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a b s t r a c t 

Object detection is an important field in computer vision. Nevertheless, a research area that has so far not

received much attention is the study into the effectiveness of anchor matching strategy and imbalance in

anchor-based object detection, in particular small object detection. It is clear that the objects with larger

sizes tend to match more anchors than smaller ones. This matching imbalance may result in poor perfor- 

mance in detecting small objects. It can be alleviated by paying more attention to the objects that match

with fewer anchors. We propose an innovative flexible loss function for object detection, which is com- 

patible with popular anchor-based detection methods. The proposed method, called the scale-balanced

loss, does not add any extra computational cost to the original pipelines. By re-weighting strategy, the

proposed method significantly improves the accuracy of multi-scale object detection, especially for small

objects. Comprehensive experiments indicate that the scale-balanced loss achieved excellent generaliza- 

tion performance when separately applied to some popular detection methods. The scale-balanced loss

attained up to 15% improvements on recall rates of small and medium objects in both the PASCAL VOC

and MS COCO dataset. It is also beneficial to the AP result on MS COCO with an improvement of more

than 1.5%.
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. Introduction

Object detection plays an important role in many applica- 

ions of computer vision, such as face recognition [1] , person re- 

dentification [2] , autonomous driving [3] , and medical image anal- 

sis [4] , etc. In recent years, a lot of detectors based on deep learn-

ng are proposed to improve the accuracy and efficiency of object 

etection models [5–9] . 

Object detection aims to identify all objects of interest in the 

mage data. Due to the different sizes, shapes, and locations of ob- 

ects, object detection is more challenging than image classifica- 

ion [10–13] . According to the steps of generating results, many 

opular detectors can be generally divided into two categories: 

he multi-stage methods and the one-stage methods. Multi-stage 

ethods [14–16] first generate candidate prior boxes and then re- 

ne them in the following part. This strategy not only can alleviate 

he imbalance between background and foreground, but also give 

ore accurate localization results. Many multi-stage methods have 

chieved the highest accuracy on some benchmarks, such as PAS- 
e

S

AL VOC [17] and MS COCO [18] , but they usually suffer from the 

igh computational cost. In order to reduce the computational cost, 

ome one-stage methods have been proposed [19,20] . They inte- 

rate the classification and localization results together in a more 

fficient pipeline, which is more feasible for real-time image anal- 

sis. 

No matter which kind of pipelines for detection is used, most 

xisting methods adopt a set of prior boxes called ǣanchors ǥ in 

heir models to match the ground truth. In Faster-RCNN [14] , pos- 

tive samples refer to the anchors which have an IoU 

1 overlap 

igher than 0.7 with any ground truth box while those have no 

oU higher than 0.3 are considered as negative ones. This matching 

trategy determines which anchors are responsible for predicting 

he ground truth. Some slightly different strategies are applied in 

ots of other pipelines [21–24] to play a similar role. Due to the 

onuniform distribution of anchors, different objects can match 

ith different numbers of anchors. The objects with more matched 

nchors might be dominant in the optimization of loss. As shown 

n Fig. 1 , for different objects in VOC 07train + 12trainval set, there 

xists an extreme imbalance of matching times with anchors in 

SD300 settings (with data argument in SSD300). It is clear that 
1 Intersection over Union.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.107997&domain=pdf
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Fig. 1. The matching imbalance during anchors matching process. Taking SSD300 on VOC dataset as an example. The first bar with index 0 indicates the number of objects

which match no anchor. The bar with index 1 indicates the number of objects which match one anchor, and so on. We can see that in the existing anchor matching strategy,

nearly 90 0 0 objects can only match one anchor, and most of them are small objects. On the other hand, there is about one third of objects can match more than 10 anchors.

Statistics show that the existing anchor matching strategies is unbalanced, which is related to the size of objects.

o

o

d

s

h

l

w

t

s

I

w

t

t

c

w

i

d

n

o

[

r

i

t

i

c

i

o

s

t

b

u

a

t

f

a

f

p

s

w

t

a

s

p

m  

a

c

s

i

bjects with larger sizes tend to match more anchors than smaller 

nes. This matching imbalance may result in poor performance in 

etecting small objects. 

Some existing methods focus on the general characteristics of 

mall objects. However, the matching imbalance mentioned above 

as not been paid enough attention. The characteristics include 

ess information of their own, larger probabilities to be confused 

ith background and higher precision requirements for localiza- 

ion [25] . But without the balanced anchor matching results, there 

till remains a giant gap between large objects and small ones. 

t causes such a serious conflict and competition that compared 

ith large ones, small objects are so difficult to be detected, and 

hey require special treatment in existing detection pipelines. In 

his circumstance, the information of small objects cannot be effi- 

iently explored, and the image background can also easily over- 

helm them. 

In order to obtain a more reasonable anchor matching result, it 

s a natural way to improve the existing anchor matching strategies 

irectly [22,26,27] . Different methods have been tried, but still can- 

ot make a breakthrough. YOLO90 0 0 [28] runs k-means clustering 

n the training set to automatically find better anchors. FaceBoxes 

29] uses more small anchors to match faces, which improves the

ecall rate of small faces. MetaAnchor [30] makes use of a dynam- 

cal prior boxes generating method for robust bounding box dis- 

ributions instead of manual selection. Although these data-based

mproved methods generate better anchors, the imbalance of an- 

hor matching results remains as great as ever. Besides, the grow- 

ng computational cost also limits the application of these meth- 

ds. 
2

Except for improving the original matching and generating 

trategies, designing unique network architectures is also an al- 

ernative method for small obejct detection. RFBNet [31] uses RFB 

locks to focus on small anchors which are most affected by the 

nbalanced matching. Refinedet [32] and FPN [33] make top-down 

rchitectures and alleviate the imbalance from different perspec- 

ives. 

Instead of making effort s on the network architecture, the loss 

unction and weighting strategy [27,34] can directly alleviate the 

nchor matching imbalance. In this paper, we designed a new loss 

unction called scale-balanced loss to replace the counterpart in 

revious approaches for maintaining the matching balance. The 

cale-balanced loss puts a weighted operation on the original one, 

hich can reduce the proportion of objects with more matching 

imes and enlarge the weight of objects with fewer matches. It is 

 compensation strategy for different sizes of objects. Experiments 

how that our proposed method achieved excellent generalization 

erformance. It makes significant improvements on four popular 

odels, SSD [20] , FSSD [19] , DSSD [35] , and RefineDet [32] . We

lso explored the effects of different weighting forms to make a 

omparison. At last, we showed the specific impact on different 

izes of objects to prove the effectiveness of the scale-balanced loss 

n detail. 

The main contributions of this work are summarized as follows. 

• We pointed out an imbalance among objects of different scales

in existing anchor matching strategies, which may lead to

poor performance in detecting multi-scale objects, especially

for small objects. We found that this imbalance can be alle-
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viated by paying more attention to the objects that matched 

fewer anchors in the loss function. 
• We proposed an innovative flexible loss function called scale- 

balanced loss for object detection tasks to alleviate the match- 

ing imbalance. The proposed scale-balanced loss along with

prevalent anchor-based methods achieved excellent generaliza- 

tion performance as compared to other prevalent models with- 

out the proposed loss.
• We explored the impact of scale-balanced loss on detecting

objects with different scales. The recall rates for small and

medium objects attained up to 15% improvements on both PAS- 

CAL VOC and MS COCO datasets.

. Related work

Despite some major improvements in the object detection, de- 

ecting multi-scale objects, especially small objects is still a chal- 

enge for existing detectors. This is mainly due to the peculiarities 

f small objects including less information about themselves, larger 

robabilities to confuse with the background, higher requirements 

or localization [25] , etc. For the recognition task, the 32 × 32 pixel 

s the minimal size for color images within the allowable range. 

orralba et al. [36] In detection benchmark COCO, small objects 

efer to those occupying areas less than or equal to 32 × 32 pix- 

ls. For these small objects, researchers have made much effort in 

his area, which can be summarized from four aspects: (i) build- 

ng detectors for images of different scales; (ii) using shallow net- 

orks directly for detection; (iii) combining context information 

ith coarse features; (iv) getting super-resolution with GAN. 

.1. Building detectors for images of different scales 

Considering that images have objects of different scales, some 

imple but effective methods are introduced to construct detec- 

ors for images of different sizes [37–39] . In paper [40] , an im-

ge pyramid is designed for input, and results from different scales 

re integrated for output. It is effective for face targets, especially 

mall face targets which are easier to detect in large-scale images. 

OLO90 0 0 [28] makes a multi-scale training strategy that allows 

ifferent sizes of input as a data argument method. However, the 

pplications of these approaches are still limited due to their poor 

bility to extract complex features. In the general object detection 

asks, the characteristics of objects and their relationships are very 

omplex, and even a small change can produce a huge difference. 

herefore, simple scaling is unable to obtain suitable feature rep- 

esentation for detection. 

.2. Using shallow networks directly for detection 

For convolutional neural networks, nodes have large receptive 

elds in the deep feature map of the network. It is beneficial to 

etecting large objects while leading to more information loss for 

etecting small objects. The nodes in shallow layers have smaller 

orresponding receptive fields, which is more suitable for detect- 

ng small objects [41] . SSD [20] and MSCNN [39] make predic- 

ions with feature maps in different layers separately, and then in- 

egrate all prediction results. Hypernet [42] takes a different way 

hat multi-layer feature maps are resized to the same scale by up- 

ampling or downsampling for detection. This method is widely 

sed in the following researches [12,19,20,43] . Since shallow net- 

orks have a weak expression ability and are not enough to cope 

ith complex scenes, adding extra features is one way to improve 

erformance. 
3

.3. Combining context information with coarse features 

Since the small object itself has fewer features, it is an effective 

eans to use context information to assist judgment [24,44,45] . 

xperimental results show that for face detection, context informa- 

ion around the face can significantly improve the accuracy of clas- 

ification and positioning by human observers, especially for small 

aces [40,43] . FPN [33] and RefineDet [32] build feature pyramids 

y a top-down module [46] , which can generate more appropri- 

te feature representation with context information than skip con- 

ection. DSSD [35] makes deconvolutions on coarse features and 

ntegrates them with fine-grained features for predictions. MDFN 

47] makes use of the relationships of individual objects and local

ontexts. Besides the contextual information around objects, the

elationship between multiple objects is also considered critical for

udgment. Based on the proposal regions, RNN can also integrate

he scene information and object information to adjust the predic- 

ion results [4 8,4 9] . Such approaches make full use of context in-

ormation and do not depend on CNN’s receptive field, which com- 

ensates for the defects of the fully convolutional network to some

xtent.

.4. Getting super-resolution with GAN 

As proposed by PGAN [50] , it is a novel way to use GAN to in-

rease the resolution of small objects for detection. The generator 

earns to enhance the limited representations of small objects to 

uper-resolved ones that are similar to real large objects to com- 

ete with a discriminator. This method is also adopted by Bai et al. 

51] for the face detection task.

. Our proposed method

In this section, we introduce our proposed method in detail. 

irst, we show the matching imbalance in existing anchor match- 

ng strategies from different aspects. Second, a weighted loss func- 

ion called scale-balanced loss is proposed for solving the imbal- 

nce. At last, we evaluate the impact of this imbalance on different 

ipelines. 

.1. The imbalance during anchors matching process 

Currently, most of the state-of-the-art detection systems em- 

loy anchors in their methods, which play a key role in the head 

f pipelines. The anchors are designed as a set of default reference 

oxes with various sizes and aspect ratios to match the ground 

ruth for a smaller searching space. Since the anchor gives proper 

rior knowledge for the network to determine which features 

re used to predict objects, the anchor-based methods far out- 

erform anchor-free ones. As a well-known anchor-based method, 

PN [14] makes use of anchors at each sliding window location 

or classification and localization. The anchor which has an obvi- 

us overlap with any ground truth will be regarded as a positive 

ample. Otherwise, it is ignored or considered as a negative one. 

owever, this strategy is unfair for small objects as they naturally 

ave smaller overlap with anchors. To make them not ignored, the 

nchors which have the highest IoU with small objects are also re- 

arded as positive samples [14,20] . But it brings another problem 

hat small objects may match fewer anchors than large objects. The 

atching process is shown in Fig. 2 . The player matches more an- 

hors than the ball. Since the matching strategy is only sensitive 

o objects’ sizes, we can assume that the large objects match more 

nchors than small ones in most cases. 

To give a fair comparison, we resize all images in the VOC2007 

rainval set to scale 300. According to their size, these objects are 

ivided into three types, just like what COCO [18] does on them. As 
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Fig. 2. The matching process performed on multiple feature maps is shown. The solid line boxes represent the objects and the dotted line boxes represent the matched

anchors. The player can match more anchors in deep networks than the ball. It causes that the information of the ball cannot be paid enough attention to when the model

tries to detect it.

Fig. 3. The summary of matching times for objects of different sizes in SSD [20] is

shown. The object in the blue part can only match anchors 1–5 times. For small

objects, most of them belong to the blue part. When compared with medium and

large objects, this unreasonable proportion does harm to the performance of detec- 

tion. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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s shown in Fig. 3 , after the matching process in SSD [20] , most of

he small objects can only match anchors 0–5 times and about 1/8 

f large objects match less than 6 anchors. It is not in line with the

riginal intention of designs for anchor matching strategies, which 

hould give fair treatment on different sizes of objects. 

As we all know, the small object is the hardest part of object 

etection tasks, and the matching imbalance mentioned above ag- 

ravates this problem. To alleviate this imbalance, a balanced an- 

hor matching strategy is needed. However, due to the inflexible 

ully convolutional network framework in the existing detection 

ipelines, it seems to be difficult to design a proper strategy that 

an be applied to different designs. Our goal is to find out a prac-

ical method that is compatible with most existing anchor-based 

ethods. Inspired by the focal loss [27] which is proposed to alle- 

iate the extreme imbalance between foreground and background 

lasses during training, we choose the loss function to make a 

reakthrough. 

The focal loss is a dynamical scaled cross entropy loss and 

ainly relies on confidence, where the scaling factor decays to 

ero as confidence of the correct class increases. It does not work 

or anchor matching imbalance, because the imbalance among 

oreground classes is not so obvious compared to the imbalance 

etween foreground and background [52] . So, the scaling factor in 

he focal loss has little difference in foreground classes and it can- 
4

ot maintain the balance of anchor matching. Besides, the unbal- 

nced anchor matching strategy leads to more outliers for large 

bjects. In the focal loss, the confidence of outliers is small and 

ill be given larger weights, which may reduce the stability of the 

odel [53] . So, the confidence independent weighting method as 

his paper proposed is a more reliable solution. 

.2. Scale-balanced loss 

For objects matching more than one anchor, all these anchors 

re expected to predict the same object correctly in the training 

tage. As all these anchors are treated equally by the training strat- 

gy in existing methods, the objects which match few anchors are 

ore likely to be ignored. According to the statistics in Fig. 3 , small

bjects match fewer anchors in existing pipelines. It makes small 

bjects only have a slight impact on loss. Due to the key position 

f loss on deep learning, small objects have little effect on network 

arameters. As a result, the network cannot effectively extract the 

eatures of small objects. 

If there is a compensation strategy for the anchor matching pro- 

ess, the impact of small objects on loss could be enhanced. In 

his condition, the network can extract features which are more 

eaningful for detecting small objects. At the same time, since the 

eature extraction of large objects is not a hard task, its detection 

ccuracy will not decrease. The overall detection accuracy can be 

ignificantly improved. Based on the influence on the probabilities 

f successfully detecting objects, we design the scale-balanced loss 

o improve the previous training strategy. The proposed method 

e-weight the objects in the loss function according to the impact 

f the anchor matching process on the probability of detection. 

Supposing that a ground truth G i , it matches M i anchors for a 

ingle input, the original total loss can be formulated as 

oss = 

N ∑ 

i =1

M i ∑ 

j=1

L (G i , a 2 b j ( anchor j )) (1) 

The a 2 b represents the process of transforming an anchor into 

 bounding box based on the result of models, and L is the original 

oss function, which is designed to evaluate the difference between 
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2 https://pytorch.org
he ground truth and the anchor. The total loss is the sum of all the

 2 b matched anchor loss. 

To reduce the negative effects caused by the anchor matching 

trategy on the prediction of objects, especially for multi-scale ob- 

ects, we designed our scale-balanced loss as the following form. 

oss scb = 

∑ N
i =1 W i 

∑ M i 

j=1 
L (G i , a 2 b j ( anchor j )) (2) 

The difference between scale-balanced Loss and the original 

oss is that a weight related to the number of matched anchors 

s added for each object. W i is used to balance the object predic- 

ion probability change of the anchor matching process, and ob- 

ects that match more anchors have smaller W i . For an object G i ,

hich matches M i , anchors, its weight W i , is the following form. 

 i = 

β(log M i + α)

M i 

(3) 

There are two hyperparameters in the Eq. (3) . The β here is to 

ncrease the loss of all positive samples. Without this parameter, 

he total loss of positive samples becomes too small, and nega- 

ive samples will dominate the model training stage. The model 

ay generate too many false-negative predictions without the β . 

he α here is a fixed weight to keep the balance between objects 

atched few anchors. Especially for the object which matches only 

ne anchor, the α ensures their weights to be greater than zero. 

By adding weights to the loss of different objects, we can al- 

eviate the imbalance of positive samples in the anchor match- 

ng process. For negative samples, we take the existing sampling 

ethod(OHEM) to solve the imbalance problem and set their 

eights as 1. It ensures that the loss generated by positive samples 

atches with the one generated by nagetives samples proportion- 

lly. 

In order to show the design purpose of the scale-balanced loss 

irectly, we can transform W i into a simpler form. 

 i = F ( E i , α, β) , E i = 

log M i 

M i 
, M i ∈ N 

∗ (4) 

In the scale-balanced loss, all its positive anchor losses are 

ummed to generate the final loss for each object. As an object G i 

atches M i anchors, the M i ∗ E i can be considered as the approxi- 

ate weight R i of G i in a training batch. 

 i = M i ∗ E i = log M i = −log( T i ) , T i = 

1 
M i 

(5) 

We can see from the above equation that the approximate 

eight of an object in scale-balanced loss is log M i instead of M i . 

he objects matched plenty of anchors cannot dominate the loss 

n the training stage as before. 

When we consider all the anchors match the same object as 

 cluster, every cluster should generate only one prediction. Oth- 

rwise, there will be a redundant false positive prediction. In this 

ondition, for a single anchor in a cluster of size M i , the probabil- 

ty to become the final prediction is 1 
M i

. Referring to the definition 

f information content in information theory, the physical mean- 

ng of R i is the information content in the process of selecting an 

nchor as the final prediction among all the matched anchors. 

It is not the first time to use information content as weights. 

or example, in the AdaBoost SAMME algorithm, in the process of 

sing multiple weak classifiers to construct a strong classifier, the 

eight of the weak classifier also conforms to the definition of in- 

ormation content. 

For a weak classifier C k , its weight W k in AdaBoost SAMME al- 

orithm [54] : 

 k = 

1

2 

log 

(
1 − e k 

e k 

)
+ log (R − 1) (6) 

e k is the error rate of the classifier, and R is the number of cate-

ories( R > 1 ). As C should have a better performance than random
k 

5

lassification, we can transform Eq. (6) into the following form: 

 k = 

1 

2 

(− log (T k )) (7) 

 k = 

e k 
(1 − e k ) A (R − 1) 2 

, e k ∈ 

(
0 , 

R − 1 

R 

)
, T k ∈ 

(
0 , 

1 

R − 1 

)
(8) 

According to the range of e k , we find that T k can be expressed

s a probability, and the weight of C k is proportional to the loga- 

ithm of a probability, which is called information content in infor- 

ation theory. 

Comparing the formulas (5) with (7) , we can find that both of 

hem have the same characteristics and roles of the information 

ontent, and the design of our scale-balanced loss is inspired by 

uch laws. 

Existing loss functions in object detection methods do not take 

nto account the imbalance caused by the anchor matching pro- 

ess. The detection result of multi-scale objects especially small 

bjects may become worse. Our proposed scale-balanced loss al- 

eviates this imbalance by adding anchor matching process infor- 

ation to the loss function. When there are plenty of multi-scale 

bjects in a single image, the scale-balanced loss not only can de- 

ect more small objects but also can produce less false positives. 

.3. Class imbalance with multi-stage detectors 

Existing multi-stage methods mainly focus on the imbalance 

etween the positive samples and negative samples and ignore the 

mbalance among the foreground classes. For those multi-stage de- 

ectors, more negative samples are generated by the anchor match- 

ng strategy during training time and most of them can be filtered 

ut through the hard example mining strategy, etc. It is helpless 

or the matching imbalance mentioned in this paper because the 

ositive samples are kept as many as possible in the hard example 

ining process. The imbalance among positive samples of different 

oreground classes remains unchanged. For multi-stage detectors, 

ur proposed scale-balanced loss has an effect on different stages. 

. Experiment

The detectors chosen for comparison should meet the follow- 

ng 3 requirements: (1) The detector is representative and typical. 

2) The anchor matching imbalance introduced above is obvious in

his detector. (3) It has no additional operation to deal with the

mbalance directly, which is not suitable for a fair comparison. Fol- 

owing these intuitions, we choose four popular detectors as our 

aselines. RefineDet [32] is a two-stage detector. SSD [20] , FSSD 

19] and DSSD [35] are one-stage detectors. All of them use an- 

hors for matching and select similar matching strategies, which

llows us to take a similar approach to them. We conduct experi- 

ents on Pascal VOC [17] and MS COCO [18] datasets, which have 

0 and 80 object categories, respectively. In VOC 2007, a predicted 

ounding box that has IoU with the ground truth higher than 0.5 

s considered as positives. In MS COCO, following the standard 

ays, different thresholds are used to get comprehensive results. 

he metric to evaluate detection performance is the Mean Average 

recision(mAP). For a fair comparison, we follow all the training 

ettings of the original experiments in the baselines [19,20,32] ex- 

ept for the loss function. All of our experiments are based on the 

yTorch 

2 version of model implementation. Code is available at: 

ttps://github.com/1243France/SCB _ Loss 

https://github.com/1243France/SCB_Loss
https://pytorch.org
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Table 1

Ablation study on SSD300 with

PASCAL VOC. Different ways of

adding weighting are performed. In

order to be intuitive, some details

are omitted and only the basic form

is retained.

VOC2007test

1 77.2

1/( logM+1) 77.8

1/ sqrtM 78.1

1/ M 76.8

( log M + 1)/M 78.2
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Table 2

Performance of scale-balanced loss with different detection pipelines on VOC2007

test set. All methods are trained on VOC 07 + 12 trainval.

α β VOC2007test Improvement

SSD300 – – 77.2 –

FSSD300 – – 78.8 –

RefineDet320 – – 80.0 –

SSD300 w/ scb loss 1 3 78.2 1.0

FSSD300 w/ scb loss 1 3 79.5 0.7

RefineDet320 w/ scb loss(ARM) 1 3 80.4 0.4
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.1. Comprehensive results on PASCAL VOC 

.1.1. Ablation study on PASCAL VOC 

VOC has 20 categories. VOC2007 dataset consists of about 5k 

rainval images and 5k test images. VOC2012 dataset includes 

bout 11k trainval images and 11k test images. In our experiment, 

e trained models on the union of the 2007 trainval set and the 

012 trainval set. After applying the scale-balanced loss function, 

ll of them achieve a better mAP. Furthermore, in order to illustrate 

hat our proposed method can especially improve the performance 

f small object detection, we divide all objects in the VOC2007 test 

et into 3 types according to their scales and calculate the recall for 

hem separately as a judgment. 

Different weighting formulations Based on the class imbalance 

roblem proposed in this article, it is intuitive to increase the 

eight of the objects with fewer matches. We try different weight- 

ng strategies to get a more comprehensive analysis. Since we hope 

o focus on the objects with fewer matches, the weights have a 

egative correlation with the number of matches which we rep- 

esent with M. Following this idea, 4 ways are shown in Table 1 ,

n which we select SSD300 to be the baseline because it has a 

ore obvious class imbalance. We can observe from Table 1 that 

he method based on the weight relating to information content 

ives better performance than others. 

Weighting strategies for mutlit-stage detectors The two-stage de- 

ectors will perform the matching process twice. Taking Faster- 

CNN [14] as an example, all through the RPN process matches the 

arget with the anchor and the following detectors make matching 

gain. The variation of information content generated by such a 

rocess is difficult to estimate. It may make it easier for the model 

o fit the target but harder for us to understand. In our baseline 

efineDet320 [32] , the ARM and ODM take a similar strategy to 

efine their results. We can take a separate weighting approach to 

he two parts. After applying scale-balanced loss on ARM, the re- 

ults are improved from 80.0 to 80.4 mAP. But when the ODM is 

pplied with the same strategy, the result drops to 78.0, which is 

uch worse than the original one. The matching process in ARM 

s different from the one in ODM. It causes that the scale-balanced 

oss cannot work well in ODM like in others. 

.1.2. mAP on PASCAL VOC 

According to the ablation study in Section 4.1 , we select 

SD30 0, FSSD30 0, and RefineDet320 as our baselines. The weight- 

ng method is determined as proposed in Section 3 . We use VOC 

007 trainval and VOC2012 trainval to train models following the 

riginal implements. We retain all settings of the original imple- 

entations except for the loss function. Our results on VOC2007 

est set are shown in Table 2 . The scale-balanced loss can im- 

rove mAP by about 1.0 points compared to our baselines, which 

s shown in bold font. 
6

.1.3. Recall rates of different sized objects on PASCAL VOC 

As MS COCO did, we divide the VOC2007 test set into 3 types, 

mall, medium, and large according to their scales. The average 

recision and average recall are used in COCO. However, due to 

he limited number of small objects which is 516 in PASCAL VOC, 

uch evaluation criteria are prone to fluctuations. In order to obtain 

 convincing evaluation result, we make a summary of the recall 

ate for models performing at inference time. By using different 

onfidence thresholds such as 0.01, 0.1, and 0.3, most boxes can be 

ltered out. Then the NMS is applied with a Jaccard overlap of 0.45 

er class and keeps the top 200 detections per image. The bound- 

ng box which have a 0.5 or higher IoU with any ground truth is 

onsidered as positives. Tables 3 and 4 show the results of this 

art. The improvements are shown in bold font. We can observe 

hat the scale-balanced loss has a significant improvement on SSD, 

specially for small objects. The recall of small objects makes a big 

ump on all three confidence thresholds. When taking 0.3 as the 

onfidence threshold, the recall rate of SSD300 on small objects 

s improved from 17.44% to 42.83%. Our proposed scale-balanced 

oss makes the original model from almost useless to available on 

mall objects. The results on FSSD [19] also prove that our pro- 

osed method can effectively im prove the ability to detect small 

bjects. 

.2. Comprehensive results on MS COCO 

.2.1. AP and AR on MS COCO 

MSCOCO dataset has 80 object categories. We use the COCO 

hallenge 2017 data split to prepare our dataset. The training is 

ased on the trainval35k and we test on test-dev set about 20k 

mages. The test results are shown in Table 5 . The original SSD300 

ets 25.1% on the test set. After applying the scale-balanced loss, 

t achieves 26.6% AP. It gets a more obvious improvement than 

n Pascal VOC. The chief reason for this result is that COCO has 

ore small objects. The advanced evaluation further verifies our 

houghts. The COCO dataset divides objects into 3 types accord- 

ng to their sizes. After applying our proposed scale-balanced loss, 

he performance on small objects gets much better than baselines. 

here is also a slight decline in the performance in detecting large 

bjects. Experiments on FSSD and DSSD have similar conclusions 

ith SSD, which verifies the effectiveness of the scale-balanced 

oss. Due to the imbalance of the anchor matching strategy, these 

odels do not pay enough attention to small objects in the exist- 

ng methods. 

.2.2. Recall rates of different sized objects on MS COCO 

Although there are special evaluations of small objects in COCO, 

e create a summary of the recall rate for models performing at 

nference time for a fair comparison. All the models are trained 

ith the COCO trainval35k dataset. As we do on PASCAL VOC, fil- 

ering with different thresholds and NMS are performed before 

alculating recall rates. The results in Tables 6–9 prove that our 

roposed method works well for small objects too. Significant im- 

rovements can be seen when we use a higher threshold. It is 

orth noting that using larger input images, models do not achieve 
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Table 3

The recall rate of SSD300 on VOC 2007 test set. The results which confidence are lower than

the threshold is discarded for a better comparison.

Method & threshold recall_small recall_medium recall_large

SSD300, 0.01 73.06(377/516) 92.29(3519/3813) 96.57(7439/7703)

SSD300 w/ scb loss, 0.01 80.03(413/516) 92.76(3537/3813) 96.25(7414/7703)

SSD300, 0.1 43.02(222/516) 78.94(3010/3813) 91.89(7078/7703)

SSD300 w/ scb loss, 0.1 61.43(317/516) 83.11(3169/3813) 91.91(7080/7703)

SSD300, 0.3 17.44(90/516) 62.65(2389/3813) 87.90(6771/7703)

SSD300 w/ scb loss, 0.3 42.83(221/516) 69.81(2662/3813) 88.21(6795/7703)

Table 4

The recall rate of FSSD300 on VOC 2007 test set.

Method & threshold recall_small recall_medium recall_large

FSSD300, 0.01 69.57(359/516) 89.17(3400/3813) 95.55(7360/7703)

FSSD300 w/ scb loss, 0.01 78.88(407/516) 90.24(3441/3813) 95.82(7381/7703)

FSSD300, 0.1 41.08(212/516) 77.39(2951/3813) 90.83(6997/7703)

FSSD300 w/ scb loss, 0.1 60.27(311/516) 79.67(3038/3813) 91.30(7033/7703)

FSSD300, 0.3 18.99(98/516) 67.26(2565/3813) 87.74(6759/7703)

FSSD300 w/ scb loss, 0.3 40.69(210/516) 71.02(2708/3813) 88.20(6794/7703)

Table 5

Results on MS COCO test-dev 2015.

AP AP 50 AP 75 AP S AP M AP L AR 1 AR 10 AR 100 AR S AR M AR L

SSD300 25.1 43.1 25.8 6.6 25.9 41.4 23.7 35.1 37.2 11.2 40.4 58.4

SSD300 w/ scb loss 26.6 45.9 27.5 8.3 28.1 40.8 24.4 36.3 38.1 13.7 41.5 56.9

FSSD300 27.1 47.7 27.8 8.7 29.2 42.2 24.6 37.4 40.0 15.9 44.2 58.6

FSSD300 w/ scb loss 29.3 50.5 30.1 11.5 31.1 42.5 25.9 39.5 41.8 19.2 45.9 57.9

DSSD321 28.0 46.1 29.2 7.4 28.1 47.6 25.5 37.1 39.4 12.7 42.0 62.6

DSSD321 w/ scb loss 29.5 49.1 31.2 10.5 30.0 47.6 26.3 39.7 41.0 16.2 43.1 61.9

SSD512 28.8 48.5 30.3 10.9 31.8 43.5 26.1 39.5 42.0 16.5 46.6 60.8

SSD512 w/ scb loss 30.4 50.6 32.0 13.0 34.5 42.3 26.6 40.6 42.6 17.7 48.6 58.6

FSSD512 31.8 52.8 33.5 14.2 35.1 45.0 27.6 42.4 45.0 22.3 49.9 62.0

FSSD512 w/ scb loss 33.3 56.4 34.9 17.9 35.2 43.8 28.2 44.0 46.6 27.7 49.7 59.6

DSSD513 33.2 53.3 35.2 13.0 35.4 51.1 28.9 43.5 46.2 21.8 49.1 66.4

DSSD513 w/ scb loss 34.4 57.0 36.1 16.5 35.7 49.9 29.4 44.5 47.3 26.6 49.2 64.7

Table 6

The recall rate of SSD300 on COCO minival5k.

Method & threshold recall_small recall_medium recall_large

SSD300, 0.01 38.93 83.4 95.2

SSD300 w/ scb loss, 0.01 46.42 84.66 95.17

SSD300, 0.1 27.32 71.75 88.9

SSD300 w/ scb loss, 0.1 41.39 79.71 91.09

SSD300, 0.3 8.4 45.27 78.34

SSD300 w/ scb loss, 0.3 22.52 58.91 81.5

Table 7

The recall rate of SSD512 on COCO minival5k.

Method & threshold recall_small recall_medium recall_large

SSD512, 0.01 47.3 88.47 95.55

SSD512 w/ scb loss, 0.01 56.25 89.17 95.36

SSD512, 0.1 34.13 79.06 90.36

SSD512 w/ scb loss, 0.1 47.5 82.64 90.35

SSD512, 0.3 11.65 54.54 81.3

SSD512 w/ scb loss, 0.3 22.68 61.12 79.51

Table 8

The recall rate of FSSD300 on COCO minival5k.

Method & threshold recall_small recall_medium recall_large

FSSD300, 0.01 46.52 85.85 94.59

FSSD300 w/ scb loss, 0.01 51.69 86.67 95.02

FSSD300, 0.1 35.26 75.26 88.05

FSSD300 w/ scb loss, 0.1 47.47 81.36 90.44

FSSD300, 0.3 14.14 52.42 78.42

FSSD300 w/ scb loss, 0.3 30.95 65.03 82.07

Table 9

The recall rate of FSSD512 on COCO minival5k.

Method & threshold recall_small recall_medium recall_large

FSSD512, 0.01 62.05 88.22 95.36

FSSD512 w/ scb loss, 0.01 66.20 88.76 95.31

FSSD512, 0.1 49.55 79.01 90.49

FSSD512 w/ scb loss, 0.1 58.16 81.6 89.82

FSSD512, 0.3 23.44 58.18 82.12

FSSD512 w/ scb loss, 0.3 35.77 65.1 81.84
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etter results for large objects. It can be considered that in the case 

here the localization information is not required to be high, in- 

reasing the input size has little effect on detecting large objects. 

nother difference from results on VOC is that the recall rate of 

SSD is higher than that of SSD. Due to the higher complexity of 

OCO, FSSD can produce more reasonable features and use them 

o generate better results. 

.2.3. Visualization of performance improvement on MS COCO 

Our proposed method performs better on small objects. For ex- 

mple, as illustrated in Fig. 4 column 1, the original SSD model 

annot detect the bird on the bench but it detects successfully with 

he scale-balanced loss. In addition, as shown in Fig. 4 column 1 

o column 4, SSD512 with scale-balanced loss detects small objects 

ore accurately. 

For FSSD512, our proposed scale-balanced loss also works well. 

s shown in Fig. 5 , the performance of detecting small objects has 

een significantly improved. The optimized model can not only de- 
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Fig. 4. SSD512 vs SSD512 w/ scb loss. Both models are trained with COCO trainval35k dataset. The top row contains the results from the conventional SSD512 and the bottom

row is from SSD512 with scale-balanced loss. Bounding boxes with score of 0.3 or higher is drawn. Better viewed on screen.

Fig. 5. FSSD512 vs FSSD512 w/ scb loss. The top row contains the results from the conventional FSSD512 and the bottom row is from FSSD512 with scale-balanced loss.

Settings in the inference time are same as in SSD512 above.
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ect more small objects but also reduce false positives. This is sig- 

ificant for small object detection in practice. 

.3. Speed 

The only part of the model we modified is the loss function. 

n the training process, the model needs to calculate the anchor 

atching times for each object. It is negligible when compared to 

he computation cost of the network. In the inference process, it 

oes not cost any additional time in the whole process. Compared 

o the original SSD300, our proposed method has the same FPS 3 in 

ur experiment(about 50 FPS with two 1080ti). Actually, the scale- 

alanced loss tries to make up the difference between the distri- 

ution of generated anchors and training data. It will not affect the 

peed of the original models. 

. Conclusion and future work

In this paper, we proposed the scale-balanced loss, which han- 

les the class imbalance during the matching process in exist- 

ng detection pipelines. As we all know, objects with small scales 
3 Frames per second.

c

i

8

re harder to be detected correctly than others. Moreover, in ex- 

sting detection pipelines, the unbalanced object matching strate- 

ies make them more difficult to be noticed. The scale-balanced 

oss manages to make each object’s proportion in the loss func- 

ion proportional to the information content generated during the 

atching process. Experiments on PASCAL VOC and MS COCO have 

roved that several popular methods make convincing improve- 

ents after applying the scale-balanced loss. The recall rates of 

mall and medium objects get up to 15% improvements in both 

ASCAL VOC and MS COCO datasets, and it adds no computational 

ost in inference time for original models, which is meaningful to 

pply the proposed loss in practice. 

In the future, some more complex models can be integrated 

ith the scale-balanced loss for improvements, and it is worth 

tudying a more suitable form of loss for multi-stage detectors. The 

erformance of it can also be expected in other areas, such as face 

etection, pedestrian detection, and object tracking. 
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