-DA model are indicated as following: All blue Q^2 -

638 values to the left are lower than the original points to the right; or the blue regression line of the

639 Q^2 -pints intersected the vertical axis (on the left) or below zero.

641

Fig. 2: Comparative contents of different metabolites in crucian carp muscle during the depuration
procedure ("*": <0.05; "**": p<0.01; "***": p<0.001). Note: A-D: Related with energy metabolism;

644 E-H: Related with the purine metabolic cycle; I-K: Related with the ornithine metabolic cycle.

- 647 Fig. 3 Effect of depuration on metabolic pathways of crucian carp muscle. Note: *Different colors*
- 648 of metabolites represent change of comparative content, red: increased; blue: did not significantly
- *change; green: decreased.*

651

Fig. 4 Correlation heatmap of the Pearson correlation coefficient of all gene expressions in four

different groups (Ctr1-Ctr5: Control; Day1: 1 d; Day5: 5 d; Day9: 9 d).

655

656 Fig. 5(A) Venn diagram of significantly enriched DEGs in different group comparisons representing the unique and overlapping DEGs. (B) MA plot distribution of DEGs of crucian carp muscle during 657 658 different deputation periods. The red and blue dots indicate that the genes were differently expressed and the grey dots illustrate that the genes were not differentially expressed. The positive and 659 660 negative values represent the up- and downregulation of DEGs, respectively. (C) Clustered heatmap 661 for DEGs detected from different groups with rows representing DEGs and columns representing samples. Note: Columns represent every gene set that was significantly up-regulated (red) or down-662 regulated (blue) in different groups (Ctr1-Ctr5: Control; Day1: 1 d; Day5: 5 d; Day9: 9 d). 663 664

Fig. 6 GO classification of DEGs. (A) GO functional classification of DEGs between the control (Ctr) and Day1. (B) GO functional classification of DEGs between the Ctr and Day9. (Ctr, Day1, Day5, Day9 represent 0 d, 1 d, 5 d and 9 d STMFPS treated groups, respectively).