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Abstract
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers
the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and
further integrated into an environment. Exploring Systems Medicine implies understanding and combining con-
cepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation,
and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruit-
ful interaction between these highly diverse fields.
Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include
both modeling and data science terms and basic systems medicine terms, along with some synthetic definitions,
examples of applications, and lists of relevant references.
Results: This glossary aims at being a first aid kit for the Systems Medicine researcher facing an unfamiliar term,
where he/she can get a first understanding of them, and, more importantly, examples and references for digging
into the topic.

Keywords: systems medicine; multiscale modeling; multiscale data science

Introduction
Although death has always been the end of every hu-
man’s life, mankind has been trying to delay that as
much as possible. It is, thus, not surprising that one of
the most ancient forms of science, if not the first, has
been medicine, starting with documents going back to
ancient Egypt and Greece.1 In the previous century,
technical advances (from vaccines to genome sequenc-
ing) have supposed a revolution in medicine, and
have allowed a substantial reduction in mortality
rates. However, this trend is now experiencing dimin-
ishing returns: New drugs are nowadays being devel-
oped less frequently and at a higher cost; they are
beneficial to smaller subsets of the population, and con-
sequently have less impact on life expectancy. In paral-
lel, mankind has recently witnessed an Information
Technology (IT) revolution, in which data are gathered
and processed at unprecedented rates, given birth to ap-
plications that would have appeared as science fiction as
recently as 20 years ago. Following the theory of Kon-
dratiev waves,2 postulating the existence of waves of
40–60 years with high sectoral growth, could it be that
the next wave will have medicine at its focus, and spe-
cifically through the merging of both revolutions?

Such merging is actually taking the form of the so-
called Systems Medicine, an interdisciplinary field of
study that looks at the human body as a system, com-
posed of interacting parts, and further integrated into
an environment.3,4 It considers that these complex re-
lationships exist on multiple levels, and that they have
to be understood in light of a patient’s genomics, be-
havior, and environment. The analysis of a disease
then starts with real data, coming from a large number
of patients (thus to ensure that the natural variability is
taken into account) and covering all aspect of them,
from genetics to the environment. Machine-learning
and mathematical models are then developed, aimed
at finding the most efficient way of disrupting the dis-
ease in a specific patient.

Even after this oversimplified description, it is clear
that systems medicine requires skills and knowledge
not considered in standard medical curricula, or alter-
natively the collaboration between researchers of dif-
ferent backgrounds. The revolutionary idea behind
systems medicine is, thus, responsible for its main
drawback: the need for understanding and combining
concepts coming from diametral different fields, in-
cluding statistics, modeling and simulation, and data
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science.5 The researcher wanting to enter this world
will face an additional problem: Although a large num-
ber of books and papers can be found on, for example,
data-mining concepts, these are usually not written
with a medical practitioner in mind. Not just the re-
quired background, but even the basic terminology
can become a major barrier.

This review addresses the semantic issues this
implies, which may slow down implementation and
fruitful interaction between these highly diverse fields,
by providing the first version of the Systems Medicine
Dictionary.* Specifically, the practitioner coming
from medicine will find in it a large number of mod-
eling and data science terms, along with some syn-
thetic (although comprehensive) definitions and a
list of relevant references. Similarly, a researcher
with a background in modeling and data will here
find an explanation of the basic systems medicine
terms. It is worth noting that these definitions are
not exhaustive, as both their selection and the corre-
sponding content have been guided by the personal
view of the authors. In addition, some terms described
here represent fields of research on their own, whose
characterization can hardly be contained in a mono-
graphic book. This work, thus, represents the first
aid kit for the systems medicine researchers facing
an unfamiliar term. They will here get a first under-
standing of it; and, more importantly, examples and
references for digging into the topic.

Science, in general, and medicine, in particular, can
benefit from approaches that are different from what
was done earlier, as these can have multiplicative effects
on knowledge and understanding in general; this may
lead to new insights and ideas for new hypotheses, and
eventually to breakthroughs unattainable via the old
and tested ways of thinking and acting. In turn, this re-
quires crossing discipline boundaries and provides new
angles to old information. We expect this glossary to
be especially useful to the younger readership, for exam-
ple, PhD students and early career researchers, as they
are at a better position to break away from old conven-
tionalisms while significantly boosting their careers.

Concepts from Systems Medicine, Modeling,
and Data Science
All terms are included here in alphabetical order, and
they are further listed in Table 1. Table 2 also reports

a list of the acronyms that appear in the text, and the
corresponding meaning. Finally, underlined words,
for example, agent-based modeling (ABM), refer to
terms that are defined here.

Agent-based modeling
ABM (also known as Individual-based modeling,
Multi-agent Systems, and Multi-agent autonomous
Systems) is a modeling/simulation paradigm that is es-
pecially suited for studying complex systems, that is,
systems composed of a large number of heterogeneous
interacting entities, with each having many degrees of
freedom. A very open definition of this mathematical
discrete modeling paradigm is to represent a physical
or biological system on the basis of entities (called
agents) with defined properties and behavioral rules,
and then to simulate them in a computer to reproduce
the real phenomena and to perform what-if analysis.6

Agents have, thus, to be understood as autonomous en-
tities, each one with an internal state representing its
knowledge about the environment, and rules (or algo-
rithms) to interact with other agents. This broad defi-
nition can then encompass from simple particles to
autonomous software with learning capabilities. To il-
lustrate, these can be from ‘‘helper’’ agents for web
retrieval,7,8 robotic agents to explore inhospitable envi-
ronments,9 up to lymphocytes in an immune system
reaction simulation.10–12 Roughly speaking, an entity
is an ‘‘agent’’ if it is distinguishable from its environ-
ment by some kind of spatial, temporal, or functional
attribute: An agent must be identifiable. In addition,
agents can be identified on the basis of four basic prop-
erties: autonomy, that is, the behavior of each agent
is not guided by rules defined at a higher tier; social
ability, that is, their capacity of interacting with other
agents; reactivity, in that they react to perceived
changes in the environment; and pro-activeness, that
is, the ability to take the initiative. Moreover, it is
also conceptually important to define what the agent
‘‘environment’’ in an ABM is. This can be implicitly
embedded in the behavioral rules or be explicitly repre-
sented as a different ‘‘modeled object’’ with a well-
defined set of characteristics that influence the agent’s
behavior.

An ABM simulation may start from simple agents,
locally interacting with simple rules of behavior,
responding to perceived environmental cues and try-
ing to achieve a local goal. However, the simplicity
of the composing elements does not derive in the sim-
plicity of the overall dynamics. From this simple

* We plan this glossary to be updated in the future; we will, therefore, welcome any
suggestion coming from readers.
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configuration, a synergy may emerge, which leads to a
higher-level whole with much more intricate behavior
than the component agents (holism, meaning all, en-
tire, total).

If the first examples of agent-based models were de-
veloped in the late 1940s, only computers could really
show their modeling power. These include the Von
Neumann machine, a theoretical machine capable of
reproduction,13 that is, of producing an identical
copy of itself by following a set of instructions. This
idea was then improved by Ulam,14 by suggesting ma-
chines to be built on paper, as collections of cells on a
grid. This idea inspired von Neumann to create the first
of the models later termed cellular automata (CA).
Building on top of these, John Conway constructed
the well-known ‘‘Game of Life,’’ a simple set of rules
that allow evolving a virtual world in the form of a
two-dimensional checkerboard, and which has become
a paradigmatic example of the emergence of order in
nature. How do systems self-organize themselves and
spontaneously achieve a higher-ordered state? These
and other questions have been addressed in-depth in

the first workshop on Artificial Life (ALife) held in
the late 1980s in Santa Fe. This workshop shaped the
ALife field of research,15 in which ABM models are
the main form of modeling and simulation.

The ABM proved very successful in theoretical biol-
ogy. In this specific research domain, ABM is emerging
as the best modeling paradigm that is able to accom-
modate the need to represent more than one level of
space-time description, thus fitting the multiscale spec-
ification. Beyond the aforementioned works on the im-
mune system, examples include cancer modeling,16,17

or epidemics predictions.18,19 For further discussions
and examples, the reader may refer to An et al.20

Artificial neural networks
Artificial neural networks (ANN) are inspired by the
neural networks that exist in mammal brains.21 They
represent a programming paradigm that helps a com-
puter to process complex information to learn from
the observational data. The network itself consists of
connected units or nodes called artificial neurons
(based on neurons in a biological brain) that are

Table 1. List of the terms described here

Agent-based modeling Artificial neural networks Bayesian filtering
Bayesian networks Bayesian smoothing Bayesian statistics
Biofluid mechanics Bioheat transfer Biological networks
Biomaterials Biomechanics Cellular automata
Clinical decision support systems Clustering Complex networks
Complex systems Computational drug repurposing Constraints
Context awareness systems Correlation networks CRISP-DM
Cross-validation Data analysis software Data fusion and data integration
Data mining Decision Tree Decision support systems
Deep learning Digital Health Digital Twin
Dissipative particle dynamics Erd}os–Rényi model Exposome
FAIR principles Feature selection Finite element method
Finite volume method Frequentist statistics Functional networks
Gene set enrichment analysis Granger causality Graph embedding
Hidden conditional random fields Imputation In silico modeling
Integrative analysis Interactome Internet of things
Lattice Boltzmann method Machine learning Mediation analysis
Medical informatics metaboAnalyst Metabolomics
Model robustness Model verification and validation Morphometric similarity networks
Multiphysics systems Multilayer networks Multiscale biomolecular simulations
Multiscale modeling Network analysis software networkAnalyst
Network medicine Null models Nvidia Clara
Object-oriented modeling Ontologies Parameter estimation
Parameter identifiability Parameter sensitivity analysis and uncertainty quantification Permutation test
Phase transition Physiome Precision medicine
Probabilistic risk analysis Quantitative systems pharmacology Random forest
Random graphs Scale-free networks Simulated annealing
Small-world network Smoothed-particle hydrodynamics Solid–fluid interaction
Statistical bioinformatics Statistical networks Support vector machine
Surrogate model Systems biology Systems bioinformatics
Systems dynamics Systems engineering Systems medicine
System of systems Standards Structural covariance networks
Time-evolving networks Time-scale separation Variation partitioning
Virtual physiological human

CRISP-DM, Cross-Industry Standard Process for Data Mining; FAIR, Findability, Accessibility, Interoperability, and Reusability.
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organized in layers. The first layer is called the input
layer and is connected to the input signals. The input
layer is followed by one or more hidden layers, all the
way to the output layer connected to the output signals.
Analogous to the synapses in a biological brain, signals
are transmitted from one neuron to another. The output

of one artificial neuron is computed when a nonlinear
function is applied on the sum of its inputs. Usually,
the weights and biases are added to adjust the learning
process. Weights increase or decrease the strength of
the signal at a connection, and biases represent the
threshold to delay the triggering of the activation func-
tion. Mathematically, this can be represented as (Fig. 1):

Output = f +weight � inputþ bias
� �

:

For ANN to learn from the provided data, they need
to have a huge amount of information used as a train-
ing set. During the training period, the ANNs output is
compared to the human-provided description of what
should be observed (called target). If they are the
same, weights are validated, and in case of incorrect
classification, its learning will be adjusted.22 In the end,
an unknown signal (not used in the training set) will
be used as the input, and we expect the network to cor-
rectly predict the output (this process is called general-
isation). As an example, in the process of classification
of images as images with a dog or cat, the training set
would be thousands of images already classified as dog
or cat image. After the training, the ANN should be
able to classify future images based on the trained model.

Although ANNs were originally aimed at solving
specific biology problems, over time their application
extended to a wide spectrum of tasks, including sys-
tems medicine through genomics, drug repurposing,
or personalized medicine. Not surprisingly, many re-
views are available. For instance, Awwalu et al. investi-
gated the adequacy of using ANN, among other
artificial intelligence (AI) algorithms, in solving per-
sonalized medicine and precision medicine problems.23

Ching et al. have developed an ANN framework called
Cox-nnet to predict patient prognosis from high-
throughput transcriptomics data.24 Bica et al. have
introduced a novel neural network architecture for ex-
ploring and integrating modalities in omics datasets,
especially in cases where a limited number of training
examples was available.25 Also, some examples of ap-
plication of deep neural networks could be found in
using neural networks to learn an embedding that sub-
stantially denoises expression data, making replicates
of the same compound more similar.26 Donner et al.
used ANNs to identify drugs with shared therapeutic
and biological targets, even for compounds with struc-
tural dissimilarity, revealing functional relationships
between compounds and making a step forward to-
ward the drug repurposing based on expression data.26

Table 2. List and explanation of the acronyms
used throughout the review

2SSP Two-Stage Stochastic Programming
AAL Ambient-assisted living
ABM Agent-based modeling
AI Artificial intelligence
ANN Artificial neural networks
BI Business intelligence
BIC Bayes information criteria
BPPV Benign paroxysmal positional vertigo
CA Cellular automata
CDSS Clinical decision support system
CFD Computational fluid dynamics
DDA Drug–disease association
DDI Drug–drug interaction
DPD Dissipative particle dynamics
DSS Decision support system
DT Decision tree
EEG Electro-encephalography
FBA Flux balance analysis
FEA Finite element analysis
FEM Finite element method
fMRI Functional magnetic resonance imaging
FVM Finite volume method
GCN Gene co-expression network
GRN Gene-regulatory network
GSEA Gene set enrichment analysis
HCRF Hidden conditional random fields
HMS Health care monitoring system
HSH Health smart homes
ICT Information and communication technologies
IoMT Internet of medical things
IoT Internet of things
IT Information technology
LB Lattice Boltzmann
LDL Low-density lipoprotein
MEG Magneto-encephalography
MFA Metabolic flux analysis
MICE Multiple imputation by chained equations
MMS Multiscale modeling and simulation
MSC Multiscale computing
NLP Natural language processing
PaaS Platform as a service
PCA Principal-component analysis
PIN Protein interaction network
PK/PD Pharmacokinetic/pharmacodynamic
PPI Protein–protein interaction
PRA Probabilistic risk analysis
QM/MM Quantum mechanical and molecular mechanical
QSP Quantitative systems pharmacology
RF Random forest
RFE Recursive feature elimination
RSM Response surface models
SA Simulated annealing
SDK Software Development Kit
SPH Smoothed-particle hydrodynamics
TF Transcription factor
t-SNE t-Distributed stochastic neighbor embedding
UPR Unfolded protein response
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Bayesian filtering
A class of methods that allows estimating the current
state, that is, the value of the observed variable(s),
based on noisy measurements of the current and previ-
ous states. For instance, the spread of infectious dis-
eases could be modeled with the help of Bayesian
filters, where the time-varying variables are, for exam-
ple, estimations of the number of susceptible, infected,
healed, and dead individuals taken in the current and
some previous time moments.27 For more information,
see Särkkä.28

Bayesian networks
Bayesian networks (also known as Bayes networks, be-
lief networks, Bayes/Bayesian models, and probabilistic
directed acyclic graphical models) are a type of directed
graphical model (i.e., a graph expressing the condi-
tional dependencies between variables) that combines
graph theory and probability theory (see also the
Bayesian Statistics section). They present a formalism
designed to address problems involving uncertainty
and complexity. The Bayesian network approach can
be seen as both a statistical and an AI-like knowledge-
representation formalism. It is a useful tool for describing
mechanisms involving stochasticity, cohort heterogene-
ity, and knowledge gaps, which are common features
of medical problems, and has been utilized for diagnosis,
treatment selection, and prognosis29 as well as for analyz-
ing probabilistic cause–effect relationships (i.e., estimat-
ing the likelihood of a set of factors to be contributing
to an observation, e.g., the relationship between symp-
toms and potential underlying mechanisms). Bayesian
networks are constructed as directed acyclic graphs,
where nodes represent unique variables that have a finite
set of mutually exclusive states, whereas edges represent
conditional dependence and the absence of edges condi-

tional independence.30 For each variable A with parents
B1, B2, . . . , Bn, there is a conditional probability table
P given as P AjB1, B2, . . . , Bnð Þ.30 Importantly, Bayesian
networks satisfy the local Markov property, meaning
that nodes are conditionally independent of its nondes-
cendants given its respective parents. This characteristic
permits a simplification of joint distributions within the
model, allowing for efficient computation. In the most
simple approach, a Bayesian network is specified by
using expert knowledge; in the case of complex interac-
tions, the network structure and parameters need to be
learned from data.

Inference and learning in Bayesian networks. Given
probability tables of the variables in a Bayesian network
and conditional independencies, joint probability dis-
tributions can be calculated and utilized to infer infor-
mation within the network and for structural learning.
This approach can be used for different probabilistic
inference methods, for example, for estimating the
distribution of subsets of unobserved variables given
observed variables (so-called evidence variables). Fur-
ther, Bayesian networks can be utilized to express
causal relationships and combine domain knowledge
with data, and, importantly, can thus be used for prob-
abilistic parameter estimation.

Examples of the use of Bayesian networks in medicine
include the diagnosis and prediction of disease trajecto-
ry,31–33 health care planning,34,35 and molecular data
analysis.36 Although this is a popular and successful op-
tion for modeling in the medical domain, they should be
used with caution in complex problems with multiple
feedback loos and closed-loop conditions.

Most relevant limitations. Bayesian networks com-
monly rely on prior knowledge/belief for construction

FIG. 1. Graphical representation of ANN. ANN, artificial neural network.
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and inference; thus, the quality and usefulness of a re-
spective network is directly dependent on the usefulness
and reliability of this prior knowledge. In the case of
expert-constructed networks, it may further be challeng-
ing to translate this knowledge into probability distribu-
tions. Bayesian networks are constructed as acyclic
graphs and thus do not support the implementation of
feedback-loops,37 although this may be addressed by
using dynamic Bayesian networks.38 Bayesian networks
have limited ability to deal with continuous variables, a
limitation most commonly addressed by discretizing
these variables, which, in turn, has tradeoffs.39 Lastly,
Bayesian learning and inference can become very com-
putationally expensive, to the point that a network be-
comes impossible to compute and the search space
needs to be reduced by using different heuristics.40,41

Bayesian smoothing
This is a class of methods for reconstructing previous
state(s), having noisy measurements of the current
and the previous states. Brain imaging is an example
of an area that can take advantage of the Bayesian filters
and smoothers relying on sensor measurements of
different values.28

Bayesian statistics
Bayesian statistics is a Bayesian interpretation of prob-
ability in which probability expresses a degree of belief
in an event, as opposed to a fixed value based on fre-
quency—see the Frequentist Statistics section.

The basic framework of Bayesian analysis is quite
straightforward. Prior distributions are associated with
parameters of interest to represent our initial beliefs
about them, for example, based on objective evidence,
subjective judgment, or a combination of both. Evidence
provided by further data is summarized by a likelihood
function, and the normalized product of prior and the
likelihood forms a posterior distribution. This posterior
distribution contains all the currently available informa-
tion about the model parameters. Note that this is differ-
ent from the standard frequentist approach, and that
both methods do not always give the same answers;
and this is fueling an ongoing debate between propo-
nents of both approaches.42–44 At the same time, the
use of a Bayesian approach yields results that go beyond
what are obtainable through a frequentist perspec-
tive.45–47 In what follows, the most important points of
Bayesian and frequentists disagreements and differences
are discussed: prior distributions, sequential analysis,
and confidence intervals.

The (subjective) choice of prior distribution. The spec-
ification of prior distribution is a matter of ongoing con-
cern for those contemplating the use of Bayesian
methods in medical research.48 It is not without a reason
that frequentists object to this concept. Any conclusions
drawn from the posterior distribution will be impacted
by this choice. If the prior distribution is informative,
that is, already carries strong evidence for certain values
of unknown parameters, then new data might have no
significant impact at all (which is not a bad thing if
our prior distribution reflects the truth). Many authors
devoted their thoughts to the formalization of the
prior distribution selection,49–52 and they all have
made suggestions regarding the elicitation and quantifi-
cation of prior opinions of clinicians. However, it is still
a very difficult task. Even minor mistakes in the prior
elicitation can propagate to significant errors in the pos-
terior inferences. The subjectivity in the elicitation of ex-
pert opinions is the main critique of the Bayesian
approach. Actually, in very complex problems, such elic-
itation might even be impossible to many parameters.
However, uninformative priors, the kind that also have
a claim to objectivity, are the Bayesian response.53 In
fact, there is a strong movement toward objective unin-
formative priors in the Bayesian community.

This struggle to develop the objective Bayesian frame-
work produced quite many different approaches on how
to devise objective prior distribution. The most famous
of these is the Jeffreys-rule prior.54 Reference priors55,56

are a refinement of the Jeffreys-rule priors for higher di-
mensional problems and have proven to be remarkably
successful from both Bayesian and non-Bayesian per-
spectives. Maximum entropy priors57 are another well-
known type of noninformative prior, although they
often also reflect certain informative features of the sys-
tem being analyzed. Invariance priors, as mentioned ear-
lier, matching priors,58 and admissible priors59 are other
approaches being extensively studied today. Methods on
how to select a prior distribution from this vast universe
of possible distributions are discussed in Kass and Was-
serman.60 Caution is advised when considering a nonin-
formative distribution. Sensitivity analysis should always
be performed, because in small sample cases, noninfor-
mative prior distribution can still influence the posterior
results.61 On the other hand, arbitrariness is not so un-
familiar to frequentists’ practices as well.

Sequential analysis. The Bayesian approach includes
a generally accepted stopping rule principle: Once the
data have been observed, the reasons for stopping the
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experiment should have no effect on the evidence
reported about unknown model parameters. Frequent-
ists’ practice, on the other hand, is different. If there are
to be interim analysis during the clinical trial, with the
option for stopping the trial early should the data look
convincing, frequentists feel that it is mandatory to ad-
just allowed error probability (down) to account for the
multiple analysis.42

Stopping rules are especially important in clinical
trials, and Bayesians pick up on this theme as early as
1992, with four seminal papers on colorectal cancer
clinical trials.62–66 Currently, Bayesian stopping rules
are being used in all phases of trials—see Ashby46 for
a complete review. In fact, the increasing use of Bayes-
ian statistical methods in clinical research is supported
by their capacity to adapt to information that is gath-
ered during a trial, potentially allowing for smaller,
but yet more informative trials, and for patients to re-
ceive better treatment.67

Confidence intervals. The concept of confidence in-
tervals is purely frequentists. However, the way it is
(wrongly) interpreted is Bayesian. Confidence interval
represents the precision of a parameter estimate as
the size of an interval of values that necessarily include
estimate itself. A true understanding of the concept
would look like this: If new data were to be repeatedly
sampled, the same analysis carried out, and a series of
95% confidence intervals calculated, 19 out of 20 of
such intervals would, in the long run, include the
true value of the quantity being estimated.68 However,
many researchers (mistakenly and fundamentally in-
correct) interpret this interval as a 0.95 probability
that the true parameter is in the interval. If one
would be truly Bayesian from the beginning of the anal-
ysis, Bayesian credible intervals69 would be considered
as exactly the probability that the unknown parameter
is contained in it. In fact, in certain prior distribution
cases, Bayesian credible intervals are exactly the confi-
dence intervals, only the interpretation is different.

The interplay of Bayesian and frequentist analy-
sis. Currently, there is a trend of using notions from
one type of approach to support analysis of another ap-
proach. Of many topics, several should be mentioned
in this brief note: empirical Bayesian analysis, where
prior distribution is estimated from the data70; approx-
imate model selection methods, such as BIC,71 similar
to the usage of Akaike information criteria; robust
Bayesian analysis,72 which recognize the impossibility

of complete subjective specification of the model and
prior distribution, etc. From the frequentist theory
viewpoint, the most convincing argument in favor of
the Bayesian approach is that it intersects widely with
the three notions of classical optimality, namely, mini-
maxity, admissibility, and equivariance.73

Biofluid mechanics
Biofluid mechanics is the application of principles of fluid
mechanics on the dynamics of motion of biofluids inside
and around of living organisms and cells.74 The main ap-
plications of biofluid dynamics are the study of the circu-
latory system with the blood-flow inside vessels of various
sizes, the study of the respiratory system with the air-flow
inside the lungs, and also the lubrication of synovial
joints.75 The study of biofluid dynamics has allowed
many therapeutic applications such as artificial heart
valves,76 stents, and in the future artificial lungs.77 Bio-
fluid dynamics can be studied with simulations and ex-
periments. Computational fluid dynamics simulations
can be used to better understand the flow phenomena
of the biofluids inside the complex geometry of vessels.
Biofluid dynamics can also be studied with in vivo exper-
iments, with the use of noninvasive medical imaging
methods such as Doppler ultrasound and magnetic reso-
nance imaging (MRI), invasive methods such as angiog-
raphy but also with more straightforward methods as the
pressure cuff used to measure blood pressure.78

Bioheat transfer
Bioheat transfer concerns the rate of heat transfer be-
tween a biological system and its environment. The
main difference regarding heat transfer of biological sys-
tems to nonbiological ones is the blood perfusion through
the extended network of vasculature in biological systems
that directly affects the local temperature of the living tis-
sue.79 The main research subjects of bioheat transfer are
the thermal interaction between the vasculature and tis-
sue, tissue thermal parameter estimation,80 human ther-
mal comfort, thermoregulation, safety of heat transfer to
living tissue due to microwave, ultrasound or laser expo-
sure due to environmental exposure or for therapeutic
applications.81 Because biochemical processes are gov-
erned by local temperature, bioheat transfer also plays
a major role in the rate of these processes.

Biological networks
The concept of complex networks represents a power-
ful tool for the representation and the analysis of com-
plex systems, and especially to describe their internal
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interaction structure. Recently, the so-called network
biology approach82 has been fruitfully applied in
many different biological areas, from gene regulation,
to protein–protein interactions (PPIs), to neural sig-
nals,83 to finally hit clinical applications: Network med-
icine is today at the forefront of modern quantitative
approaches in medical sciences.84 Here, with no claim
of exhaustiveness, we list the main types of biological
networks.

PPI networks. PPIs are physical contacts, stable or
transitory, between two or more proteins created by
electrostatic forces between the so-called protein surfaces,
that is, the ‘‘exposed’’ regions of the three-dimensional
structures of folded proteins. These contacts are at the
base of most biological functions, as, for instance, of sig-
nal transduction, cell metabolism, membrane transport,
or muscle contraction. It is, thus, clear that the analysis
of how proteins interact between each other is essen-
tial to understand cellular processes in healthy and in
pathological conditions. Sets of proteins and their in-
teractions are generally referred to as protein interac-
tion networks (PINs), mathematically represented by
undirected graphs. The specific analyses performed
on PINs depends on the overall goal of the study; to
illustrate, one may try to identify the most prominent
element for a given function (e.g., gene target prioriti-
zation),85 or the set of lethal proteins in a cell.86 Meth-
ods for the detection of protein interaction encompass
experimental (e.g., yeast-two-hybrids, mass spectrom-
etry) or in silico (ortholog-based) approaches.87,88

Gene-regulatory networks. Gene-regulatory networks
(GRNs) are networks of causative and regulative inter-
actions (biochemical processes such as reactions, trans-
formations, interactions, activations, inhibitions: the
links) between transcription factors (TFs) and down-
stream genes (the nodes), represented with directed
graphs and inferred by gene expression data.

Methods to extrapolate GRNs are based on
information-theoretic criteria, co-expression metrics,
or regression approaches, among others. For example,
the mutual information (MI) approach is often used,
that is, a dimensionless metric that states how much
the knowledge of a random variable tells about another
one. A value of MI of zero indicates that the two vari-
ables are completely independent; on the other hand,
MI > 0 implies that they are connected, as knowing
one of them is equivalent to (partially) knowing the
other. Thus, if MI > 0 for the expression of two

genes, we can infer that one of them is (partially, at
least) driving the other.89

Though created in an indirect way, inferred GRNs
aim at representing real physical, directed, and quanti-
tatively determined interaction events, both between
genes and, and between them and their products. The
final aim is the discovery of key functional relationships
between RNA expression and chemotherapeutic sus-
ceptibility.90 Recently, data from single-cell gene ex-
pression have become mature and have been
approached by using partial information decomposi-
tion to detect putative functional associations and to
formulate systematic hypotheses.91,92

Validation of GRNs has traditionally been per-
formed in two ways. On the one hand, one can resort
to ‘‘gold standards,’’ that is, sets of interactions that
have been validated; on the other hand, one can ob-
serve the biological system under study in vitro, by in-
ducing a perturbation and by observing whether the
real and predicted effects coincide.93,94

Gene co-expression networks. Gene co-expression
networks (GCNs) are basically RNA transcript–RNA
transcript association networks: Nodes of the network
correspond to genes, which are pairwise connected
when an appreciable transcript co-expression associa-
tion between them exists. Networks are then calculated
by estimating some kind of similarity score from ex-
pression data and by applying a significance threshold;
the result is usually a undirected graph. In reconstruct-
ing GCNs, normalization methods, co-expression cor-
relation (e.g., Pearson’s or Spearman’s correlation
measures), significance, and relevance estimation are
calculated. Graphical Gaussian Models (e.g., ‘‘concen-
tration graph’’ or ‘‘covariance selection’’ models) are
also used, along with edge removal based on gene trip-
lets analysis (e.g., the ARACNE tool), regression meth-
ods, and Bayesian networks.95

Signaling networks. Signaling pathways are cascades
of molecular/chemical interactions and modifications
to carry signals from cell membrane receptors to the
nucleus to arrange proper biological responses to stim-
uli, on human or microbial levels. The process of
reconstructing signaling networks has typically been
based on gene knockout techniques, which are effective
in describing cascades in a linear or branched manner.
Nevertheless, recent screens suggest a switch from such
cascades to networks with complex interdependencies
and feedbacks,96 which require methods that are able
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to infer aspects and features of signaling processes from
high-throughput -omic data in a faster and systemic
way. In general, such inference problems can be re-
duced to the definition of suitable optimal connected
subgraphs of a network originally defined by the avail-
able data; examples include the Steiner tree approaches
(based on the shortest total lengths of paths of interacting
proteins), linear programming, and maximum-likelihood
(e.g., tagging proteins as activators or repressors to ex-
plain the maximum number of observed gene knock-
out). Alternatives include the use of a probabilistic
network, for example, network flow optimization (Bayes-
ian weighting schemes for underlying PPI networks
coupled with other -omics data), network propagation
(gene prioritization function that scores the strength-
of-association of proteins with a given disease), or in-
formation flow analysis (based on the identification of
proteins dominant in the communication of biologi-
cal information across the network).97,98

Metabolic networks. Metabolic network reconstruc-
tion is generally referred to as the annotation process
of genes and metabolites for the determination of the
metabolic network’s elements, relationships, structure,
and dynamics.83 It can be identified on human, micro-
bial and their joint co-metabolic levels. It is usually pos-
sible to infer the enzymatic function of individual
proteins, or to reconstruct larger (or even whole) meta-
bolic networks. Techniques such as metabolic flux anal-
ysis (MFA) and its improvements (e.g., isotopically
nonstationary MFA), and flux balance analysis have be-
come largely utilized for the predictions of concurrent
fluxes of multiple reactions. Recently, computational ap-
proaches coupling MFA with mass spectrometry have
been also implemented. Single-enzyme function predic-
tion can be carried out by resorting to machine learning,
especially when the enzyme does not show significant
similarity to existing proteins; or to ‘‘annotation trans-
fer’’ approaches, based on the use of reference databases
or orthologs to tag specific DNA sequences. Comparative
pathway prediction methods use established functional
annotations to check for the existence of new reactions,
whereas explorative pathway prediction techniques
(not using existing annotations) can be graph-theoretic
(e.g., by weighting paths of metabolite connectivity)
or constraint-based (e.g., elementary mode analysis),
or both.99,100

TF networks. When talking about disease and trans-
formation from health to disease, we cannot avoid

the TF networks that were enabled by technological ad-
vances, such as genome-wide large-scale analyses, ge-
nome editing, single-cell analyses, live-cell imaging,
etc. Enhancer locations and target genes are keys to
TF network models.101 The original definition of en-
hancers is that they represent functional DNA se-
quences that can activate (enhance) the rate of
transcription from a heterologous promoter, indepen-
dent of their location and orientation.102 Determining
the function of enhancers and whether TFs bind to
them was accelerated by the CRISPR/Cas9 and other
genome-editing technologies, as well as by the data col-
lected within the large-scale efforts, such as the Human
Epigenome, ENCODE, etc. If we combine the experi-
mental evidence of TFs binding to specific promoter
or enhancer DNA elements, at specific genomic loci,
we can construct TF network models and maps, to pre-
dict biological behavior in silico and further guide ex-
perimental research. In principle, the TF network
models are simple, consisting of subnetworks with
nodes (genes and proteins) and edges that link the
TFs to their functional targets. More complex models
can, nevertheless, be used, for instance integrating
Boolean and Bayesian approaches—see Brent101 for a
review.

The TFs work predominantly in a tissue-specific
manner to define the cell phenotypes. For a maximal
output, different TFs usually cooperate and synergize,
to modulate changes in gene expression.103 A TF net-
work map is a graph where we can see which TFs di-
rectly regulate a gene by binding to one of its
promoter or enhancer elements. A TF network map
includes the basic biochemical knowledge, similarly
as the metabolic network map. It links the TFs with tar-
get genes, taking into account the proper physiological
or patophysiological conditions and signals (endoge-
nous and external), as well as the context of the time
(development, aging, circadian, etc.). Several ap-
proaches have been developed to model and/or graph-
ically represent the TF networks, such as the
PetriNets104 and the ARACNE algorithm that has
been recently upgraded to suit also the single-cell
gene expression data.105 The NetProphet 2.0106 is an-
other algorithm for TF network mapping that can as
accurately as possible identify TF targets. Another rep-
resentation of TF networks are the maps that are built
directly from transcriptome data by applying the en-
richment procedures. These maps show whether the
expression of individual TFs is related. For example,
the KEGG pathways107 and TRANSFAC database
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were used for functional enrichment studies.108 Gene
sets containing more than five elements were con-
structed and tested for enrichment by using the
PGSEA package, and the TFs were merged based on
their ID irrespective of their binding sites. In this man-
ner, the TF enrichment analyses confirmed an in-
creased unfolded protein response and metabolic
decline after depleting one of the genes from cholester-
ol synthesis in the liver.109

Biomaterials
Biomaterial is a synthetic material that is used to re-
place part of a living system or to function in intimate
contact with living tissue.110,111 Although there are dif-
ferent definitions of a biomaterial, the Clemson Uni-
versity Advisory Board for Biomaterials has officially
defined a biomaterial as ‘‘a systemically and pharmaco-
logically inert substance designed for implantation
within or incorporation with living systems.’’ One
must differ biomaterial from biological material (i.e.,
bone matrix or tooth enamel), which is produced by
a biological system. Other materials that should be dif-
ferentiated are artificial materials that are simply in
contact with the skin (i.e., hearing aids and wearable ar-
tificial limbs), which are not biomaterials since the skin
acts as a barrier with the external world. The main ap-
plications of biomaterials include assistance in healing,
to improve function and correct abnormalities or re-
placement of a body part that has lost function due
to disease or trauma. Advances in many fields, includ-
ing surgery, have permitted materials to be used in
many cases and wider scope.112,113

Biomechanics
Biomechanics is the application of classical mechanics
to the study of biological systems. Laws of physics for
statics, kinematics, dynamics, continuum mechanics,
and tribology are applied for the study of biological sys-
tems from a single cell to whole human bodies.114 Bio-
mechanics studies are employing both experiments and
numerical simulations. Experiments in biomechanics
are performed both in vitro and in vivo. Common ex-
periments include measurements of kinematics and dy-
namics of human motion (gait analysis),115,116 soft
tissue deformation and impact studies (tension-
compression tests, impact tests, three-point bending
tests),117 electromyography for neuromuscular con-
trol,118 but also experiments at microscopic level with
dynamic loading of cells with microscopic cantilevers
setups.119 Simulation of biomechanics systems has

allowed the testing of conditions that would be danger-
ous to test with human participants or biological tissue,
with applications ranging from vehicle safety with sim-
ulated crash tests using active human body models,
study of biological systems with complex geometries
that is not possible to measure their deformation re-
sponse with experiments, as brain deformation during
head impacts and faster and easier-to-perform para-
metric studies. However, it is important when using a
simulation model to consider the range of parameters
for which the model is valid.

Cellular automata
The CA are defined as abstract and discrete (spatially
and temporally) computational systems that showed
its application as general models of complexity and as
more specific representations of nonlinear dynamics
in a variety of scientific fields. The CA are composed
of a finite (countable) set of homogeneous and simple
units, called atoms or cells. These cells have an internal
status that can take a finite set of values, and that is
updated at each time step through functions or dynam-
ical transition rules—generally as a function of the
states of cells in the local neighborhood. It should be
mentioned that CA are abstract, meaning they can be
specified in purely mathematical terms and physical
structures can implement them. Since CA are compu-
tational systems, they can compute functions and
solve algorithmic problems, therefore displaying com-
plex emergent behavior. Because of that, they are
attracting a growing number of researchers from the
cognitive and natural sciences interested in pattern for-
mation and complexity in abstract setting.120 The CA
have also been applied to some medical problems, as,
for instance, image segmentation121,122 or infection
modeling.123–125

Clinical decision support systems
Clinical decision making involves clinicians making
decisions about patient diagnosis and treatment.126

Clinical decision making has traditionally largely
been determined by human expertise. As of now, clini-
cians still make the final decisions on weighing across
evidence, for example, from clinical data records.

Various statistical and mathematical methods,127

and knowledge-based approaches using dictionary-
defined knowledge (e.g., with ‘‘if-then’’ rules)128 have
now been used to aid clinical decision making, result-
ing in more quantitative, standardized, accurate, and
objective decisions. This has led to the development
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of medical or clinical decision support systems
(CDSSs), often in the form of computer software or
health technology, aiding human experts with interpre-
tation, diagnosis, and treatment.129

The rise of AI, particularly machine learning, has led
to another form of CDSSs that is ‘‘non-knowledge-
based.’’ Some of these approaches, for example, deep-
learning algorithms, have been claimed to outperform
human experts in diagnosis of specific illness.130 How-
ever, interpretability or explainability of the results of
such approaches hinder their use in practice.131 It
should be noted that CDSSs still remain not as highly
adopted by users, perhaps partially due to general
lack of engagement from clinicians, physicians, or
health specialists.132

Clustering
In data mining, any problem involving the division of
data into groups (clusters), such that each one of
them contains similar records (according to some similar-
ity measures), and that dissimilar records are organized
into different clusters. It is also called unsupervised learn-
ing, as no a priori information about the structure of the
groups is used. An alternative definition of clustering is
proposed in Ref.133: ‘‘partition a given data set in groups,
called clusters, so that the points belonging to a cluster are
more similar to each other than the rest of the items be-
longing to other clusters.’’

Although consensus on a unique classification of
clustering algorithms has not been achieved, it is cus-
tomary to divide such algorithms according to their un-
derlying hypothesis134:

� Hierarchical-based. Hierarchical clustering com-
bines instances of the data set to form successive
clusters, resulting in a tree form called dendro-
gram. Clusters are equal to individual instances
in the lowest level of the tree, and upper levels
of the tree are aggregations of the nodes below.
Agglomerative and divisive clustering can be dis-
tinguished, depending on whether each observa-
tion starts in its own cluster, or in the complete
set.
� Partitions-based. As opposed to the previous

group, partitions-based methods start from the
complete data set and divide it into different dis-
joint subsets. Given a desired number of clusters,
the process is based on assigning instances to dif-
ferent clusters and iteratively improving the divi-
sion, until an acceptable solution is reached.

Note that partitions-based methods are different
from divisive hierarchical methods because, first,
they require predefining the number of clusters;
and second, because of their iterative nature.
The well-known K-means algorithm,135 possibly
the most commonly used clustering algo-
rithm,136,137 belongs to this class.
� Density-based. If the previously described algo-

rithms assess the similarity of instances through
a distance measure, density-based algorithms
rely on density measures; clusters are thus formed
by groups of instances that form a high-density re-
gion within the feature space. This presents the ad-
vantage of a lower sensitivity to noise and outliers.
Among the most used algorithms belonging to this
family, the DBSCAN138 is worth mentioning.
� Probability-based. Probability-based clustering

combines characteristics of both partitions-based
and density-based approaches. The most impor-
tant of these clustering approaches are mixture
models,139 which are probabilistic models used
to model heterogeneity and represent the presence
of subpopulations (latent subgroups) in an overall
population. The probabilistic component makes
them a useful approach for complex (especially
multimodal) data and they can be used to obtain
statistical inferences about the property of latent
subgroups without any a priori information about
these subgroups. In practice this is achieved by
using Expectation-Maximization algorithms.140

Important advantages are the flexibility with
regards to choosing subgroup distributions and
the possibility of obtaining ‘‘soft’’ stratification.

Complex networks
Born at the intersection of physics, mathematics, and
statistics, the theory of complex networks has proven
to be a powerful tool for the analysis of complex sys-
tems. Networks are mathematical objects composed
of nodes, pairwise connected by links.141–143 Their flex-
ibility, and indeed their success, resides in the fact that
the identity of those elements is not defined a priori; for
instance, networks can be used to represent from peo-
ple and their social connections,144 market stocks and
their correlations or co-ownership,145 to genes and
their co-regulation.146 In all cases, networks allow re-
ducing such complex systems into simple structures
of interactions, which can easily be studied by means
of mathematical (algebraic) tools, while removing all
unnecessary details.
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The most simple way of reconstructing networks, and
indeed the first one from a historical perspective, is to
directly map each element composing a system to a
node, and map explicit relationships between elements
as links. Consider the example of a gene co-regulation
network: Nodes would represent genes, with pairs of
them being connected when it is known (e.g., from di-
rect biological experiments) that one of the two genes
is regulating the second. Once the full network is recon-
structed, its structure can be studied through a broad set
of existing topological metrics,147 designed to numeri-
cally quantify specific structural features; and by
using these metrics as input to data-mining models.148

In spite of the interesting results that could be
obtained through this simple understanding of networks,
it was soon apparent that many real-world systems
needed more detailed descriptions. Specifically, it is
worth noting that a simple network reconstruction
implies three hidden assumptions: that links are constant
through time; that nodes are connected by just one type
of relationship; and that relationships are explicit. Break-
ing these three hypotheses gave birth, respectively, to
time-evolving, multilayer and functional networks.

Complex systems
Systems were composed of a large number of ele-
ments, interacting in a nonlinear way between them.
As opposed to more simple systems, these interac-
tions are essential to understand the behavior of the
complete system, and in some cases, they can even
be more relevant than the individual elements.149–151

Due to this, the study of complex systems goes beyond
the reductionism paradigm, where understanding is
based on splitting to smaller subsystems that are sim-
pler to understand. In other words, although the re-
ductionistic approach works bottom-up, the systems
view required to understand complex systems is a
top-down one. Complex systems displays two impor-
tant properties. On one hand, a nonlinear behavior,
and thus tools originating in nonlinear analysis have
been used in this domain—to illustrate, the analysis
of time series describing the dynamics of complex sys-
tems often resort to the use of metrics of complexi-
ty,152 fractal dimension,153 sample entropy,154 and
other types of entropies155 to quantify the irregularity,
or detrended fluctuation analysis to quantify long-
range correlations.156 On the other hand, emergence
refers to the behaviors that may unexpectedly emerge,
leading to order or disorder, and that cannot be
explained by the dynamics of the system’s units. Adap-

tation is considered as one of the qualities of complex
systems, and this is a property that can be observed
in the biomedical domain.157

Computational drug repurposing
Drug repurposing or repositioning is the detection of
novel indications for existing drugs, to treat new dis-
eases.158 A major advantage of the drug repurposing
strategy is that it involves approved compounds that
have passed the toxicological safety screening process
and have a known pharmacokinetic (PK) profile: Repo-
sitioned drugs can, hence, enter directly to clinical
Phase II, making the clinical phase process much
faster than newly developed drugs, and thus more
cost-effective. Computational drug repurposing ap-
proaches aim at optimizing and accelerating the
drug repurposing procedures, also providing means
for candidate drug prioritization. Computational
drug repurposing methods include the following:
Structure-based virtual screening (molecular dock-
ing), Ligand-based methods (Pharmacophore model,
Quantitative structure–activity relationship, and Reverse
docking methods),159 Transcriptomic-based methods,160

genome-wide association study (GWAS) methods,161

Literature-based discovery methods,162 and Network-
based, Multisource data integration and Machine-
Learning approaches.163

Constraints
In mathematics, constrains are conditions that must be
fulfilled by some parameters (or solutions) of a model,
to make the latter realistic. In the case of mathematical
modeling of complex biological systems, different con-
straints can be implemented for parameters such as
value range of variables, limitations of sum of parame-
ters, transition speed, and other types of information.
To illustrate, the angle of joints in the human arm can-
not take any value, but must comply with some physi-
cal limitations.164 There are (i) general constraints that
are true for any system (mass conservation, energy bal-
ance), (ii) organism level constraints—consistent limi-
tations for all experimental and environmental
conditions for a particular organism (range of viable
metabolite concentrations, homeostatic constraint),
and (iii) experiment-level constraints—environmental
condition-dependent constraints for particular organ-
isms (biomass composition, cellular resources).165

Context awareness systems
Context awareness systems address complex environ-
ments in terms of location, identity, components, and
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relations. Context refers to the information that de-
scribes an entity (person, location, object).166 The
study of such complex environments has been made
possible by the availability of Wireless Sensor Networks
technologies, which allow heterogeneous sensors, dis-
tributed in a physical environment, to share their mea-
surements. Still, these technologies do not protect from
problems such as cross-domain sensing and coupling
of sensors; to preserve performance and reliability,
the data fusion has to be performed with caution.167

Context awareness systems have an important role in
the design of health care monitoring systems, health
smart homes, and ambient assisted living, which facil-
itate the acquisition of both ambient and medical data
from sensors. Such systems also may include reasoning
capabilities consisting of data processing and analysis
as well as knowledge extraction.168

Correlation networks
Functional complex networks created by considering
the correlation between the dynamics of pairs of nodes.

Cross-industry standard process for data mining
CRISP-DM stands for cross-industry standard process
for data mining, an industrial group that proposed a
methodology for organizing the data analysis process
in six standard steps.169,170 Since then, the term
CRISP-DM has been used to indicate both the group
itself and the methodology. The six steps are:

� Business (or Problem) understanding: initial un-
derstanding of the objectives and requirements
of the analysis to be performed; these are
expressed as a data mining problem, and should
include a preliminary roadmap or execution plan.
� Data understanding: In this second phase, data are

collected and a first analysis is executed, to famil-
iarize with them; identify quality problems; dis-
cover initial insights, and formulate initial
hypotheses; and identify relevant data subsets.
� Data preparation: Data received by the researchers

are seldom ready to be processed; on the contrary,
they usually require an initial preparation. This
covers all of the activities required to construct
the final data set, from selecting those data that
are really relevant, to data cleaning and pre-
processing. This is one of the most important
steps of the whole process, as the success of the
final analysis strongly depends on it; and is re-
sponsible for most of the time and resources con-

sumed in a data analysis project, as data
preparation is usually performed iteratively and
without a fixed recipe. See Refs.171–173 for a re-
view of techniques and the motivations for data
preparation.
� Modeling: phase in which data-mining algorithms

are applied and parameters are calibrated to opti-
mal values. Some algorithms covered in this re-
view are ANNs, decision trees (DTs), random
forests (RFs), and support vector machines
(SVMs). Although each one of these models has
specific requirements on the format of input
data, and are built on top of hypotheses on the
patterns to be detected, in practice multiple algo-
rithms are suitable in any given problem. In these
situations, multiple models are optimized and
compared; the models reaching a higher perfor-
mance are passed to the next phase for a final
evaluation.
� Evaluation: Model evaluation cannot be under-

stood only from a data-mining perspective, for ex-
ample, in terms of the achieved classification
score; a business perspective should also be
taken into account. Only when all relevant ques-
tions have been addressed, can one then move
to the deployment of the extracted knowledge.
� Deployment: When all of the information about

the business problems has been gathered, the in-
formation and knowledge then has to be orga-
nized and presented.

Cross-validation
In data analysis, cross-validation (also known as rota-
tion estimation and out-of-sample testing) refers to
any technique used to validate a data-mining model,
that is, to quantify how it will generalize to an indepen-
dent data set, re-using a single data set. The initial data
set is divided into multiple subsets, which are used to
train or validate the model; this guarantees that the
same data are never used in both tasks.174

Data analysis software
With the widespread adoption of data-based solutions
in many real-world scenarios, it is not surprising to find
a large number of analytic solutions, spanning from
cloud pipelines to commercial and freeware software,
and both stemming from research activities and having
a commercial nature. The most important are listed
here, classified according to their underlying structure
in cloud, noncloud, and hybrid tools.
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Noncloud (or local) solutions. Commercial and free-
ware software tools for data analysis are designed to
work on a local (or at least, noncloud) environment.
In this category, one can find:

� KNIME175 (www.knime.com);
� SPSS Modeller176 (www.ibm.com/products/spss-

modeler);
� RapidMiner177 (rapidminer.com);
� Alteryx (www.alteryx.com).

These software platforms usually have a broad focus,
allowing to process any (or most) kind of data; and they
allow to construct models by connecting modules in a
graphical interface.

Cloud-based solutions. Also known as Platform as a
Service, are solutions based on full cloud environments,
and on the creation of web-based pipelines in which
data are fed, processed, and returned to the user in a com-
pletely automatic way. The most notable solutions include:

� Google’s ML Engine (cloud.google.com/ml-engine);
� Amazon’s SageMaker (aws.amazon.com/sagemaker);
� Microsoft’s Azure (studio.azureml.net).

This approach presents two advantages: a complete
scalability, and a simplified user experience. At the
same time, they usually provide a limited spectrum of
possible analysis—for instance, Google ML Engine
completely relies on Tensor Flow algorithms.178

Hybrid solutions. These solutions position themselves
in between the two families previously described. Although
they are designed for cloud deployment, they can easily be
installed in a local infrastructure; and they shift the focus
toward an intuitive representation of the results and sim-
plified user experience. Among others, these include:

� Sisense (www.sisense.com);
� Looker (looker.com);
� Zoho Analytics (www.zoho.com/analytics);
� Tableau (www.tableau.com).

They usually allow to summarize data on high-level
dashboards, with specific applications including busi-
ness analytics179 or website usage tracking. They, nev-
ertheless, do not provide the analytical flexibility
required by systems medicine applications.

Data fusion and data integration
Data fusion is the process of integrating multiple data
sources to produce more consistent, accurate, or useful

information than that provided by a single data source,
whereas data integration refers to heterogeneous data
obtained from different methods or sources, which
are merged to produce meaningful and valuable infor-
mation. In the field of system/personalized medicine,
progress has been made regarding data integration,
with large sets of comprehensive tools and methods
(e.g., Bayesian or network-based methods), especially
for multi-omics processing.180

Data mining
General terms are used for describing the process of dis-
covering patterns in data sets through the use of statistical
and mathematical algorithms. Their definition overlaps
with that of machine learning; and the term is also used
to denote the modeling step of the CRISP-DM process.

Decision tree
In data mining, DTs denote classification algorithms
that rely on comprehensive tree structures, and that
classify records by sorting them based on attribute val-
ues. Each node in a DT represents an attribute in an in-
stance to be classified, whereas each branch represents
a value that the attribute can take—see Figure 2 for a
simple graphical representation. The DTs can be gener-
alized to target continuous values, in which case they
are usually referred to as regression trees.

Let us denote by D the set of training instances that
reach a node. The general procedure to build the tree is:

� If all the instances of D belong to the same class,
then the node is a leaf node.
� Otherwise, use an attribute to split the set D into

smaller subsets. These subset will then feed subse-
quent nodes, by applying this procedure recur-
sively until a stop condition is met.

FIG. 2. Example of a simple decision tree model,
trained to choose between two treatments as a
function of the age and sex of the patient.
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The main differences between the many implemen-
tations of DTs available in the literature reside in the
criteria used to decide the splitting point. Among oth-
ers, Gini index is used in CART,181 SLIQ,182 and
SPRINT183; information gain is used in ID3184 and in
the well-known C.45.185

The main advantage of DTs is their simplicity, both
in the software implementation and in the interpreta-
tion of results; and their capacity of handling both nu-
merical and categorical variables, thus implying little
data preparation. This has fostered their use in medical
applications, as reviewed, for instance, in Refs.186,187

They, nevertheless, suffer from a less-than-perfect per-
formance. The concept of DT further underpins the RF
classification algorithm.

Decision support systems
Decision support systems (DSSs) are information sys-
tems, that is, systems designed to collect, process and
make available information, focused on supporting dif-
ferent types of decisions.188 The DSSs typically deal

with business and management challenges; can be
completely customized by including multiple user in-
terfaces and flexible architectures; and implement
Optimization/Mathematical Programming tools for so-
lution strategy and report. The DSSs are able to provide
a complete view of the activities and flow within large
and complex real production systems, integrating the
supply of raw materials, the production phases, the
products distribution, and the recovery within the sus-
tainable and closed-loop supply chains. The DSSs in
the form of standardized, enterprise-wide information
systems were widely implemented in multiple sectors,
including industry supply chains (e.g., pharmaceutical,
manufacturing, agri-food189) and health care services
(e.g., CDSSs126–130).

Deep learning
The ANNs, which form the basis of deep learning, were
developed in the 1940s as a model for the human
brain.190 Although this model has attracted the interest
of researchers in previous periods, it made a significant

FIG. 3. Deep-learning system developed for human face recognition. Source: https://www.quora.com/What-
do-you-think-of-Deep-Learning-2
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leap in learning and classification with the development
of deep learning systems based on the layered learning
structure of the human brain. One of the main reasons
for this is that computational infrastructure needed to
satisfactorily operate these complex structures that con-
tain hundreds of layers and thousands of neurons have
only appeared in the past decade.

Deep-learning systems are mainly defined by the fact
that each important feature of the phenomenon to be
learned is automatically recognized by the algorithm
and each group of features is learned by a separate artifi-
cial neural layer.191 For example, in an image recognition
system developed for human face recognition, different
facets of the face, such as lines, eyes, and mouths, and
the general lines of the face are learned by different layers.
Deep learning-based methods have greatly improved
performance in computer vision and natural language
processing, and they are integrated into many of the tech-
nologies currently used (Fig. 3).

Digital Health
The term ‘‘Digital Health’’ (or d-Health) is used for
denoting the massive and ubiquitous use of informa-
tion and communication technologies in health, health
care, and medicine fields.192 Digital Health covers the
range of technologies used in health and medicine
from genome sequencing of the microbes in the
human organs, such as the gut and the skin, through
genome sequencing, to the use of smartphone for sup-
porting online telemonitoring (exposome level). The
main goals of digital health are to improve health
care customer follow-up and engagement, in parallel
of resources and cost optimization from the health or-
ganizations and providers. As a part of the fourth dig-
ital revolution, ‘‘Digital Health’’ is using internet of
things (IoT) and business intelligence (BI) for deliver-
ing personalized health care and medicine services.
However, Digital Health is taking health care from a
paternalistic medicine wherein physicians are defining
and deciding how to treat the patient to being patient-
centered. Patient-centered in the Digital Health context
means that the electronic tools, hardware and software,
are enhancing the health care customers’ experience
and engagement by providing them with the decision
support tools for getting better health outcomes and
by considering their way of life and constraints.193,194

Nevertheless, Digital Health reduces direct human–
human interactions and thus may induce a dehuman-
ization of health care. Within Digital Health, a subsub-
ject has to be highlighted: the development of methods

allowing improving health care customers’, practition-
ers’, and other caregivers’ (like patient’s family mem-
bers) experience, engagement, and interactions, by
considering the digital environment as another kind
of point-of-care similar to clinics, pharmacies, and hos-
pitals. One limitation of a dynamic and fast develop-
ment of Digital Health lies in local regulations that
have the objective of keeping health-related data and
information confidential and safe, and allowing their
use in ways ensuring data availability and integrity
only for relevant individuals (patients and their related
one when relevant, professional, and specific organi-
zations). Digital Health is a full component of the Sys-
tems Medicine paradigm by allowing a dynamic view
of individuals from the nano-level (e.g., gene expres-
sion as a response to an environmental change) to the
mega-level (e.g., population interactions/reactions—
discussions— on social networks as a response to an
epidemic announcement).

Digital Twin
The concept of Digital Twin is a bridge between the
physical world, which can consist of a living system
(i.e., an animal or a vegetal, an individual or a popula-
tion) or a cyber-physical system (e.g., a biological pro-
cess, a drug production line, a health monitoring
service). A Digital Twin is a virtual or more accurately
a computational representation of a real-world ob-
ject.195 This kind of ‘‘duplicate’’ is allowing designing,
implementing, and testing models in a virtual environ-
ment before or instead of performing these operations
in a real-world context. From a Systems Medicine per-
spective, the digital twin is allowing building models
of living systems (from the cell components level to
the world population level for building and evaluating
from biological to epidemiological models) by using
socio-demographics, biological, clinical, and commu-
nicational data collected by health care customers
and caregivers (see Medical Informatics section)
and/or generated by IoT objects (see the Digital
Health section).196,197

Dissipative particle dynamics
Dissipative particle dynamics (DPD) is a stochastic
simulation technique used to study dynamical and rhe-
ological properties of fluids, both simple and complex.
It involves a set of particles, representing clustered mol-
ecules or fluid regions, moving in a continuous space
and at discrete time steps. This meso-scale approach
disregards all atomistic details that are not considered
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relevant to the processes addressed. Internal degrees of
freedom of particles are replaced by simplified pairwise
dissipative and random forces, to conserve momentum
locally and ensure a correct hydrodynamic behavior.

This technique facilitates the simulation of the statics
and dynamics of complex fluids and soft matter systems.
The main drawback is high computing power, but this
has improved due to the high performance computing,
which is now combined with this technique.198

Among others, the DPD can be used for modeling
the transport of low-density lipoproteins (LDLs)
through arterial wall and analyzing plaque formation,
where the force of attraction of oxidase LDL molecules
to the wall is modeled in the DPD solution as spring
force with an experimentally determined coefficient199;
for creating semicircular canal models with simplified
geometry, showing the behavior of the fluid inside
the canal, cupula deformation, and movement of oto-
conia particles to analyze benign paroxysmal positional
vertigo200; or for modeling self-healing materials used
for corrosion analysis and protection (Fig. 4).201

Erd}os–Rényi model
The Erd}os–Rényi model is a model that is used to con-
struct random graphs in which all edges, or links, have

the same probability of existing, that is, they are inde-
pendent. The model is usually denoted as G n, pð Þ,
with n being the number of nodes and p the probabil-
ity for any link to be present. Therefore, the model
starts with n nodes, and each possible edge is in-
cluded with probability p independent from every
other edge.

The simplicity of this random network model makes
it an ideal candidate for acting as null model in the
normalization of network properties, although special
care is required when the underlying real network is
connected by construction, or has any other fixed
characteristic.202

This simplicity also made possible the calculation of
the expected characteristics of the graph, as a function
of n and p, in an analytical way. Note that all these re-
sults are of a statistical nature, and hence that the error
probability tends to zero; however, counterexamples
can always be found. Among others, the most well-
known ones include203:

� If np < 1, then the graph will almost surely have
no connected components of size larger than
O log nð Þ.
� If np = 1, then the graph will almost surely have a

largest component of size � n2=3.
� If p < 1� eð Þ ln n

n
, then the graph will be discon-

nected, that is, it will contain isolated nodes.
� Conversely, if p > 1� eð Þ ln n

n
, then the graph will

likely be connected.

Exposome
Exposome is the systems approach for disease study
that takes into account the interaction of internal bio-
logical mechanisms with the environment, in other
words, the interplay of genetic, epigenetic, and environ-
mental factors. The concept was first introduced by
Wild in 2005, and it encompasses for exogenous and
endogenous components.204 A series of technological
advances can be regarded as enabling technologies in
this highly ambitious paradigm, including sensor net-
works monitor the air quality and make available the
data, big data research, progress in microbiome analy-
sis and metabolomics.

The study of endocrine disruptors and their role in
pregnancy is one of the examples of this approach.205,206

Other work relates to cancer, and chronic diseases at
large, involving pollutants, metabolism, inflammation,
and diet. There are large initiatives worldwide aiming
at creating synergies and building knowledge in this

FIG. 4. Schematic representation of a DPD
model. DPD, dissipative particle dynamics.
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new field of research, as, for instance: https://www
.projecthelix.eu/, https://humanexposomeproject.com/,
http://metasub.org/

Findability, Accessibility, Interoperability,
and Reusability principles
In an open-science approach, making scientific re-
search, data, and dissemination accessible, four princi-
ples for scientific data management and stewardship
were defined as Findability, Accessibility, Interoper-
ability, and Reusability (FAIR), by the Force11 working
group (https://www.force11.org/207). The principles do
apply not only to data but also to algorithms, tools, and
workflows. These objectives are now becoming expec-
tations from funding agencies and publishers, regard-
ing the use of contemporary data resources, tools,
vocabularies, and infrastructures to assist research
discovery and reuse by third parties.

Feature selection
In data analysis, the process of feature selection con-
sists of applying algorithms designed to select a
subset of features, from the original data set, for sub-
sequent analysis. All other features are ideally ir-
relevant for the problem at hand, and they are thus
disregarded.

Feature selection yields two main benefits. On one
hand, even when the studied data set is not of a large
size, it can help in data understanding, reducing train-
ing times, and improving prediction performance. On
the other hand, feature selection is essential when the
features outnumber the instances. To illustrate, do-
mains such as gene and protein expression, chemistry
or text classification are characterized by the limited
availability of instances to train models—for example,
a few patients and control subjects, a few complete tex-
tual records, etc. Refs.208,209 extensively review meth-
ods for feature selection.

Feature selection methods are usually classified in
three different families:

� Filters select subsets of variables, according to
some rules, as a preprocessing step; in other
words, this selection is not made taking into ac-
count the subsequent classification. One of the
most relevant examples is the recursive feature
elimination, based on iteratively constructing a
classification model and removing features with
low weights (i.e., of low relevance)—note that

the classification model used here is independent
from any subsequent classification. When features
are added, instead of being eliminated, the result is
a forward strategy.
� Wrappers assess subsets of features according to

their usefulness to the subsequent classification
problem. When the number of variables is re-
duced, this is done by evaluating all possible var-
iable combinations; on the other hand, when this
is not computationally feasible, a search heuristic
is implemented. Note that here the machine-
learning algorithm is taken as a black box, that
is, it is only used to evaluate the features’ predic-
tive power. Wrappers can be computationally ex-
pensive and have a risk of overfitting in the
model,210 in which case coarse search strategies
may be applied.
� Embedded techniques are similar to wrappers, but

they integrate the search of the best subset of fea-
tures within the classification model.211 The clas-
sification is then formalized as an optimization
of a two-part objective function, with a goodness-
of-fit term and a penalty for a large number of
variables. Embedded methods that incorporate
variable selection as part of the training process
may be more efficient in several aspects, as they
make better use of the available data and are
more computationally efficient. On the negative
side, they are specific to a single learning algo-
rithm, and are thus not generalizable.

Finite element method
Finite element method (FEM) is a numerical method
that is used for solving problems in different fields of
engineering and mathematical physics. They can be
widely categorized into structural analysis, heat trans-
fer, fluid flow, mass transport, and electromagnetic po-
tential. The FEM formulation of the problem requires
solving a system of algebraic equations. Analytical solu-
tions of these problems generally require the solution
to boundary value problems for partial differential
equations. The domain of interest is divided into a fi-
nite number of simpler parts called elements, and the
method calculates values of the unknowns at discrete
number of points over the mentioned domain. The
simple equations at each point of the model are then
assembled into a larger system of equations that de-
scribe the entire problem. Analysis that is associated
with solving a problem using FEM is called finite ele-
ment analysis.212,213
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Examples of the application of FEM in medicine in-
clude the analysis of bone—hip implant interactions, to
obtain the information about shear stress distribu-
tion214; the development of several inner and middle
ear models, especially cochlea models and their analy-
sis215; the computational model of arteries216–218; the
detection and localization of ischemic cardiac dis-
eases219; or the examination of electrospinning jet tra-
jectories (Fig. 5).220

Finite volume method
Finite volume method (FVM) is a method that uses an
approach to represent and solve partial differential equa-
tions in the form of algebraic equations. The term ‘‘finite
volume’’ marks a small volume that surrounds each
point (called node) in a mesh. By dividing the domain
of interest in the form of mesh (structured or unstruc-
tured mesh), this method leads to robust schemes. Dif-
ferent conservation laws are used—elliptic, parabolic,
hyperbolic, etc. The FVM is often chosen when flux is
of interest, since local conservativity of the numerical
fluxes (conserved from one discretization cell to its
neighbour) is a characteristic of this method. This is es-
pecially present in the field of fluid mechanics, semi-
conductor device simulation, heat and mass transfer,
etc. By local conservativity it is meant that an integral
formulation of the fluxes over the boundary of the con-
trol volume is obtained. A local balance is written on
each discretization cell, which is called ‘‘control volume.’’
The fluxes on the boundary are discretized with respect
to the discrete unknowns.221 The FVM can, for instance,
be used in PK models (Fig. 6).222

Frequentist statistics
Frequentist statistics is an interpretation of statistics that
considers the probability of a random event as being the

long-run (in the sense of Neyman, Pearson and Wald
tradition) proportion of occasions on which it occurs,
conditional on some specified hypothesis.68 For a differ-
ent interpretation, see the Bayesian Statistics section.

Functional networks
In all original studies focusing on complex networks,
one inherent hypothesis was the fact that the structure
of the network was easily observable: For instance, neu-
ral connections in the Caenorhabditis elegans can be
obtained by physically looking at the organism. How-
ever, many real-world systems do not comply with
this requirement: Their structure is not observable,
and we can only measure some aspects of the dynamics
of the constituting elements. If one makes the hypothesis
that the dynamics of each element is partly the result
(or ‘‘the function’’) of the dynamics of its peers, then
the structure of interactions can, in principle, be inferred
from the individual dynamics: The result is called a
functional network. The introduction of this latter repre-
sentation has resulted in an important step forward in
network science, allowing a broader focus including
both structural and dynamical (functional) relations,
and shifting the focus from the underlying physical
structures to the flow of information developing on
top of them.223,224 Although a detailed description of
the functional network theory is beyond the scope of
this review, it is worth reporting a sketch of the standard
way of reconstructing them. Let us suppose that a set of
time series is available, each one describing the dynamics
of one element (node) of the system; to illustrate, in neu-
roscience these typically correspond to measurements of
electric (EEG) or magnetic (MEG) fields generated by
the brain, or the consumption of oxygen by neurons
(functional MRI). The synchronicity between the dy-
namics of pairs of nodes is then estimated, using metrics

FIG. 5. Schematic representation of an FEM model. FEM, finite element method.
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such as linear correlations or causalities. Finally, the
resulting functional networks can be analyzed alone,
that is, as standard networks148; or the relationships be-
tween the physical substrate and the functional connec-
tivities can be explored.

Gene set enrichment analysis
The methods to identify sets of functionally related
genes are enriched or depleted when comparing two bi-
ological states.225 It does not require that individual
genes are statistically scored as significantly altered,
as it ranks all genes and compares this rank list with
predefined sets of genes, usually designated as molecu-
lar signatures. Since it does not require any definition
of a threshold for up- or downregulation, it can identify
even weaker changes of gene expression, which are sig-
nificant for a gene set, but not for a single gene. The
gene sets or molecular signatures used for the compar-
ison with the rank list are accessible through a public
repository, and they are based on known biological
functions, pathways, or cell types.226,227 Computation
of the gene set enrichment can be performed with
open software or a web platform of the Broad Institute
(http://software.broadinstitute.org/gsea/index.jsp)226;
on other web sites such as Enrichr (http://amp.pharm
.mssm.edu/Enrichr/), or with packages of the Bio-
conductor R environment (https://www.bioconductor
.org/). Other tools can also be used within the gene
set enrichment analysis (GSEA) software:

� Leading Edge Analysis: Examines the genes that
are in the leading-edge subsets of the enriched
gene sets. A gene present in many leading-edge
subsets is likely to be of interest.

� Enrichment Map Visualization: Cytoscape plugin
for functional enrichment visualization (www
.baderlab.org/Software/EnrichmentMap)
� Chip2Chip: Converts the genes in a gene set from

HUGO gene symbols to the probe identifiers for a
selected target chip.
� GSEAPreranked: Runs the GSEA against a ranked

list of genes, which you supply (e.g., mRNAseq).
� CollapseDataset: Creates a new dataset by collaps-

ing each probe set into a single vector for the gene,
which is identified by its HUGO gene symbol.

He GSEA can also be improved by integrating exter-
nal information, for example, pathway or ontology in-
formation; some of the previously described software
packages, including Enrichr and the Bioconductor R en-
vironment, include functions to perform this analysis.

Granger causality
Granger causality is a statistical method allowing to
infer cause–effect relationship between events, or cor-
responding variables, through exploitation of the con-
cepts of explained variance and prediction. According
to Granger,228 a signal X ‘‘Granger causes’’ Y if current
and future values of Y can be better predicted using
current and past observed values of X. Although for-
mally known as Granger causality, this statistical
method can be seen as a practical application of the
earlier research in causality.229 Since its formulation
in the late 1960s, Granger causality has been widely
used in economics. As a result, Prof. C.W. Granger re-
ceived the Nobel Prize in Economics in 2003.

The Granger causality has extensively been used in
neuroscience, and specifically for the reconstruction

FIG. 6. Schematic representation of an FVM model. FVM, finite volume method.
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of functional networks representing brain dynam-
ics230,231 and of physiological networks in general.232

More in general, this metric allows describing the
causal relationship between pair of time series; it has
thus been used to assess aspects from cardio-
respiratory instability events,233 to the relationship be-
tween health care expenditure and its output.234

Graph embedding
Graph embedding (also known as network embedding)
is a representation of a graph in a vector space, where
relevant graph features are preserved. Their advantage
resides in the fact that vectors are easier to handle than
full graphs in several domains of machine learning.148

A lot of graph embeddings methods have been pro-
posed for graph analysis in the following areas: nodes
classification, edges (link) prediction, clustering, and
visualization. Graph embedding methods are catego-
rized into three broad categories: (i) matrix factoriza-
tion based, (ii) random walk based, and (iii) neural
networks (or deep learning) based.235

There are several challenges that need to be consid-
ered for using graph embeddings. The biggest challenge
in learning a graph embedding is the choice of metrics,
node and edges properties, and features to be preserved
in the vector representation. The learnt embeddings
should represent the rich graph information, including
topological structure and auxiliary information. More-
over, the graph has to be constructed in a way to rep-
resent nodes relations as well as to maintain the node
proximity matrix in embedded space.236 Next, different
application domains have different prerequisites for a
using a suitable graph embedding algorithm. There-
fore, the embedding dimensionality decision based on
graph size should meet application requirements.
Unfortunately, it has been argued that in several real-
world complex network applications, graph embed-
dings cannot represent the network’s most important
features.237

In the biomedical domain, graph embedding meth-
ods can be used to represent graphs for PPIs,238 brain
regions connections,239 infectious diseases model-
ing,240 chemical reactions between metabolism en-
zymes,241 or regulatory genes interactions.242,243

These give an overview and comparison of the use of
graph embedding methods in three important biomed-
ical link prediction tasks: drug-disease association pre-
diction, drug–drug interaction prediction, and protein–
protein interaction prediction; and two node classifica-
tion tasks: medical term semantic type classification

and protein function prediction.244 These identify rele-
vant gene functions for a biological context using
network representation learning with a neural networks-
based graph embedding method. In a neuroscience con-
text, a random walk-based graph embedding method is
used for embedded vector representations of connec-
tomes to map higher-order relations between brain
structure and function.245

Hidden conditional random fields
Hidden conditional random fields (HCRFs) are dis-
criminative latent variable models, used for the classifi-
cation of sequences of events; in other words, these
models are useful to process inputs that are graphs of
local observations.246 Given one sequence, the HCRF
tries to assign a single label to it, by introducing a set
of latent variables corresponding to each element of
the sequence, and by conditioning the label to those
variables. Beyond providing rules to discriminate one
label from all the others, HCRFs also yield the structure
that is shared among labels. This classification model
has been proved to be efficient, provided enough in-
stances are available to validate the hidden structure.
Although still not widespread in the medical domain,
some applications of HCRFs include the analysis of
brain dynamics247 or the recognition of protein folding
structures.248 The main limitation of HCRFs is that no
rules are presently known to define the optimal number
of hidden states for a given problem; the solution, that
is, a trial-and-error process with cross-validation, can
be computationally expensive.

Imputation
In statistics and data analysis, imputation refers to the
set of techniques and algorithms used to handle miss-
ing data in the raw data set. These can be divided
into three categories:

� Listwise deletion, that is, the strategy of deleting
any instance containing missing data. This ap-
proach, though extremely simple and easy to im-
plement, can only be used when data are missing
at random (as otherwise the deletion would intro-
duce a bias), and when a large number of in-
stances is initially available.
� Single imputation. Missing values are substituted

by new values, according to some rules, and a
new data set is therefore created. Techniques in-
clude hot-decking (when instances with missing
values are substituted by other instances, chosen
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at random) and mean or median substitution (the
missing value is filled with the mean or median of
that feature).
� Multiple imputation. Missing values are replaced

by values generated according to a statistical
rule, for example, Multiple Imputation by
Chained Equations249 or Latent Class Analysis.250

Multiple imputed data sets are generated and are
analyzed in parallel, for then extracting a single
consolidated result.

Imputation is never perfect nor without impact. The
choice of optimal missing value treatment depends on
multiple factors, including the nature of data and their
correlations, the amount and randomness of missing
values.

In silico modeling
In silico modeling involves the development of com-
puter models to simulate a pharmacological or physio-
logic process.251–254 It is an extension of controlled
in vitro experimentation. Although mathematical elec-
trophysiological models exist for decades (e.g., in elec-
trophysiology of the heart), the increase in computing
power available for research purposes with lower
price has enabled larger scale models, for example in-
cluding the cell nodes for a whole heart and incorporat-
ing personalised organ geometry based on medical
imaging. Specialized platforms allow for executing
the simulations and solving the numerical problems,
nowadays typically in high-performance computing in-
frastructures. In silico modeling combines the advan-
tages of both in vivo and in vitro experimentation,
with the main advantage of not being subjected to
the ethical considerations and lack of control that is
the case with in vivo experiments. In silico models the-
oretically allow unlimited array of parameters to be in-
cluded, contrary to the in vitro experiments that exist
in isolation. This means that the results would be
more realistic and applicable to the organism. The
PK experimentation is often connected to the in silico
modeling. In addition, complex in silico models have
been applied to pathophysiological problems to pro-
vide information that cannot be obtained practically
or ethically by traditional clinical research methods.
These models have enabled to obtain valuable informa-
tion in many fields—pure physiology, congenital heart
surgery, obstetric anesthesia airway management,
mechanical ventilation, and cardiopulmonary bypass/
ventricular support devices. In spite of many advantages,

the interested researcher should also be aware of one
main drawback of in silico modeling, that is, that not
all strategies have been validated in vivo.255

Integrative analysis
‘‘Integration’’ may have different connotations, depend-
ing on the context.256 In its most general sense, it refers
to combining things, such as two viewpoints, or multiple
systems, or multiple data sets. For life science data and in
particular functional genomics, Lu et al.257 defined data
integration as the ‘‘process of statistically combining
data from different sources to provide a unified view
and make large-scale statistical inference.’’ For multi-
omics data integration, clearly this definition is too lim-
ited, in that it only refers to statistics as a means and
underappreciates the opportunities that lie in creatively
combining analytic methodologies (for instance, statis-
tics and machine learning). A more challenging defini-
tion for data integration in complex disease analysis
involves the process of combining data within a generic
framework that encompasses organizing principles for
the interaction of different types of systems. This defini-
tion does not explicitly refer to statistical, bioinformatics,
or computational tools but to any approach that fits
within a transdisciplinary viewpoint. It includes data fu-
sion as well as more fancy and more elaborate forms of
combining evidence from different data sets or sour-
ces.258 Further, it agrees with the definition of Thorsen
and Oxley259 as the process of connecting systems
(which may have fusion in them) into a larger system.
Apart from data integrative analysis, integrative analysis
sometimes also refers to the integration of analytic tools
or methods, to combine different analytic viewpoints to
the same data.

Interactome
A map represents the whole set of molecular interactions
in a particular cell. Although usually interactome specif-
ically refers to physical interactions, it can also be used to
describe sets of indirect interactions among genes. As
molecular interactions can occur between any pairs of
molecules composing the cells (including proteins,
nucleic acids, lipids, carbohydrates, and so forth), a
great number of interactome maps can be defined; nev-
ertheless, the most common and well known include:

� The PPI and (PIN);
� The protein–DNA interactome, also called a

GRN, a network formed by TFs, chromatin regu-
latory proteins, and their target genes;
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� Metabolic networks, representing metabolites and
how they are converted into each other by enzymes.

For the corresponding mathematical representations
of such maps, see the Biological Networks section.

Internet of things
IoT is related to the evolution of the internet toward in-
tegrating real, everyday life devices called things.

A comprehensive description is provided in Verme-
san et al.260: IoT ‘‘is a concept and a paradigm that con-
siders pervasive presence in the environment of a
variety of things/objects that are able to interact with
each other and cooperate with other things/objects to
create new applications/services and reach common
goals.’’ Thus, IoT aims at achieving a virtual represen-
tation of a set of physical devices through the deploy-
ment of technologies and architectures involving
large-scale, loosely coupled systems.

Generally speaking, basic IoT systems components
include: IoT Standards and Ecosystems, Event Stream
Processing, IoT Device Management, IoT Platforms,
IoT Analytics, and IoT Security.261 An important as-
pect is the IoT Reference Model, the model that defines
all architectural aspects of the system, and which is
composed of the following sub-models: IoT Domain
Model, IoT Information Model, IoT Functional
Model, IoT Communication Model, and IoT Security
Model.260 Moving from a theoretical to a physical rep-
resentation of IoT, this is usually composed of: Smart
devices, Network, Data processing, Data storage, Data
aggregation, data analytics, and process integration.

Communication between IoT elements can be
addressed through multiple paradigms: device-to-
device communication, device-to-IoT platform com-
munication, device to gateway, and data aggregation.
The relationship between IoT and multiscale comput-
ing and multiscale modeling and simulation can be re-
lated to the following components: IoT as data provider
for Multiscale Modeling and Multiscale Modeling as a
way to experiment and validate complex processes with
the aid of IoT.

Many synergies have been found between IoT sys-
tems and Multiscale Modeling. First of all, IoT can fa-
cilitate data provision to the modeling phase, by
handling access, routing, and recording of data ac-
quired from sensors attached to smart objects. Second,
IoT devices naturally measure the physical space at dif-
ferent resolution and conceptual levels, thus providing a
multiscale view of the space. In addition, IoT can sim-

plify the understanding of the raw data through technol-
ogies related to Big Data, semantic representations,
ontologies, and machine-interpretable representations
of domain knowledge, and context awareness.

Multiscale IoT Systems for Experimental Multiscale
Models can be used to acquire data at multiple scales
corresponding to the scales selected in the Multiscale
Model. Such IoT systems design use multiscale prin-
ciples. The complex processes include Machine-
to-Machine and Human-to-Machine Interaction.
Relevant enabling technologies are related to Hetero-
genous objects, Heterogenous distributed systems
(P2P, Wireless Sensor Networks, Cloud Computing),
and Complex Systems of Systems. The IoT as a com-
plex systems is not a simple set of subsystems and in-
volves data and energy transformation, interaction,
interoperability, feed-back and feed-forward struc-
tures, self-organization, and self-management.262

An important development of IoT with applications
in medicine is referred to as internet of medical things
(IoMT). The IoMT can be described as an internet-
based environment connecting medical devices and
services. Applications of IoT technologies in medicine
are increasingly common.263–265 In cancer treatment
studies, blood pressure monitoring bracelets and track-
ing apps have been used to gather relevant information.
Continuous glucose monitor can be connected in an
IoT environment to transmit data to mobile devices,
thus facilitating the analysis of blood glucose levels.
A Bluetooth-enabled coagulation system has been
used in connection to the IoT environment to help pa-
tients become aware of potential blood clots and trans-
mit results to health care providers. A wearable smart
asthma monitor can detect symptoms related to
asthma attacks and connected to an IoT environment
it can track and detect the inhaler.

Lattice Boltzmann method
Lattice Boltzmann (LB) method is a discrete numerical
method used mainly for simulations of fluid
flow.266–270 The main advantage of this method is
that it is not necessary to solve differential equations,
which makes the implementation relatively simple
and it is possible to parallelize the software. In the LB
method, fluid is observed as a set of fictional particles.
These particles can move along the predefined direc-
tions, and the dynamics of their motion is modeled
through their mutual collisions and further propaga-
tion in the observed domain. A special distribution
function is defined, and this function depends on the
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state of neighboring particles and has an identical form
for all the particles, that is, for all the nodes in the lattice
mesh. Macroscopic quantities, such as density, pres-
sure, and velocity, are calculated by using the compo-
nents of the distribution function.271,272

Examples of the use of the LB method in medicine
include the modeling of the motion of endolymph
through the semicircular canals of the inner ear273,274;
and the analysis of the numerical and experimental
transport of LDLs through arterial walls.199 Open-
source software implementing LB methods are also
available; see, for instance, https://www.openlb.net
and https://palabos.unige.ch (Fig. 7).

Machine learning
Machine learning is the science of using computers to
discover new information from observations.275,276

There are several families of machine-learning meth-
ods: supervised learning, unsupervised learning, and
semi-supervised learning. The choice of the strategy
depends on the nature of the used data. A large and
complex database is commonly required to develop a
machine-learning model. In the system medicine
field, bio-marker extraction or human genome classifi-
cation is a typical example of a machine-learning
model. For further details, see also data mining,
CRISP-DM, deep learning.

Mediation analysis
If two variables (an independent x and a dependent y)
show a statistically significant correlation, it does not
necessarily mean a direct causative link, as the correla-
tion might be caused by a third variable (the mediator),
which is often nonobservable—and which is influenced
by the independent variable and by itself influencing
the dependent variable. A mediation analysis can eluci-
date such interactions and dependencies and it helps to
differentiate between direct and indirect effects.277,278

This type of analysis can be performed with specific
packages of the Bioconductor R environment or with
add-ins of commercial software such as SPSS. It is im-
portant to note that a mediation effect can be full or
partial—and that it can be moderated by additional pa-
rameters. In addition, it has to be stated though that
mediation analysis cannot be used to detect or analyse
multiple interdepencies.

Medical informatics
Medical informatics (also known as Health Informatics
or Biomedical Informatics) is a science at the crossroad
of information science, computer science, social sci-
ences, and health and medical sciences. This research
area deals with all the components of information sys-
tems (data acquisition, information and knowledge re-
sources, devices and networks, regulation and ethics,
and more) used for supporting and improving health
care management (e.g., clinical knowledge manage-
ment), delivery (e.g., patient-related data follow-up
over time), and research (e.g., developing standards
encoding diagnostic for epidemiological pur-
poses).279–282 Medical Informatics is an umbrella and
the core for different sub-specialities such as clinical in-
formatics, nursing informatics, public health informat-
ics, consumer health informatics, and veterinary
informatics. As a multidisciplinary field, the Medical
Informatics playground consists of developing and in-
vestigating theories, models, methods, processes, and

FIG. 7. Graphical representation of the LB
method. LB, Lattice Boltzmann.
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systems, used for generating, storing, retrieving, using,
and sharing health and medical data, information,
knowledge, and decision support. From an application
perspective, medical informatics is actively and dynam-
ically investigating and supporting health and medical
reasoning by experimenting models and simulations
across a wide spectrum: from molecules to populations,
from a biological system point-of-view to a global pop-
ulation and One Health perspective. Moreover, end-
users are a crucial component of the overall system
in Medical Informatics. For efficiency reasons, re-
searchers in the field of Medical Informatics have to
continuously monitor the changes in different spheres
such as the social, economic, ethical, and educational,
and update their models in accordance to these
changes. In recent years, there has been an important
and growing trend of applying algorithms and know-
how from the fields of BI and automation in Medical
Informatics, for example, data and text mining, analy-
sis, and information and knowledge management—see
the Clinical Decision Support Systems section. From
the integrative perspective of systems medicine, Medi-
cal Informatics investigates and delivers end-to-end
frameworks supporting complex medical decisions,
driven by evidence-based medicine for continuously
improving health and disease management at the indi-
vidual and populations levels.283 One of the most crit-
ical parts of research done in Medical Informatics
considers ethical and legal regulations and constraints
in the technological side of medical field.284 As new
means of measuring, communicating, and managing
patients emerge, there is a need to continuously mon-
itor and update the requirements for ensuring security,
that is, keeping confidentiality, integrity, and availabil-
ity of health and medical-sensitive data.

metaboAnalyst
Part of the same family of websites including networ-
kAnalyst and microbiomeAnalyst, this website provi-
des a visual analytics platform for meta-analysis of
metabolomics data (www.metaboanalyst.ca).285

Metabolomics
Metabolomics is the scientific study of a set of metabo-
lites present within an organism, cell, or tissue. It was
also defined as a global measurement of small molecules
(metabolites), which are produced or modified in an or-
ganism. Metabolites can also result from a stimuli (nu-
tritional intervention, drugs, genetic perturbations,
etc.), are present in a system (blood, urine, saliva, etc.),

and are accessible to analysis.286,287 Metabolomics is
one of the functional level tools being employed to in-
vestigate not only the complex interactions between me-
tabolites but also their regulatory roles through their
interactions with genes, transcripts, and proteins. It is
actually considered as a powerful phenotyping tool to
better understand the biological mechanisms involved
in the pathophysiological processes and identify bio-
markers of metabolic deviations.288 Indeed, it provides,
at a molecular level, multivariate information of multi-
compartmental biological systems that reflect changes
in biological processes.289

microbiomeAnalyst
Part of the same family of websites including networ-
kAnalyst and metaboAnalyst, this website provides a
visual analytics platform for meta-analysis of micro-
biome data (www.microbiomeanalyst.ca).290

Model robustness
Model robustness is a widely used concept in modeling
under uncertainty, namely with Robust Optimization
approaches. For that, the objective function of a Sto-
chastic Linear/Quadratic Programming is modified by
introducing penalization parameters related with non-
desired attributes (e.g., high variability on solutions,
nonsatisfaction of products demands, over-designing
of production capacities, nonutilization of expensive
equipment), or probabilistic restrictions are modified
by enlarging/narrowing ‘‘soft’’ bounds (e.g., ‘‘worst
case’’ analysis).291

For instance, the Two-Stage Stochastic Program-
ming (2SSP)292 approach for the capacity expansion
of a pharmaceutical supply chain allows both the pro-
motion of solution robustness (by penalizing the devi-
ations on the solutions, e.g., minimizing the solutions
variance) and the model robustness (e.g., minimizing
the expectances for the nondesired attributes). Namely:
(i) at the first stage, the capital and investment deci-
sions must be taken (i.e., the project variables are calcu-
lated ‘‘here-and-now’’); (ii) in the second stage, the
uncertainty is introduced through a set of scenarios
and the related probabilities (in this ‘‘recourse phase,’’
it occurs through the probabilistic calculation of the
control variables).

Then, model robustness is obtained when the opti-
mal solution does not present high values for the prob-
abilistic measures of the attributes to avoid (namely: for
the expectance of excess/unused production capacities
that would imply larger investment costs; and for the
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expectance of unsatisfied products demands that would
impact negatively the patient’s health). Model robust-
ness is also strongly connected with other concepts of
interest, such as Model Verification and Validation,
Parameter Sensitivity Analysis and Uncertainty Quan-
tification, and Probabilistic Risk Analysis (PRA). Sev-
eral drawbacks can occur on model robustness
developments, for example, due to resource consum-
ing, standard accuracy, or uncertainty; see Refs.293,294

for details.

Model verification and validation
Model verification is a process to verify whether a given
model has been directly coded or mathematically rep-
resented; on the other hand, model validation aims at
verifying whether the implemented model is the right
one for the biological system of interest. Model verifica-
tion is a straightforward task, thanks to many direct
techniques to check and debug computer programs.
Model validation, on the other hand, is more complex,
and is commonly performed by using theoretical out-
comes or experimental measurements. It is important
to note that model validation of biological systems is
extremely complex and difficult due to the lack of
in vivo data and measurement protocols.295,296

Morphometric similarity networks
Morphometric similarity networks (MSNs) are graph-
based representations of the structure of the brain.297

The study of structural differences in the brain by topo-
logical analysis based on graph theory has the disad-
vantage of generating a connectivity matrix at the
group level and, therefore, the connectivity parameters
are calculated at the group level. Recently, a new tech-
nique has been developed that allows to generate a con-
nectivity matrix at subject level based on the
interregional similarity of multiple morphometric pa-
rameters measured by multimodal MRI.297 Typical
morphometric measurements taken from multimodal
image data for each brain region are: fractional anisot-
ropy, mean diffusivity, magnetization transfer, gray
matter volume, surface area, cortical thickness (CT),
intrinsic (Gaussian) curvature, mean curvature, curved
index, and folding index. For each subject, these values
will form a vector of morphometric measurements for
each region. Then, the morphometric similarity matrix
(MSM) of the subject will be obtained by calculating
the Pearson’s correlation between the vectors of the
morphometric characteristics of each pair of regions.
Finally, the MSN will be obtained by thresholding

this MSM. Therefore, we end up with one network
(MSN) per subject, which will allow us to calculate
the (structural) connectivity parameters at the subject
level. Recently, some papers have been published that
demonstrate the validity of this technique.298,299

Multiphysics systems
Multiphysics systems are systems consisting of more
than one component, each governed by its own princi-
ple(s) for evolution or equilibrium (conservation or
constitutive laws).300 Two possibilities for classification
are related to the coupling:

� bulk couplings, that is, through relations that are
active in the overlapping domains of the individ-
ual components;
� couplings happening on idealized interfaces of

lower dimension, for example, through boundary
conditions that transmit fluxes, pressures, or
displacements.

Some examples of bulk-coupled multiphysics
systems include radiation with hydrodynamics in as-
trophysics, electricity and magnetism with hydrody-
namics in plasma physics (magnetohydrodynamics),
and chemical reaction with transport in combustion
or subsurface flows (reactive transport). Since forward
models are simulated successfully, inverse problems,
sensitivity analysis, uncertainty quantification, model-
constrained optimization, and reduced-order modeling
are gaining more attention. The physical model is, in
these advances, augmented by variables other than
the primitive quantities in which the governing equa-
tions are defined. These variables may be sensitivity
gradients, probability density functions, Lagrange
multipliers, or coefficients of system-adaptive bases.
Equations that govern the evolution of these auxiliary-
dependent variables are often derived and solved to-
gether with other physical variables.301 For an example
of applications of multi-physics systems to medicine,
see Šušterši�c et al.220

Multilayer networks
Complex networks are interactions that are defined on
more than one layer. In the standard complex network
approach, links between nodes are usually of a single
type, the only difference between them being a (gen-
erally, real) number, quantifying the weight of the
connection. Nevertheless, considering all links as
homogeneous can be an important constraint, as
connections in real-world systems may be of different
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types. A biological example can help clarify this. One of
the most interesting kinds of success in recent neuro-
science has been the creation of a full map of the C. ele-
gans’ neural network, consisting of 281 neurons and
around 2000 connections.302 However, connections
are not homogeneous: Neurons can communicate
through chemical and electrical (ionic) links, with com-
pletely different dynamics and time scales. Therefore, a
correct representation should include two independent
layers of connections. This resulted in the creation of
the multilayer network concept, that is, graphs whose
connections are organized in separate layers.303 Multi-
layer networks explicitly incorporate such heterogene-
ity, such that each link type (relationship, activity,
category) is represented by a different layer, with the
same node having different neighbors in each layer
(Fig. 8).

Multiscale biomolecular simulations
Biomolecular simulations are computer simulations of
molecular dynamics of biological systems, such as pro-
teins, nucleic acids, saccharides, membranes, and their
complexes. Multiscale biomolecular simulations are
simulations of molecular dynamics of biological sys-
tems at different levels of granularity, differing in spa-
tial resolution and other aspects.

The first attempts to simulate molecular systems
started in 1950s. The first biomolecular simulation
was published in 1977 by McCammon et al. (2013
chemistry Nobel Prize winner).304 The authors simulated
several picoseconds of bovine pancreatic trypsin inhibi-
tor in vacuum. An important milestone of biomolecular
simulations was the development and refinement of bio-
molecular force fields (formulas and their parameters for
calculation of potential energy from atomic coordinates)

and simulation software. Packages CHARMM, AMBER,
Gromos, Gromacs, NAMD, ACEMD, and BOSS have
been tuned for high performance on a wide range of ma-
chines and operation systems.

There are several types of granularity in multiscale
biomolecular simulations. The main reason for interest
in multiscale versions of biomolecular simulations is in
the fact that these simulations are extremely computa-
tionally expensive. Each atom in a typical solvated
biomolecular system interacts (covalently or noncova-
lently) with another *5000 atoms. These interactions
must be evaluated in every simulation step. The inte-
gration step of most biomolecular simulations is in a
femtosecond scale. It is, therefore, necessary to carry
out millions of steps (and evaluate interactions of mil-
lions of atomic pairs in each step) to simulate nanosec-
ond time scales.

The first type of granularity is in the modeling of in-
teraction between atoms. There are two major models
that make it possible to calculate energy and forces in
a molecular system—quantum mechanics and molecu-
lar mechanics. Quantum mechanics models the system
by solving Schrödinger equation for electrons. On the
other hand, molecular mechanics represents atoms as
particles connected by simple mechanical ‘‘springs’’
and interacting via interatomic potentials with simple
mathematical descriptions. Electrons are not explicitly
modeled. Quantum mechanics calculations are signifi-
cantly more complex and, therefore, more computa-
tionally expensive. The advantage of quantum
mechanics is that it does not require ad hoc sets of pa-
rameters for each class of molecules. Further, most mo-
lecular mechanics models do not take into account the
reactivity of the molecular systems. Molecular mechan-
ics (with a few exceptions) keeps the chemical structure

FIG. 8. Example of a graphical representation of a multilayer network composed of three layers.
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fixed during the whole simulation, that is, it disallows
breakage and formation of covalent bonds in chemical
reactions. For this reason, quantum mechanics is used
to study the mechanism of chemical reactions.

Enormous computational costs of quantum mechanics
led to a mixed (multiscale) model of quantum mechanical
and molecular mechanical (QM/MM) calculations. For
example, an enzymatic reaction can be studied on a
model of enzyme with the substrates and active-site resi-
dues modeled by quantum mechanics and the rest of the
system modeled by molecular mechanics.

This second type of granularity addresses the num-
ber of particles in the molecular system. These models
differ in the number of atoms represented by a single
particle. In a standard fine-grained (‘‘all-atom
model’’) model, there is one particle representing one
atom. All quantum mechanical models are all-atom
models. Simplified versions called ‘‘united-atom mod-
els’’ represent certain groups of atoms, such as CH,
CH2, and CH3, as a single particle. Such a particle rep-
resents the bulk properties of the whole group. This re-
duces the overall number of particles in the system and
accelerates the simulation without significant loss of
resolution.

Further coarse-graining in so-called ‘‘coarse-grained
models’’ replaces multiple atoms, typically four nonhy-
drogen atoms, by a single particle. Coarse-grained sim-
ulations make it possible to study several orders of
magnitude longer time-scales than all-atom simula-
tions. The prize paid for this is loss of resolution.
Coarse-grained simulations have been extremely suc-
cessful in simulations of membranes, interfaces, and re-
lated systems. They are less frequently used in studies
requiring precise atomic resolution, such as in drug dis-
covery. Models mixing all-atom and coarse-grained
simulations (similarly to mixed QM/MM models)
have been developed to address this problem.

There are examples of studies with further coarse-
graining. For example, elastic network models of pro-
teins represent individual amino acids as particles
connected by harmonic springs. This representation
of a protein resembles models used in civil engineering
to test mechanical stability of constructions. They are
used in biomolecular simulations, but more frequently,
they are studied by static approaches such as normal
mode analysis. Surprisingly, bulk mechanical proper-
ties of biomolecules can relatively be accurately pre-
dicted by using such simplified models.

The major aim of biomolecular simulations is to pre-
dict a certain property of the biomolecular system. The

third type of granularity is in the depiction of such mo-
lecular properties. Biomolecular simulations produce
trajectories—thousands of snapshots of thousands of
atoms. These pieces of big data can be analyzed to ex-
tract relevant low-dimensional properties of the sys-
tems. Such properties can be then used to build
thermodynamic and kinetical models of the simulated
system.

The last granularity is the computational granularity.
As already mentioned, biomolecular simulations are
computationally expensive. Most software used in bio-
molecular simulations has been developed to run in
parallel on multiple cores of a CPU (multithreading)
and multiple CPUs and nodes connected by Message
Passing Interface. Recently, Fast Multipole Method305

is being introduced into biomolecular simulations to
enable multiple levels of parallelism. Alternative hard-
ware such as graphical processing units and special
purpose hardware have been successfully used. The
multiscale nature can be further extended by applica-
tion of special multiple ensemble or multiple time-
scale methods.

Multiscale modeling
Multiscale modeling is a numerical approach that is
used to study the biological systems of interest at mul-
tiple time and length scales, that is, in which multiple
models at different scales of time and/or space are
used simultaneously to describe one complex sys-
tem.306 To illustrate, a multicellular organism can be
modeled at different levels, for example, DNA, cells, fi-
bers, and tissues; with each model getting input from
the lower-level one.307

Those models are commonly developed by using a
combination of several numerical methods. The FEM
could be used to model system behavior at organ and
tissue scales. Agent-based simulation could be used to
model single-cell or cell population behaviors. Molecu-
lar dynamics could be used to describe the movements
of atoms and molecules. To make the link between
scales, the homogenization theory could be used. This
theory allows constitutive behaviors at the macro-
scopic level to be described by using the information
from interactions between macroscopic and micro-
scopic levels. There are two main multiscale modeling
strategies. The first one is the hierarchical simulation,
in which the system behavior is separately described
and simulated for each scale and then the interaction
is performed. The second one is the concurrent simu-
lation, in which all system behaviors and their
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interactions are simultaneously described and simu-
lated. There is no time delay by using the second strat-
egy, but the strategy is complex for model development
and implementation.

The importance of multiscale modeling lies, on one
hand, in the fact that available macroscale models are
usually not accurate enough, and on the other hand,
in the fact that microscale models are not efficient
enough and/or offer too much information. By inte-
grating both approaches, the idea is to find a compro-
mise between accuracy and efficiency (Fig. 9).308

Network Analysis Software

� NetworkX.309 Python library used for the crea-
tion, manipulation, and study of the structure, dy-
namics, and functions of complex networks. This
allows the creation of networks with different al-
gorithms, evaluation of a large set of standard
metrics, and finally display the results in an easily
understood way. Freeware. Available at networkx
.github.io
� Cytoscape.310,311 Software specialized on the rep-

resentation of networks, with some additional
tools for the integration of biological data. It also
provides some basic network analysis capabilities.
Freeware. Available at www.cytoscape.org
� Gephi.312 Interactive visualisation and exploration

platform. Freeware. Available at gephi.github.io
� Pajek.312 Software for representing complex net-

works, with some basic analysis capabilities. Free-
ware. Available at mrvar.fdv.uni-lj.si/pajek/
� VisANT.314 Software for the visual study of meta-

bolic networks and pathways. Freeware. Available
at visant.bu.edu
� IBM� i2 Analyst’s Notebook. Software for the in-

tegration of social data and network analysis.
Commercial. Information at www-03.ibm.com/
software/products/en/analysts-notebook

� SAS� Social Network Analysis. Software for the
analysis of social networks. Commercial. Informa-
tion at support.sas.com/software/products/sna/
index.html

networkAnalyst
Part of the same family of websites, including metab-
oAnalyst and microbiomeAnalyst, this website provi-
des a visual analytics platform for meta-analysis of
differentially expressed genes or proteins (www.net
workanalyst.ca).315,316 It allows input of raw RNA-
sequencing data, single or multiple gene expression
tables, or pre-calculated lists of differentially regulated
genes with expression values. The input is then com-
pared with known interaction networks covering not
only various protein–protein interactomes but also re-
lationships between genes and miRNAs; TFs, drugs, or
chemicals. By default, a first-order network is com-
puted, which can also be switched to a second-order
network to increase the number of interactors, or the
zero-order network to decrease the number of nodes.
If the complexity is too high, it can be reduced with fil-
ters on betweenness or degree. Another option is to cal-
culate a minimum network, which comprises the least
number of nodes that are required to link the input
genes. The network can be downloaded in a Cytoscape-
compatible SIF-format, but the standard routine is to vi-
sualize it within the web platform in an adjustable man-
ner, including up- or downregulation of expression
levels and different layouts, which can be saved in
SVG-format. Moreover, and most importantly, the net-
work can then be statistically compared with different
databases such as KEGG, Reactome, gene ontologies,
or TF motifs to obtain functional enrichment values.
A module explorer can be applied to extract subnet-
works with statistically elevated links, and these can be
further analyzed for functional gene enrichments.

In case that the differential expression is com-
puted on the NetworkAnalyst platform, gene clustering

FIG. 9. Graphical representation of the typical scales in a multiscale modeling.
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can be performed comprising heatmaps, principal-
component analysis, or t-distributed stochastic neigh-
bor embedding. Moreover, GSEA can be done and
Venn- or Chord diagrams can be created for multiple
comparisons.

Network medicine
General terms are used to design applications of com-
plex networks theory to medicine, and hence for the
identification, prevention, and treatment of dis-
eases.84,317 It is buttressed by the idea that elements
constituting our bodies at all scales (e.g., from genes,
to cells and organs) do not exist in an independent
fashion, but are rather connected by a dense set of
interdependencies. Understanding one disease, thus,
goes beyond the simple analysis of one element. For
further examples, see the Biological Networks section.

Null models
In complex networks theory, a null model consists of a
set of networks with some characteristics equal to the
graph under study, while being random in all other as-
pects.318 The simplest case is, therefore, a set of com-
pletely random networks, that is, Erd}os–Rényi
graphs, which share the same number of nodes and
links, but are otherwise completely random.

The main advantage provided by null models is that
they allow breaking the coupling existing between dif-
ferent topological properties, and thus allow comparing
networks with heterogeneous characteristics. To illus-
trate, the value of a given topological metric can be nor-
malized with what is expected in the null model, thus
helping to assess whether the observed value is special
or, on the contrary, is the result of the other restrictions
imposed in the model. The most simple solution in-
volves the calculation of a Z-score, which indicates
how many standard deviations the observed metric is
from the (null model’s) expected value.202

Nvidia Clara
Nvidia Clara is a computational platform that gathers
Compute Unified Device Architecture (CUDA) accel-
erated tools for medical imaging and genomics. The
Software Development Kit (SDK) provides libraries
for computing, visualization, and AI. The SDK allows
the users to deploy their applications in any GPU plat-
form they have access to. Within this platform, Nvidia
Clara Medical Imaging provides tools for data annota-
tion, training of AI models, and deployment in the case
of medical imaging applications (e.g., computerized to-

mography, MRI, ultrasound, X-ray, and mammogra-
phy). Adapting one of the included in the SDK pre-
trained AI models with transfer learning accelerates
the AI modeling, as less time and training data are
used. On the other hand, the Nvidia Clara Genomics
platform gathers CUDA accelerated tools for genomics
sequencing and analysis. Biomedical examples of the
use of Nvidia Clara include the segmentation of images
of brain tumors,319 and gene sequencing.320

Object-oriented modeling
For effective diagnosis and treatment of diseases we
need to understand the dynamics of metabolism, in-
cluding the metabolism of drugs. Here, the large-scale
computational models that describe dynamics from
the metabolic, gene regulatory, and signal transduction
perspectives are of crucial value.321 Different modeling
approaches are in use, including the object-oriented
modeling. This technique is originally derived from
machinery. Dymola (Dynamic Modeling Laboratory)
has been developed by Dassault Systems, a branch of
the Dassault group that also produces airplanes.
Dymola sets the basics of object-oriented modeling of
the biological systems even if its initial intention has
been for use within automotive, aerospace, and robotics
process. In Dymola, we can describe the entire multi-
component systems and in this manner represent the
real world as good as possible.

The basics of object-oriented modeling is repre-
sented by a library of objects. An object is an element
corresponding to components of mechanical, electrical,
vehicle dynamics, etc., and also biological systems. In
building the model, the objects from the library are
moved by drag-and-drop and interactions between
the model components are described by graphical con-
nections that model the physical coupling of the com-
ponents. The unique feature of object oriented
modeling is that the models are intuitively organized
to mimic the real physical or biological systems. In sys-
tems medicine, we can imagine that large macromole-
cules (genes, mRNAs, proteins including enzymes and
TFs, etc.) are objects. The signaling pathways represent
links or information that is transferred through con-
nections between these objects.

Nowadays, Modelica is used as the most popular
programming language for object-orienting modeling.
The benefit of Modelica is that the users can create
their own libraries. BioChem has been designed as a li-
brary for metabolic pathways322 that describes enzy-
matic reactions in different biochemical pathways.
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SysBio library323 was initially used to construct the
SteatoNet model with multilayered regulation, includ-
ing the transformation of genes to proteins and the
transcriptional regulation.324 In addition, SteatoNet de-
scribes multiple tissues, that is, the liver and adipose
tissue and their connections through the blood.

The beauty of object-oriented modeling is that the
number of parameters that need to be incorporated
into the model is small. We can, thus, avoid problems
with parameter estimation or model overfitting. This is
possible due to observation of the normalized steady
state of the system’s response, allowing modeling in
the absence of parameters that describe the dynamics
of the observed system. Another benefit of this type of
modeling is the ability to incorporate specific data to-
ward, that is, personalization. In this manner, the Liver-
Sex has been produced as the first model describing the
distinct liver metabolism of females and males.325

Ontologies
Ontologies (also known as controlled vocabularies and
semantic representation) can be defined as formal rep-
resentations of knowledge in a certain domain, in an
understandable way for people and computers.326

They are made of defined classes of entities, structured
in hierarchy where concepts are connected with stan-
dardized relationships.327 In biomedical research, a
great variety of ontologies have been developed to de-
scribe domain knowledge, for example, the Gene
Ontology or the Disease ontology. BioPortal is a repos-
itory of biomedical ontologies, many of which can be
openly reused. In addition, the open biomedical ontolo-
gies is an established platform developed for interopera-
bility and shared principles between ontologies.328 The
question of ontology relevance in the context of systems
medicine has been particularly discussed. In fact, be-
cause of its intrinsic paradigm change, such ontologies
must switch from a biological structure to a biological
function architecture.329 Beyond the existing ontologies,
the U.S. National Research Council proposed a new tax-
onomy for biology and medicine while taking into ac-
count the multiple aspects of basic science and clinical
characteristics to define disease endotype.330 The devel-
opment of phenotype-driven ontologies is also of great
interest for the field.331 However, with the explosion of
heterogeneous clinical data and scientific information,
harmonization between scientific communities as well
as their participation to computational resources are es-
sential for the future of ontologies in translational re-
search and precision medicine.332

Parameter estimation
Mathematical models in systems biology and systems
medicine have a structure that characterizes interac-
tions between elements of the system. The next levels
of detail are the parameters of interactions to quantify
the intensity of interaction. Some of the model param-
eters can be measured or found in the literature,
whereas information about others is missing. Parame-
ter estimation333 can be used to estimate the unknown
parameters by fitting of the model to the available ex-
perimental data. Usually, it is solved as a numerical op-
timization problem where the differences between
measured data and model calculations have to be min-
imized, searching for the best combination of unknown
parameter values. Parameter estimation can have sev-
eral results:

� The model behavior fits the experimental data. It
is not expected that model behavior would
match each and every measurement, as they con-
tain measurement errors and mathematical mod-
els are always simplifications of reality. Even in
case of success, parameter identifiability should
be checked (see the Parameter Identifiability
section).
� The model behavior does not fit well to the exper-

imental data. There can be several reasons: Model
definition and range limitation of estimated pa-
rameters have to be checked. Another problem
can be the selection of an inappropriate optimiza-
tion method that leads to local minimum or
stagnates.334

� The model cannot reproduce the expected type of
behavior. This may be an indication that the
structure of the model does not correspond to
the system of interest; and that, without suitable
changes in the model structure, a satisfactory be-
havior as well as an identification of parameters
cannot be reached.

Parameter identifiability
In case of successful parameter estimation, model pa-
rameters cannot be always trusted.333 It can happen
that a value of a particular parameter is not important
for particular experimental set-up and any value can
produce an acceptable fit of model with experimental
data. Another parameter unidentifiability reason can be
structural unidentifiability,335 where the structure of the
model in combination with experimental results does
not allow the identification of particular parameters.
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For instance, if just summary flux of two parallel meta-
bolic pathway branches is measured, parameters defining
each particular flux cannot be identified.

Parameter sensitivity analysis
and uncertainty quantification
Parameter sensitivity analysis and uncertainty quantifica-
tion are two important best practices when developing
and simulating biological systems of interest. Parameter
sensitivity analysis allows us to determine which parame-
ters are sensitive to the input variations with the used
constitutive laws.336,337 This analysis is commonly time-
consuming due to the repetitive nature of the procedure.
Moreover, the determination of a plausible perturbation
value range is also a difficult issue. A relative percentage
(e.g., �10%) is usually used. Uncertainty quantification
aims at modeling the uncertainties related to the system
input values or variables and their propagation on the
model outcomes through the used constitutive laws.
A lot of data are commonly needed for uncertainty quan-
tification. Data assumption could be performed with lim-
ited data samples, but the accuracy level is questionable.
Precise and imprecise probabilities could be used to
model uncertainties. Monte Carlo is a classic example
of the uncertainty propagation method.338

Permutation test
When we have to test between-group differences, for
one or more values per subject, we can use a (nonpara-
metric) permutation test to infer whether the difference
between the two values is statistically significant or not.
To do so, we need to generate random groups by shuf-
fling the labels of the groups. The metric differences be-
tween the two resulting random groups are then used
to create a reference distribution for each metric to re-
ject or retain the null hypothesis that there are no dif-
ferences between the groups. To ensure that the
reference distribution is appropriate, we need to gener-
ate thousands of random groups. With 1000 random
groups the smallest possible p-value is 10�3, whereas
with 100,000 random groups the smallest possible
p-value decreases up to 10�5. A practical way is to
start with a not too large number of random groups,
for instance 1000, and increase this number to a larger
one if the p-value is small enough to be interesting.
Because this calculation can be computationally de-
manding, sometimes parallel computing is needed.
One way to avoid it is to use other techniques based
on tail approximation, which obtain accurate p-values
with a drastically reduced number of permutations.339

A typical case in which we will need to use the permu-
tation test is when we are willing to test between-group
differences in structural covariance analysis. In this
case, we have the connectivity matrix at the group
level and therefore the global connectivity measures
are also at the group level. Testing differences between
group level measures will require a permutation test.

Phase transition
The original meaning of the term phase transition is to
be found in statistical physics, and especially in ther-
modynamics. When one defines the phase of matter
as a state in which it has uniformly physical properties,
a phase transition occurs when that matter undergoes a
transformation between two states. To illustrate, water
and ice are two phases (respectively liquid and solid),
and the transition between both of them (i.e., the freez-
ing process) is a phase transition. The term is, never-
theless, also used in a more general sense, to indicate
any transition between two homogeneous and easy
identifiable conditions of a system. For instance,
when deleting nodes from a complex networks to sim-
ulate an attack to the system, the initial connected sta-
tus and the final disconnected one are two phases, with
a transition in between them.340

Suppose one analyzes the evolution of some metric
describing the system as a function of an external pa-
rameter; in the previous example, the former can be
the connectedness of the network, which is studied as
a function of the number of removed links. Two
types of transitions can then occur:

FIG. 10. Example of two phase transitions, a
first-order (red solid line) and a second-order one
(dashed blue line).
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� First-order phase transitions, which exhibit a dis-
continuity in the first derivative of the metric
(solid red line of Fig. 10). This implies that the sys-
tem has an abrupt reaction to the change in the
external parameter.
� Second-order phase transitions are continuous in

the first derivative, but they usually exhibit dis-
continuity in a second derivative (dashed blue
line of Fig. 10). The response of the system is,
therefore, smoother than in the previous case.

Physiome
Physiome is a multiscale approach aiming at function-
ally synthesizing models at different levels, and at
understanding human physiology based on computa-
tional models.341 Standardization of models has been
part of this effort, and an important number of models
is now available in the physiome repository (https://
models.physiomeproject.org/welcome).

A flagship project has been the cardiovascular phys-
iome, which aimed at using integrative multiscale
modeling and linking the whole heart function with
small-scale systems and phenomena (e.g., ion channel
mutations, ischaemic tissue, drug toxicity, biochemical
pathways), always with an eye toward providing tools
for the clinician to investigate hypotheses and interpret
experimental data. Within the physiome paradigm, the
virtual physiological human (https://www.vph-institute
.org/) has been a long-term initiative to embrace sys-
tems medicine at organism level, toward integrating
all information available for each patient, and gener-
ating computer models to predict the patient’s health
evolution.

Precision medicine
According to the HORIZON2020 Advisory Group
(EU Health Ministers—December 2015), precision med-
icine is ‘‘a medical model using characterization of indi-
vidual’s phenotypes and genotypes (e.g., molecular
profiling, medical imaging, lifestyle data) for tailoring
the right therapeutic strategy for the right person at the
right time, and/or to determine the predisposition to dis-
ease and/or to deliver timely and targeted prevention.’’
Precision medicine is then an approach to patient care
that promotes the idea of doctors selecting most adequate
treatments for patients based on a genetic understanding
of their disease. This idea does not literally mean to create
the drugs or medical devices that are specific for a patient,
but divide the individuals into clusters (subpopulations)

that differ in their susceptibility to a particular disease, bi-
ology, or prognosis of those diseases or response to spe-
cific treatments and select treatment based on that
knowledge.342 Preventive or therapeutic interventions
can then be concentrated on those who will actually ben-
efit and save expenses on unnecessary treatments and
side effects in patients who do not. An older synonym
for precision medicine was ‘‘personalized medicine,’’
which was often misinterpreted as implying that unique
treatments can be designed for each individual. As a re-
sult, the term ‘‘precision medicine’’ was created.343

Probabilistic risk analysis
The PRA is aiming at quantitative measures for evalu-
ation of the risk of system failures (e.g., supply of essen-
tial medicines within a health care system, availability
of innovative drugs and active ingredients in the phar-
maceutical sector, disruption of agri-food supply
chains in natural disasters, security issues in the nuclear
power industry), in which the common statistical anal-
ysis is very difficult or even impossible due to multiple
and disparate issues (e.g., nonexistence of pertinent
data, the system complexity, the uncertainty about con-
sequences).344

The probabilistic risk is related with the probability
distributions for the losses in a given time horizon,
whereas the PRA methods also include event trees,
fault trees, and Bayesian networks. The PRA approach
typically considers: (i) identification of failure scenarios;
(ii) computation of scenarios probabilities, by combina-
tion of events probabilities and the associated random
variables distributions; and (iii) the evaluation of conse-
quences, the extension and impacts of those scenarios.
The data obtained in this way can then be used to feed
a robust model with multiple goals, namely, by minimiz-
ing the expectance of system failure for a given budget
(and/or for a given schedule), while verifying whether
the probabilistic measures for risk failure are satisfactory.

The PRA is also strongly connected with other con-
cepts of interest, such as Model robustness, Model Ver-
ification and Validation, Parameter Sensitivity Analysis
and Uncertainty Quantification. Difficulties are usually
associated with the scenarios definition, the selection of
random variables distributions and events probabili-
ties, as well as sparsity and high dimensionality.

Quantitative systems pharmacology
Quantitative systems pharmacology (QSP) or systems
pharmacology modeling is a computational and math-
ematical modeling approach that simulates the
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mechanistic effects of drug effectiveness.345 The QSP
combines PK/pharmacodynamic (PD) modeling with
systems biology and systems engineering.346,347 It inte-
grates drug pharmacology, physiology, mathematics,
and biochemistry, and it accounts for drug liberation,
absorption, disposition, metabolism, and excretion.
The QSP, which is a type of in silico modeling, typically
makes use of differential equations to model the dy-
namics of the drug interacting with the biological sys-
tem. More recently, the QSP involves genomic,
transcriptomic, metabolomics, and proteomic levels,
as well as regulatory and epigenomic levels. The QSP
is increasingly being used in pharmaceutical research
and development to help guide the discovery and de-
velopment of new treatments and therapies, and to ex-
trapolate animal data to humans.348–350 This is in line
with recent directions in stratified medicine or preci-
sion medicine, by which model parameters can be
tuned to simulate specific biomedical type. The ad-
vancement in big data and data science is gradually
forming an integral part of QSP, complementing its
traditional mechanistic modeling.

Random forest
In data mining, RFs are classification algorithms based
on combining multiple DTs models. The underlying
concept is that an ensemble of models, each one inde-
pendently trained on a subset of the data and each one
casting a vote about a particular instance, could yield a
better result than a single model, especially in problems
that are characterized by a large number of variables,
with each one of them encoding very little information.
Following this idea, RFs are created by merging multi-
ple DT predictors, with each one trained by using a dif-
ferent subset of the initial data.351 Each tree in RF is
grown as follows: (i) sample with replacement a given
number of cases from the training set at random.
This sample will be the training set for growing the
tree; (ii) given M input variables, randomly select
m� M of them at each node, and choose the best
one to split the node; and (iii) grow the tree with no
pruning. Given one new instance, the final classifica-
tion corresponds to the class voted by the majority of
the trees. Although there is no strict rule about the op-
timal number of trees to be grown, studies suggest that
little is gained by growing more than 1000 trees.352

The RFs have three significant advantages: First, they
do not suffer from overfitting, and can thus be used in
small data sets. Second, their computational cost is re-
duced, and they are very prone to parallelization

(as each tree can be created in an independent process).
Finally, they have been shown to outperform most
known algorithms, in terms of accuracy.353 On the neg-
ative side, it is worth noting that the number of trees in
the model must be selected by the researcher, and that
no clear rules are available to guide this process.

Random graphs
Random graphs are graphs, or networks, that are artifi-
cially constructed by creating links between nodes accord-
ing to a given probability distribution.354,355 As such, they
do not correspond to any real-world system; but they in-
stead provide a tool for answering specific questions
about how some properties may appear. Due to the
lack of any predefined structure, except for those natu-
rally arising from the defined probability distribution,
random graphs are well suited to be used as null models.

Scale-free networks
A scale-free network is any complex network whose de-
gree distribution approximatively follows a power law;
in other words, the fraction of nodes with degree k
goes as P kð Þ � k� c, with c being a parameter usually
in the range (2–3). Many real-world networks, including
biological ones,356,357 have been found to be scale-free to
some degree,358,359 although no consensus still exists on
the best way of statistically testing such a property.360

Scale-free networks are of relevance for different
reasons.

First of all, the degree distribution implies that most
nodes have very few connections, whereas a (statisti-
cally significant) high number of them concentrate
on the majority of the links; these latter ones are,
thus, more important for the functioning of the net-
work, or more central, and are usually called ‘‘hub.’’

Second, the structure induced by scale-freeness implies
a great resilience against random disruptions; note that, if
a node is deleted at random, there is a high probability for
that node to be secondary and weakly connected. On the
other hand, a targeted attack can do much damage, as it
can target a node of very high centrality.361,362

Finally, several models have been proposed to explain
the appearance of scale-free networks363–366; and, more
generally, the presence of such structure can point to-
ward the existence of some generative processes.

Simulated annealing
Simulated annealing (SA) is a form of optimization that
is used to approximate global optimization in a large
search space. This method is used in discrete space,
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where finding an approximate global optimum is more
important than finding a precise local optimum in a
fixed amount of time. In these situations, SA is often
preferable to methods such as gradient descent. It is es-
pecially useful in finding global optima when large
numbers of local optima are present. The SA uses
the objective function of an optimization problem in-
stead of the energy of material. Implementation of the
SA consists of hill-climbing and picking a random
move, instead of the best move. If the selected move
improves the solution, it is accepted, and when not,
it moves with a probability of less than 1. The value of
probability decreases exponentially with the amount of
how much the solution is worsened.367,368 Beyond general
optimization problems (see, for instance, Refs.369–371),
SA has extensively been used for segmenting medical
images.372,373

Small-world network
The theory of small-world networks374 is based on the
observation of biologic or complex systems that can be
represented by using graphical models. The specific
graph shows especial characteristics, such as having a
high clustering of its elements, and a very fast associa-
tion between any two different nodes that can be in-
ferred by following the shortest path between the
nodes through the graph connections.

The formulation of small-world networks was in-
spired by the idea that the ‘‘degree of separation’’ or dis-
tance between two different (unfamiliar) people on the
Earth is about five.375 Not only social networks have
been observed to follow this pattern, but networks of
collaborators, complex systems, and brain networks
also follow this interesting rule.

A small-world network can be also explained as the
transition from random or chaotic systems to highly

regular or structured ones. For example, in a regular
lattice network, where the nodes only have connections
to the closest or adjacent nodes, it can be observed that
by disconnecting and randomly reconnecting the
nodes, the average distance between any two nodes in
the network rapidly decays whereas maintaining the
local network of closest nodes only decays slightly in
density (clustering coefficient). In neural networks,
this property of small-worldness can be seen as critical
to maintain a fast integration among distant neural
populations to process information efficiently, whereas
the different tokens of information are locally pro-
cessed in highly dense local networks (Fig. 11).

Smoothed-particle hydrodynamics
Smoothed-particle hydrodynamics (SPH) is a compu-
tational method that is used for simulating the me-
chanics of continuum media, such as solid mechanics
and fluid flows.376 Many fields of research have
employed the SPH method, such as engineering, astro-
physics, ballistics, volcanology, and oceanogra-
phy.377–379 It is a meshfree Lagrangian method,
meaning there is no division of domains of interest in
the form of mesh (see Finite Element Method and
Finite Volume Method sections), but rather the coordi-
nates move with the fluid. In such a way, the resolution
of the method can easily be adjusted with respect to
variables such as density. Here, the computational do-
main is discretized by a finite set of interpolating points
(particles), with invariant coordinates in the material
frame. Each SPH particle represents a finite mass of
the discretized continuum and carries the information
about all physical variables that are evaluated at their
positions. Interpolating (smoothing) function and its
derivatives at surrounding particles are used to evaluate
the function values and their derivatives at a specific

FIG. 11. Example of the creation of a small-world network.
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particle.380 The SPH has been used, for instance, to
model therapeutic solutions aimed at helping heart
muscle to regenerate after an injury.381

Solid–fluid interaction
Solid–fluid interaction is a numerical approach that is
used to model phenomena that involve both the sur-
rounding fluid and immersed solid objects. Using this
approach, both domains are simulated concurrently,
and they form a coupled mechanical system. The
fluid is acting on the solid object via external forces
and causes the motion and deformation of the deform-
able solid and vice versa—the solid is opposing the de-
formation and the influence of fluid and in this way
alters the fluid flow. Solid–fluid interaction techniques
have been applied, for instance, in modeling the deploy-
ment of the stent within the stenotic artery with a de-
formable arterial wall382; in simulating the behavior of
deformable cells within a fluid flow383,384; and in provid-
ing insight into the benefits of different treatment alter-
natives in a case of type B aortic dissection.385

Statistical bioinformatics
The application of statistical techniques is mainly to
large sets of biomedical data—mainly genomics data,
but recently this has evolved to include any type of -
omics data. For more information, refer to Refs.386–389

Statistical networks
One of the properties of a system is that it consists of
interacting components at different levels. Creating a
corresponding network may be based on biology (see
the Biological Networks section) or may be based on
analytical arguments, or both. Statistical epistasis net-
works belong among the simplest examples of such
networks, in which nodes refer to units of analysis
and edges are formed via a notion of statistical signifi-
cance. They have become popular tools in genome-
wide association interaction studies to highlight
higher-order interactions in typically underpowered
studies.390 In general, the major challenge with statisti-
cal networks is to assess and minimize statistical arte-
facts that may hamper network-derived biological
conclusion-drawing.391

Support vector machine
Binary linear classifiers are based on the identification of
hyperplanes in the feature space, dividing the training
instances in two groups according to the training label.
The model is trained by first constructing a feature

space, that is, a hyper-space defined by the features avail-
able in the data set, which must always be numerical.
Records are mapped into this space, and the best linear
separation between them is then calculated. The best
separation is achieved by the hyperplane that has the
largest distance to the nearest training-data point of
any class, as this minimizes the error. Modified versions
of SVMs have been developed to tackle different prob-
lems, including regression problems,392 or the use of dif-
ferent kernels (i.e., distance functions) to obtain
nonlinear models.393 Among SVMs, disadvantages are
a high computational cost, and the complexity of dealing
with classifications with multiple labels. For more de-
tails, refer to Refs.394,395

Surrogate model
Surrogate model is an engineering method that is used
when an outcome of interest cannot be easily directly
measured, and instead, a model of the outcome is
used. In many real-world problems, one simulation
can take from minutes, to hours and even days to finish
the calculation. Therefore, sometimes design optimi-
zation, sensitivity analysis, and what-if analysis are
impossible to investigate, since that would mean run-
ning thousands or even millions of simulations. Surro-
gate models, also known as metamodels, are compact,
scalable analytic models that approximate the multi-
variate input/output behavior of complex systems,
based on only a limited set of computationally expen-
sive simulations. In such a way, surrogate models actu-
ally mimic the complex behavior of the simulation
model, and they are applied in design automation,
parametric studies, design space exploration, optimiza-
tion, and sensitivity analysis. Other synonyms for sur-
rogate models are response surface models, emulators,
auxiliary models, repro-models, metamodels, etc.396

Systems biology
Systems biology is the field devoted to the computa-
tional and mathematical modeling of complex biolog-
ical systems.397–399 It focuses on the relationships
between the components of a biological system, and
how these relationships give rise to its global func-
tion and behavior. This is opposed to a reductionist
paradigm.

Systems bioinformatics
A new approach to the analysis of biomedical data is
based on the application of a systems biology perspec-
tive. This includes, on one hand, a top-down view, with
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bioinformatics methods being used to extract and ana-
lyze information from ‘‘omics’’ data generated through
high-throughput techniques,400 eventually integrating
omics data coming from different sources.401–403 On
the other hand, this is complemented with a bottom-
up approach, where information from molecular cells
and tissues, alongside mathematical models, is used
to elucidate the function and dynamic behavior of
cells, organs, and organisms.

Systems dynamics
Systems dynamics or dynamical systems is a mathemat-
ical method or modeling approach for understanding the
behavior of complex systems, with their states evolving
over time. This is used in in silico modeling of biomedical
systems. For instance, biochemical reactions (using mass
action law), intracellular signaling pathways, activity of
excitable/nerve cells and their networks, biological
rhythms, cancer development, and population dynamics
can be described by dynamical systems.404–408

A system often consists of a set of interacting ele-
ments or components that forms a larger component
or entity. Understanding the latter’s behavior is often
not immediately clear just based on the elements or
building blocks, but through the analysis of the interac-
tions leading to ‘‘emergent’’ dynamical behavior. The
analysis could be performed analytically (especially
for simpler systems) or computationally by using vari-
ous numerical methods. Often, the stability of the sys-
tem is also evaluated analytically or computationally
either locally, for example, around some steady state,
or globally. Software are often used for numerical com-
putation. The popular ones include XPPAUT (C pro-
gramming based)409 and MATCONT (MATLAB
programming based).410

The elements or interactions can be linear or nonlin-
ear. The interactions can be instantaneous or time-
delayed. The system can be deterministic or stochastic
(i.e., in the presence of noise). Suppose a system’s state
variable is described by a vector x, and the environment
of system is described by parameters a, the evolution
mechanism of dynamical systems can be continuous
(behaving continuously over time) and described by a
group of differential equations,

dx

dt
= f x, a, tð Þ,

or discrete (behaving over discrete time points) and de-
scribed by difference equations,

x tþ 1ð Þ = f x tð Þ, a½ �,

or described by symbolic dynamics, that is, mathemat-
ical function mappings408

f : x tð Þ ! x tþ 1ð Þ:

Often but not necessary, nonlinearity in the system
can lead to highly nontrivial emergent dynamics. For
instance, varying some parameter around its critical
value can dramatically change the behavior of the sys-
tem. This is termed bifurcation411 or phase transition,
and it is linked to the Catastrophe Theory.412 Some
other topics related to systems dynamics or dynamical
systems theory include the Chaos Theory.408

Systems engineering
Systems Engineering is a multi/transdisciplinary field
devoted to the engineering and engineering manage-
ment of very large and complex socio-technical sys-
tems. It addresses all the elements within a system;
their individual properties and inter-relations are con-
sidered and integrated in a holistic approach, through a
combination of relationships to jointly perform a useful
function as a whole. Systems Engineering combines
Engineering with Management, Finance, Economics,
Pure/Exact, and Social Sciences, in a way to adequately
design, develop, and implement the large and complex
systems that are so important nowadays. It is typically
used to manage the inherent complexity of societal
problems, for example, either in spacecraft design or
in combination with PK/PD modeling and Systems
Biology.346,347 In this way, the Systems Engineering ap-
proaches are delimited within the Systems Theory
framework.413

Systems medicine
Systems medicine is an interdisciplinary field of study
that looks at the human body as a system, composed
of interacting parts, and further integrated into an en-
vironment. It considers that these complex relation-
ships exist on multiple levels, and that they have to
be understood in light of a patient’s genomics, behav-
ior, and environment. As such, it integrates contribu-
tions from multiple research fields, including
medicine, systems biology, statistics, modeling and
simulation, and data science. The earliest uses of the
term ‘‘systems medicine’’ appeared in 1992, in two ar-
ticles independently published by Zeng3 and Kamada.4

Zanin, et al.; Network and Systems Medicine 2021, 4.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0003

39



As the name suggests, ‘‘systems medicine’’ represents
the convergence of two main fields:

� Systems biology, the field of study that focuses on
complex interactions within biological systems,
using a holistic approach.
� Medicine, as it presents a clear focus toward med-

ical research and medical practice. As such, sys-
tems medicine aims at having tangible benefits
for the patients, with the identification of those el-
ements that are critical for influencing the course
of the system (i.e., medical conditions).

Among its objectives, it is worth highlighting:

� Systems medicine is not systems biology just in
one species, but similar to the distinction between
‘‘medicine’’ and ‘‘biology’’ systems medicine needs
to have an objective to achieve patient benefit, by
either better or earlier diagnosis and therapy.
� Systems medicine questions and replaces the cur-

rent concept of medicine, which is largely built on
organ-based subfields and symptom-based disease
definitions, toward a holistic-defining diseases at a
mechanistic level.
� Systems medicine defines (diagnostic and thera-

peutic) targets not any longer as single molecules
but rather perturbed networks, which form sub-
graphs of the interactome.
� At the application side, systems medicine will lead

to precision diagnostics and therapeutics.
� Some therapeutics/drugs will not need to be devel-

oped de novo but repurposed/repositioned.
� Use multilayer diagnostic tools.
� Thus, systems medicine will enable predictive,

personalized, preventative, and participatory
medicine.
� By increasing medical precision and efficacy, sys-

tems medicine ideally addresses the financial pres-
sures on all health care providers and enables the
ultimate move from an input medicine to an out-
put medicine (see recent World Economic Forum
Davos).

System of systems
Systems of Systems can be represented as large-scale,
complex, and distributed systems. System of Systems
concept is described in terms of ‘‘Maier’s criteria’’414:
operational and managerial independence, distribu-
tion, and emergent behavior as a result of component
behavior and evolutionary development. System of Sys-

tems principles can be applied in integrating health
management, medical diagnosis, and medical support
systems.415

Standards
The word ‘‘standard’’ has several different definitions.
In general metrology, a standard is a reference that is
used to calibrate measurements, whereas in the systems
biology field, standards have been developed through
standardization initiatives (e.g., ISO, COMBINE416)
to format and describe data and models, for exchange
and understanding between scientific communities.
Three types of standards have been considered417: stan-
dard formats for representing data and models; stan-
dard metadata for describing types of data and
models; and controlled vocabularies and ontologies to
provide a common vocabulary.

Structural covariance networks
A technique is used to reconstruct complex networks
representations of brain cortical regions. The network
is defined such that nodes represent brain regions,
and link the Pearson’s correlation of CT or volume be-
tween pairs of regions, as yielded by magnetic reso-
nance data (MRI).418,419 Structural covariance
between regions can be used to construct the so-called
structural covariance networks. Several studies have
been conducted in which structural covariance net-
works have been analyzed in healthy subjects,420,421

and in groups of patients with disorders such as autism,
attention deficit hyperactivity disorder, schizophrenia,
or Alzheimer’s disease,422–425 or to assess the differ-
ences between gifted children and controls.426 Since
the SCN is at the group level, (structural) connectivity
parameters are also at the group level and a permuta-
tion test will be needed to infer differences between
measures. See also the Morphometric Similarity Net-
works section.

Time-evolving networks
One major problem that was found while studying
time-evolving systems through complex networks was
that edges may not continuously be active. To illustrate
this, let us consider the network of contacts between in-
patients of a hospital, which may be used to model the
propagation of infectious diseases. First, two people
may be connected by a link even if they have been in
the same room for a short time window; thus, the prob-
ability of contagious should not be binarized. Second,
the sequence of contacts is also important: If a person
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met patient A and later patient B, a disease cannot
spread from B to A. The solution was the development
of the concept of time-evolving, or temporal, networks,
in which a collection of networks represent the status of
the system as it evolves through time.427,428

Time-scale separation
Dynamic mathematical models can be simplified by
using the time-scale separation approach: If part of a
system operates sufficiently fast compared with the
rest of the system, it may be assumed to have reached
a steady state.429 This allows the elimination of fastest
components from the model, lumping them with
slower components as they determine the speed of a
systems reaction. This approach can be very efficient
in multiscale modeling, where dynamics of very differ-
ent processes are merged. Time-scale separation is ap-
plied for the modeling of vector-borne diseases, where
human host epidemiology is much slower than the
transmission of vector from human to human by mos-
quitos: Only the human time scale is investigated as-
suming that human–human transmission happens
instantly.430 Time-scale separation can be used to sim-
plify modeling of biochemical processes at the cellular
physiology level.431

Variation partitioning
Also called ‘‘commonality analysis,’’ a technique aimed
at quantifying the part of the observed variation, that is,
the shared consequence of two (or more) explanatory
variables. It was initially introduced in 1992 by Borcard
et al. in ecology,432 and it has since seen some limited
applications in medicine.433,434

Virtual physiological human
See the Physiome section.
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222. Vulović A, Šušterši�c T, Cvijić S, et al. Coupled in silico platform: compu-
tational fluid dynamics (CFD) and physiologically-based pharmacoki-
netic (PBPK) modelling. Eur J Pharm Sci. 2018;113:171–184.

223. Bullmore E, Sporns O. Complex brain networks: graph theoretical anal-
ysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186.

224. Friston KJ. Functional and effective connectivity: a review. Brain Con-
nect. 2011;1:13–36.

225. Hung JH, Yang TH, Hu Z, et al. Gene set enrichment analysis: perfor-
mance evaluation and usage guidelines. Brief Bioinformatics. 2011;13:
281–291.

226. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–15550.

227. Liberzon A, Subramanian A, Pinchback R, et al. Molecular signatures
database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–1740.

228. Granger C. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica. 1969;424–438.

229. Wiener N. The theory of prediction. In: Modern Mathematics for Engi-
neers. (Beckenbach EF; ed). New York, McGraw-Hill. 1956; pp. 165–190.

230. Bressler SL, Seth AK. Wiener–Granger causality: a well established
methodology. Neuroimage. 2011;58:323–329.

231. Zanin M, Papo D. Detecting switching and intermittent causalities in
time series. Chaos. 2017;27:047403.

232. Schiatti L, Nollo G, Rossato G, et al. Extended Granger causality: a new
tool to identify the structure of physiological networks. Physiol Measur.
2015;36:827.

233. Bose E, Hravnak M, Sereika SM. Vector autoregressive (VAR) models and
granger causality in time series analysis in nursing research: dynamic

Zanin, et al.; Network and Systems Medicine 2021, 4.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0003

46



changes among vital signs prior to cardiorespiratory instability events as
an example. Nurs Res. 2017;66:12.

234. Erdil E, Yetkiner IH. The Granger-causality between health care expen-
diture and output: a panel data approach. Appl Econ. 2009;41:511–518.

235. Goyal P, Ferrara E. Graph embedding techniques, applications, and
performance: a survey. Knowl Based Syst. 2018;151:78–94.

236. Cai H, Zheng V, Chang K. A comprehensive survey of graph embedding:
problems, techniques, and applications. IEEE Trans Knowl Data Eng.
2018;30:1616–1637.

237. Seshadhri C, Sharma A, Stolman A, et al. The impossibility of low-rank
representations for triangle-rich complex networks. Proc Natl Acad Sci U
S A. 2020;117:5631–5637.

238. Pellegrini M, Haynor D, Johnson JM. Protein interaction networks. Expert
Rev Proteomics. 2004;1:239–249.

239. Bullmore ET, Bassett DS. Brain graphs: graphical models of the human
brain connectome. Annu Rev Clin Psychol. 2011;7:113–140.

240. Keeling MJ, Eames KT. Networks and epidemic models. J R Soc Interface.
2005;2:295–307.

241. Jeong H, Tombor B, Albert R, et al. The large-scale organization of
metabolic networks. Nature. 2000;407:651.

242. Perkins AD, Langston MA. Threshold selection in gene co-expression
networks using spectral graph theory techniques. BMC Bioinformatics.
2009;10:S4.

243. Yue X, Wang Z, Huang J, et al. Graph embedding on biomedical net-
works: methods, applications, and evaluations. arXiv. 2019;arXiv:
1906.05017.

244. Ietswaart R, Gyori BM, Bachman JA, et al. GeneWalk identifies relevant
gene functions for a biological context using network representation
learning. bioRxiv. 2019;755579. doi: 10.1101/755579.
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287. Fiehn O, Kopka J, Dörmann P, et al. Metabolite profiling for plant func-
tional genomics. Nat Biotechnol. 2000;18:1157–1161.

288. Ramautar R, Berger R, van der Greef J, et al. Human metabolomics:
strategies to understand biology. Curr Opin Chem Biol. 2013;17:841–
846.

Zanin, et al.; Network and Systems Medicine 2021, 4.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0003

47



289. Lindon JC, Holmes E, Nicholson JK. Metabonomics techniques and ap-
plications to pharmaceutical research & development. Pharm Res. 2006;
23:1075–1088.

290. Dhariwal A, Chong J, Habib S, et al. MicrobiomeAnalyst—a web-based
tool for comprehensive statistical, visual and meta-analysis of micro-
biome data. Nucleic Acids Res. 2017;45:180–188.

291. Bertsimas D, Sim M. The price of robustness. Oper Res. 2004;52:
35–53.

292. Schultz R, Stougie L, Van Der Vlerk MH. Two-stage stochastic integer
programming: a survey. Stat Neerlandica. 1996;50:404–416.

293. Hendrycks D, Lee K, Mazeika M. Using pre-training can improve
model robustness and uncertainty. arXiv Preprint. 2019;arXiv:
1901.09960.

294. Tsipras D, Santurkar S, Engstrom L, et al. Robustness may be at odds with
accuracy. arXiv Preprint. 2018;arXiv:1805.12152.

295. Cobelli C, Carson ER, Finkelstein L, et al. Validation of simple and com-
plex models in physiology and medicine. Am J Physiol Regul Integr
Comp Physiol. 1984;246:259–266.

296. Antonelli G, Padoan A, Aita A, et al. Verification or validation, that is the
question. J Lab Precis Med. 2017;2:58.
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