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Object detection is an important field in computer vision. Nevertheless, a research area that has so far not
received much attention is the study into the effectiveness of anchor matching strategy and imbalance in
anchor-based object detection, in particular small object detection. It is clear that the objects with larger
sizes tend to match more anchors than smaller ones. This matching imbalance may result in poor perfor-
mance in detecting small objects. It can be alleviated by paying more attention to the objects that match
with fewer anchors. We propose an innovative flexible loss function for object detection, which is com-
patible with popular anchor-based detection methods. The proposed method, called the scale-balanced
loss, does not add any extra computational cost to the original pipelines. By re-weighting strategy, the
proposed method significantly improves the accuracy of multi-scale object detection, especially for small
objects. Comprehensive experiments indicate that the scale-balanced loss achieved excellent generaliza-
tion performance when separately applied to some popular detection methods. The scale-balanced loss
attained up to 15% improvements on recall rates of small and medium objects in both the PASCAL VOC
and MS COCO dataset. It is also beneficial to the AP result on MS COCO with an improvement of more

than 1.5%.

1. Introduction

Object detection plays an important role in many applica-
tions of computer vision, such as face recognition [1], person re-
identification [2], autonomous driving [3], and medical image anal-
ysis [4], etc. In recent years, a lot of detectors based on deep learn-
ing are proposed to improve the accuracy and efficiency of object
detection models [5-9].

Object detection aims to identify all objects of interest in the
image data. Due to the different sizes, shapes, and locations of ob-
jects, object detection is more challenging than image classifica-
tion [10-13]. According to the steps of generating results, many
popular detectors can be generally divided into two categories:
the multi-stage methods and the one-stage methods. Multi-stage
methods [14-16] first generate candidate prior boxes and then re-
fine them in the following part. This strategy not only can alleviate
the imbalance between background and foreground, but also give
more accurate localization results. Many multi-stage methods have
achieved the highest accuracy on some benchmarks, such as PAS-

CAL VOC [17] and MS COCO [18], but they usually suffer from the
high computational cost. In order to reduce the computational cost,
some one-stage methods have been proposed [19,20]. They inte-
grate the classification and localization results together in a more
efficient pipeline, which is more feasible for real-time image anal-
ysis.

No matter which kind of pipelines for detection is used, most
existing methods adopt a set of prior boxes called &anchorsg in
their models to match the ground truth. In Faster-RCNN [14], pos-
itive samples refer to the anchors which have an IoU' overlap
higher than 0.7 with any ground truth box while those have no
IoU higher than 0.3 are considered as negative ones. This matching
strategy determines which anchors are responsible for predicting
the ground truth. Some slightly different strategies are applied in
lots of other pipelines [21-24] to play a similar role. Due to the
nonuniform distribution of anchors, different objects can match
with different numbers of anchors. The objects with more matched
anchors might be dominant in the optimization of loss. As shown
in Fig. 1, for different objects in VOC O7train + 12trainval set, there
exists an extreme imbalance of matching times with anchors in
SSD300 settings (with data argument in SSD300). It is clear that
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Fig. 1. The matching imbalance during anchors matching process. Taking SSD300 on VOC dataset as an example. The first bar with index 0 indicates the number of objects
which match no anchor. The bar with index 1 indicates the number of objects which match one anchor, and so on. We can see that in the existing anchor matching strategy,
nearly 9000 objects can only match one anchor, and most of them are small objects. On the other hand, there is about one third of objects can match more than 10 anchors.
Statistics show that the existing anchor matching strategies is unbalanced, which is related to the size of objects.

objects with larger sizes tend to match more anchors than smaller
ones. This matching imbalance may result in poor performance in
detecting small objects.

Some existing methods focus on the general characteristics of
small objects. However, the matching imbalance mentioned above
has not been paid enough attention. The characteristics include
less information of their own, larger probabilities to be confused
with background and higher precision requirements for localiza-
tion [25]. But without the balanced anchor matching results, there
still remains a giant gap between large objects and small ones.
It causes such a serious conflict and competition that compared
with large ones, small objects are so difficult to be detected, and
they require special treatment in existing detection pipelines. In
this circumstance, the information of small objects cannot be effi-
ciently explored, and the image background can also easily over-
whelm them.

In order to obtain a more reasonable anchor matching result, it
is a natural way to improve the existing anchor matching strategies
directly [22,26,27]. Different methods have been tried, but still can-
not make a breakthrough. YOLO9000 [28] runs k-means clustering
on the training set to automatically find better anchors. FaceBoxes
[29] uses more small anchors to match faces, which improves the
recall rate of small faces. MetaAnchor [30] makes use of a dynam-
ical prior boxes generating method for robust bounding box dis-
tributions instead of manual selection. Although these data-based
improved methods generate better anchors, the imbalance of an-
chor matching results remains as great as ever. Besides, the grow-
ing computational cost also limits the application of these meth-
ods.

Except for improving the original matching and generating
strategies, designing unique network architectures is also an al-
ternative method for small obejct detection. RFBNet [31] uses RFB
blocks to focus on small anchors which are most affected by the
unbalanced matching. Refinedet [32] and FPN [33]| make top-down
architectures and alleviate the imbalance from different perspec-
tives.

Instead of making efforts on the network architecture, the loss
function and weighting strategy [27,34] can directly alleviate the
anchor matching imbalance. In this paper, we designed a new loss
function called scale-balanced loss to replace the counterpart in
previous approaches for maintaining the matching balance. The
scale-balanced loss puts a weighted operation on the original one,
which can reduce the proportion of objects with more matching
times and enlarge the weight of objects with fewer matches. It is
a compensation strategy for different sizes of objects. Experiments
show that our proposed method achieved excellent generalization
performance. It makes significant improvements on four popular
models, SSD [20], FSSD [19], DSSD [35], and RefineDet [32]. We
also explored the effects of different weighting forms to make a
comparison. At last, we showed the specific impact on different
sizes of objects to prove the effectiveness of the scale-balanced loss
in detail.

The main contributions of this work are summarized as follows.

» We pointed out an imbalance among objects of different scales
in existing anchor matching strategies, which may lead to
poor performance in detecting multi-scale objects, especially
for small objects. We found that this imbalance can be alle-
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viated by paying more attention to the objects that matched
fewer anchors in the loss function.

* We proposed an innovative flexible loss function called scale-
balanced loss for object detection tasks to alleviate the match-
ing imbalance. The proposed scale-balanced loss along with
prevalent anchor-based methods achieved excellent generaliza-
tion performance as compared to other prevalent models with-
out the proposed loss.

o We explored the impact of scale-balanced loss on detecting
objects with different scales. The recall rates for small and
medium objects attained up to 15% improvements on both PAS-
CAL VOC and MS COCO datasets.

2. Related work

Despite some major improvements in the object detection, de-
tecting multi-scale objects, especially small objects is still a chal-
lenge for existing detectors. This is mainly due to the peculiarities
of small objects including less information about themselves, larger
probabilities to confuse with the background, higher requirements
for localization [25], etc. For the recognition task, the 32 x 32 pixel
is the minimal size for color images within the allowable range.
Torralba et al. [36] In detection benchmark COCO, small objects
refer to those occupying areas less than or equal to 32 x 32 pix-
els. For these small objects, researchers have made much effort in
this area, which can be summarized from four aspects: (i) build-
ing detectors for images of different scales; (ii) using shallow net-
works directly for detection; (iii) combining context information
with coarse features; (iv) getting super-resolution with GAN.

2.1. Building detectors for images of different scales

Considering that images have objects of different scales, some
simple but effective methods are introduced to construct detec-
tors for images of different sizes [37-39]. In paper [40], an im-
age pyramid is designed for input, and results from different scales
are integrated for output. It is effective for face targets, especially
small face targets which are easier to detect in large-scale images.
YOLO9000 [28] makes a multi-scale training strategy that allows
different sizes of input as a data argument method. However, the
applications of these approaches are still limited due to their poor
ability to extract complex features. In the general object detection
tasks, the characteristics of objects and their relationships are very
complex, and even a small change can produce a huge difference.
Therefore, simple scaling is unable to obtain suitable feature rep-
resentation for detection.

2.2. Using shallow networks directly for detection

For convolutional neural networks, nodes have large receptive
fields in the deep feature map of the network. It is beneficial to
detecting large objects while leading to more information loss for
detecting small objects. The nodes in shallow layers have smaller
corresponding receptive fields, which is more suitable for detect-
ing small objects [41]. SSD [20] and MSCNN [39] make predic-
tions with feature maps in different layers separately, and then in-
tegrate all prediction results. Hypernet [42] takes a different way
that multi-layer feature maps are resized to the same scale by up-
sampling or downsampling for detection. This method is widely
used in the following researches [12,19,20,43]. Since shallow net-
works have a weak expression ability and are not enough to cope
with complex scenes, adding extra features is one way to improve
performance.

2.3. Combining context information with coarse features

Since the small object itself has fewer features, it is an effective
means to use context information to assist judgment [24,44,45].
Experimental results show that for face detection, context informa-
tion around the face can significantly improve the accuracy of clas-
sification and positioning by human observers, especially for small
faces [40,43]. FPN [33] and RefineDet [32] build feature pyramids
by a top-down module [46], which can generate more appropri-
ate feature representation with context information than skip con-
nection. DSSD [35] makes deconvolutions on coarse features and
integrates them with fine-grained features for predictions. MDFN
[47] makes use of the relationships of individual objects and local
contexts. Besides the contextual information around objects, the
relationship between multiple objects is also considered critical for
judgment. Based on the proposal regions, RNN can also integrate
the scene information and object information to adjust the predic-
tion results [48,49]. Such approaches make full use of context in-
formation and do not depend on CNN'’s receptive field, which com-
pensates for the defects of the fully convolutional network to some
extent.

2.4. Getting super-resolution with GAN

As proposed by PGAN [50], it is a novel way to use GAN to in-
crease the resolution of small objects for detection. The generator
learns to enhance the limited representations of small objects to
super-resolved ones that are similar to real large objects to com-
pete with a discriminator. This method is also adopted by Bai et al.
[51] for the face detection task.

3. Our proposed method

In this section, we introduce our proposed method in detail.
First, we show the matching imbalance in existing anchor match-
ing strategies from different aspects. Second, a weighted loss func-
tion called scale-balanced loss is proposed for solving the imbal-
ance. At last, we evaluate the impact of this imbalance on different
pipelines.

3.1. The imbalance during anchors matching process

Currently, most of the state-of-the-art detection systems em-
ploy anchors in their methods, which play a key role in the head
of pipelines. The anchors are designed as a set of default reference
boxes with various sizes and aspect ratios to match the ground
truth for a smaller searching space. Since the anchor gives proper
prior knowledge for the network to determine which features
are used to predict objects, the anchor-based methods far out-
perform anchor-free ones. As a well-known anchor-based method,
RPN [14] makes use of anchors at each sliding window location
for classification and localization. The anchor which has an obvi-
ous overlap with any ground truth will be regarded as a positive
sample. Otherwise, it is ignored or considered as a negative one.
However, this strategy is unfair for small objects as they naturally
have smaller overlap with anchors. To make them not ignored, the
anchors which have the highest IoU with small objects are also re-
garded as positive samples [14,20]. But it brings another problem
that small objects may match fewer anchors than large objects. The
matching process is shown in Fig. 2. The player matches more an-
chors than the ball. Since the matching strategy is only sensitive
to objects’ sizes, we can assume that the large objects match more
anchors than small ones in most cases.

To give a fair comparison, we resize all images in the VOC2007
trainval set to scale 300. According to their size, these objects are
divided into three types, just like what COCO [18] does on them. As
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Fig. 2. The matching process performed on multiple feature maps is shown. The solid line boxes represent the objects and the dotted line boxes represent the matched
anchors. The player can match more anchors in deep networks than the ball. It causes that the information of the ball cannot be paid enough attention to when the model

tries to detect it.
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Fig. 3. The summary of matching times for objects of different sizes in SSD [20] is
shown. The object in the blue part can only match anchors 1-5 times. For small
objects, most of them belong to the blue part. When compared with medium and
large objects, this unreasonable proportion does harm to the performance of detec-
tion. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

is shown in Fig. 3, after the matching process in SSD [20], most of
the small objects can only match anchors 0-5 times and about 1/8
of large objects match less than 6 anchors. It is not in line with the
original intention of designs for anchor matching strategies, which
should give fair treatment on different sizes of objects.

As we all know, the small object is the hardest part of object
detection tasks, and the matching imbalance mentioned above ag-
gravates this problem. To alleviate this imbalance, a balanced an-
chor matching strategy is needed. However, due to the inflexible
fully convolutional network framework in the existing detection
pipelines, it seems to be difficult to design a proper strategy that
can be applied to different designs. Our goal is to find out a prac-
tical method that is compatible with most existing anchor-based
methods. Inspired by the focal loss [27] which is proposed to alle-
viate the extreme imbalance between foreground and background
classes during training, we choose the loss function to make a
breakthrough.

The focal loss is a dynamical scaled cross entropy loss and
mainly relies on confidence, where the scaling factor decays to
zero as confidence of the correct class increases. It does not work
for anchor matching imbalance, because the imbalance among
foreground classes is not so obvious compared to the imbalance
between foreground and background [52]. So, the scaling factor in
the focal loss has little difference in foreground classes and it can-

not maintain the balance of anchor matching. Besides, the unbal-
anced anchor matching strategy leads to more outliers for large
objects. In the focal loss, the confidence of outliers is small and
will be given larger weights, which may reduce the stability of the
model [53]. So, the confidence independent weighting method as
this paper proposed is a more reliable solution.

3.2. Scale-balanced loss

For objects matching more than one anchor, all these anchors
are expected to predict the same object correctly in the training
stage. As all these anchors are treated equally by the training strat-
egy in existing methods, the objects which match few anchors are
more likely to be ignored. According to the statistics in Fig. 3, small
objects match fewer anchors in existing pipelines. It makes small
objects only have a slight impact on loss. Due to the key position
of loss on deep learning, small objects have little effect on network
parameters. As a result, the network cannot effectively extract the
features of small objects.

If there is a compensation strategy for the anchor matching pro-
cess, the impact of small objects on loss could be enhanced. In
this condition, the network can extract features which are more
meaningful for detecting small objects. At the same time, since the
feature extraction of large objects is not a hard task, its detection
accuracy will not decrease. The overall detection accuracy can be
significantly improved. Based on the influence on the probabilities
of successfully detecting objects, we design the scale-balanced loss
to improve the previous training strategy. The proposed method
re-weight the objects in the loss function according to the impact
of the anchor matching process on the probability of detection.

Supposing that a ground truth G;, it matches M; anchors for a
single input, the original total loss can be formulated as

N M;

loss = » > " L(G;. a2bj(anchor;)) (1)

i=1 j=1

The a2b represents the process of transforming an anchor into
a bounding box based on the result of models, and L is the original
loss function, which is designed to evaluate the difference between
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the ground truth and the anchor. The total loss is the sum of all the
a2b matched anchor loss.

To reduce the negative effects caused by the anchor matching
strategy on the prediction of objects, especially for multi-scale ob-
jects, we designed our scale-balanced loss as the following form.

losss = 3N W,-Z']‘.il L(G;, a2bj(anchor;)) (2)

The difference between scale-balanced Loss and the original
loss is that a weight related to the number of matched anchors
is added for each object. W; is used to balance the object predic-
tion probability change of the anchor matching process, and ob-
jects that match more anchors have smaller W;. For an object G;,
which matches M;, anchors, its weight W;, is the following form.

. B(logM; + )

There are two hyperparameters in the Eq. (3). The 8 here is to
increase the loss of all positive samples. Without this parameter,
the total loss of positive samples becomes too small, and nega-
tive samples will dominate the model training stage. The model
may generate too many false-negative predictions without the S.
The « here is a fixed weight to keep the balance between objects
matched few anchors. Especially for the object which matches only
one anchor, the o ensures their weights to be greater than zero.

By adding weights to the loss of different objects, we can al-
leviate the imbalance of positive samples in the anchor match-
ing process. For negative samples, we take the existing sampling
method(OHEM) to solve the imbalance problem and set their
weights as 1. It ensures that the loss generated by positive samples
matches with the one generated by nagetives samples proportion-
ally.

In order to show the design purpose of the scale-balanced loss
directly, we can transform W; into a simpler form.

VVl-:F(E,',Ol,,B),EiZ lolgwl:v/l",MiEN* (4)

(3)

In the scale-balanced loss, all its positive anchor losses are
summed to generate the final loss for each object. As an object G;
matches M; anchors, the M; = E; can be considered as the approxi-
mate weight R; of G; in a training batch.

Ri = M; + E; = logM; = —log(T)), T; = g (5)

We can see from the above equation that the approximate
weight of an object in scale-balanced loss is logM; instead of M;.
The objects matched plenty of anchors cannot dominate the loss
in the training stage as before.

When we consider all the anchors match the same object as
a cluster, every cluster should generate only one prediction. Oth-
erwise, there will be a redundant false positive prediction. In this
condition, for a single anchor in a cluster of size M;, the probabil-
ity to become the final prediction is ﬁx Referring to the definition
of information content in information theory, the physical mean-
ing of R; is the information content in the process of selecting an
anchor as the final prediction among all the matched anchors.

It is not the first time to use information content as weights.
For example, in the AdaBoost SAMME algorithm, in the process of
using multiple weak classifiers to construct a strong classifier, the
weight of the weak classifier also conforms to the definition of in-
formation content.

For a weak classifier Cy, its weight W), in AdaBoost SAMME al-
gorithm [54]:

1 1-e
‘/Vk=§10g< g

€k

)+ng_U (6)

ey is the error rate of the classifier, and R is the number of cate-
gories(R > 1). As C;, should have a better performance than random

classification, we can transform Eq. (6) into the following form:

Wi = 5 (~log(T,)) )

~ e R—1 ( 1)
n_qummfnrqe@’R )neom—1 ®)

According to the range of e,, we find that T, can be expressed
as a probability, and the weight of C, is proportional to the loga-
rithm of a probability, which is called information content in infor-
mation theory.

Comparing the formulas (5) with (7), we can find that both of
them have the same characteristics and roles of the information
content, and the design of our scale-balanced loss is inspired by
such laws.

Existing loss functions in object detection methods do not take
into account the imbalance caused by the anchor matching pro-
cess. The detection result of multi-scale objects especially small
objects may become worse. Our proposed scale-balanced loss al-
leviates this imbalance by adding anchor matching process infor-
mation to the loss function. When there are plenty of multi-scale
objects in a single image, the scale-balanced loss not only can de-
tect more small objects but also can produce less false positives.

3.3. Class imbalance with multi-stage detectors

Existing multi-stage methods mainly focus on the imbalance
between the positive samples and negative samples and ignore the
imbalance among the foreground classes. For those multi-stage de-
tectors, more negative samples are generated by the anchor match-
ing strategy during training time and most of them can be filtered
out through the hard example mining strategy, etc. It is helpless
for the matching imbalance mentioned in this paper because the
positive samples are kept as many as possible in the hard example
mining process. The imbalance among positive samples of different
foreground classes remains unchanged. For multi-stage detectors,
our proposed scale-balanced loss has an effect on different stages.

4. Experiment

The detectors chosen for comparison should meet the follow-
ing 3 requirements: (1) The detector is representative and typical.
(2) The anchor matching imbalance introduced above is obvious in
this detector. (3) It has no additional operation to deal with the
imbalance directly, which is not suitable for a fair comparison. Fol-
lowing these intuitions, we choose four popular detectors as our
baselines. RefineDet [32] is a two-stage detector. SSD [20], FSSD
[19] and DSSD [35] are one-stage detectors. All of them use an-
chors for matching and select similar matching strategies, which
allows us to take a similar approach to them. We conduct experi-
ments on Pascal VOC [17] and MS COCO [18] datasets, which have
20 and 80 object categories, respectively. In VOC 2007, a predicted
bounding box that has IoU with the ground truth higher than 0.5
is considered as positives. In MS COCO, following the standard
ways, different thresholds are used to get comprehensive results.
The metric to evaluate detection performance is the Mean Average
Precision(mAP). For a fair comparison, we follow all the training
settings of the original experiments in the baselines [19,20,32] ex-
cept for the loss function. All of our experiments are based on the
PyTorch? version of model implementation. Code is available at:
https://github.com/1243France/SCB_Loss

2 https://pytorch.org
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Table 1

Ablation study on SSD300 with
PASCAL VOC. Different ways of
adding weighting are performed. In
order to be intuitive, some details
are omitted and only the basic form

is retained.
VOC2007test
1 77.2
1/(logM+1) 77.8
1/sqrtM 78.1
1/M 76.8

(logM + 1))M  78.2

4.1. Comprehensive results on PASCAL VOC

4.1.1. Ablation study on PASCAL VOC

VOC has 20 categories. VOC2007 dataset consists of about 5k
trainval images and 5k test images. VOC2012 dataset includes
about 11k trainval images and 11k test images. In our experiment,
we trained models on the union of the 2007 trainval set and the
2012 trainval set. After applying the scale-balanced loss function,
all of them achieve a better mAP. Furthermore, in order to illustrate
that our proposed method can especially improve the performance
of small object detection, we divide all objects in the VOC2007 test
set into 3 types according to their scales and calculate the recall for
them separately as a judgment.

Different weighting formulations Based on the class imbalance
problem proposed in this article, it is intuitive to increase the
weight of the objects with fewer matches. We try different weight-
ing strategies to get a more comprehensive analysis. Since we hope
to focus on the objects with fewer matches, the weights have a
negative correlation with the number of matches which we rep-
resent with M. Following this idea, 4 ways are shown in Table 1,
in which we select SSD300 to be the baseline because it has a
more obvious class imbalance. We can observe from Table 1 that
the method based on the weight relating to information content
gives better performance than others.

Weighting strategies for mutlit-stage detectors The two-stage de-
tectors will perform the matching process twice. Taking Faster-
RCNN [14] as an example, all through the RPN process matches the
target with the anchor and the following detectors make matching
again. The variation of information content generated by such a
process is difficult to estimate. It may make it easier for the model
to fit the target but harder for us to understand. In our baseline
RefineDet320 [32], the ARM and ODM take a similar strategy to
refine their results. We can take a separate weighting approach to
the two parts. After applying scale-balanced loss on ARM, the re-
sults are improved from 80.0 to 80.4 mAP. But when the ODM is
applied with the same strategy, the result drops to 78.0, which is
much worse than the original one. The matching process in ARM
is different from the one in ODM. It causes that the scale-balanced
loss cannot work well in ODM like in others.

4.1.2. mAP on PASCAL VOC

According to the ablation study in Section 4.1, we select
SSD300, FSSD300, and RefineDet320 as our baselines. The weight-
ing method is determined as proposed in Section 3. We use VOC
2007 trainval and VOC2012 trainval to train models following the
original implements. We retain all settings of the original imple-
mentations except for the loss function. Our results on VOC2007
test set are shown in Table 2. The scale-balanced loss can im-
prove mAP by about 1.0 points compared to our baselines, which
is shown in bold font.

Table 2
Performance of scale-balanced loss with different detection pipelines on VOC2007
test set. All methods are trained on VOC 07 + 12 trainval.

o« B VOC2007test  Improvement
SSD300 - - 77.2 -
FSSD300 - - 78.8 -
RefineDet320 - - 80.0 -
SSD300 w/ scb loss 1 3 78.2 1.0
FSSD300 w/ scb loss 1 3 79.5 0.7
RefineDet320 w/ scb loss(ARM) 1 3 80.4 04

4.1.3. Recall rates of different sized objects on PASCAL VOC

As MS COCO did, we divide the VOC2007 test set into 3 types,
small, medium, and large according to their scales. The average
precision and average recall are used in COCO. However, due to
the limited number of small objects which is 516 in PASCAL VOC,
such evaluation criteria are prone to fluctuations. In order to obtain
a convincing evaluation result, we make a summary of the recall
rate for models performing at inference time. By using different
confidence thresholds such as 0.01, 0.1, and 0.3, most boxes can be
filtered out. Then the NMS is applied with a Jaccard overlap of 0.45
per class and keeps the top 200 detections per image. The bound-
ing box which have a 0.5 or higher IoU with any ground truth is
considered as positives. Tables 3 and 4 show the results of this
part. The improvements are shown in bold font. We can observe
that the scale-balanced loss has a significant improvement on SSD,
especially for small objects. The recall of small objects makes a big
jump on all three confidence thresholds. When taking 0.3 as the
confidence threshold, the recall rate of SSD300 on small objects
is improved from 17.44% to 42.83%. Our proposed scale-balanced
loss makes the original model from almost useless to available on
small objects. The results on FSSD [19] also prove that our pro-
posed method can effectively improve the ability to detect small
objects.

4.2. Comprehensive results on MS COCO

4.2.1. AP and AR on MS COCO

MSCOCO dataset has 80 object categories. We use the COCO
Challenge 2017 data split to prepare our dataset. The training is
based on the trainval35k and we test on test-dev set about 20k
images. The test results are shown in Table 5. The original SSD300
gets 25.1% on the test set. After applying the scale-balanced loss,
it achieves 26.6% AP. It gets a more obvious improvement than
on Pascal VOC. The chief reason for this result is that COCO has
more small objects. The advanced evaluation further verifies our
thoughts. The COCO dataset divides objects into 3 types accord-
ing to their sizes. After applying our proposed scale-balanced loss,
the performance on small objects gets much better than baselines.
There is also a slight decline in the performance in detecting large
objects. Experiments on FSSD and DSSD have similar conclusions
with SSD, which verifies the effectiveness of the scale-balanced
loss. Due to the imbalance of the anchor matching strategy, these
models do not pay enough attention to small objects in the exist-
ing methods.

4.2.2. Recall rates of different sized objects on MS COCO

Although there are special evaluations of small objects in COCO,
we create a summary of the recall rate for models performing at
inference time for a fair comparison. All the models are trained
with the COCO trainval35k dataset. As we do on PASCAL VOC, fil-
tering with different thresholds and NMS are performed before
calculating recall rates. The results in Tables 6-9 prove that our
proposed method works well for small objects too. Significant im-
provements can be seen when we use a higher threshold. It is
worth noting that using larger input images, models do not achieve
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Table 3
The recall rate of SSD300 on VOC 2007 test set. The results which confidence are lower than
the threshold is discarded for a better comparison.

Method & threshold

recall_small

recall_medium

recall_large

SSD300, 0.01 73.06(377/516)  92.29(3519/3813)  96.57(7439/7703)
SSD300 w/ scb loss, 0.01  80.03(413/516)  92.76(3537/3813)  96.25(7414/7703)
SSD300, 0.1 43.02(222/516)  78.94(3010/3813)  91.89(7078/7703)
SSD300 w/ scb loss, 0.1  61.43(317/516)  83.11(3169/3813)  91.91(7080/7703)
SSD300, 0.3 17.44(90/516)  62.65(2389/3813)  87.90(6771/7703)
SSD300 w/ scb loss, 0.3  42.83(221/516)  69.81(2662/3813)  88.21(6795/7703)

Table 4
The recall rate of FSSD300 on VOC 2007 test set.

Method & threshold

recall_small

recall_medium

recall_large

FSSD300, 0.01 69.57(359/516)  89.17(3400/3813)  95.55(7360/7703)
FSSD300 w/ scb loss, 0.01  78.88(407/516)  90.24(3441/3813)  95.82(7381/7703)
FSSD300, 0.1 41.08(212/516)  77.39(2951/3813)  90.83(6997/7703)
FSSD300 w/ scb loss, 0.1 60.27(311/516)  79.67(3038/3813)  91.30(7033/7703)
FSSD300, 0.3 18.99(98/516) 67.26(2565/3813)  87.74(6759/7703)
FSSD300 w/ scb loss, 0.3  40.69(210/516)  71.02(2708/3813)  88.20(6794/7703)
Table 5
Results on MS COCO test-dev 2015.
AP APy AP AR APy AP. ARy ARy AR ARs ARy AR,
SSD300 251 431 258 6.6 259 414 237 351 372 112 404 584
SSD300 w/ scb loss 266 459 275 83 281 408 244 363 381 137 415 569
FSSD300 271 477 278 87 292 422 246 374 400 159 442 586
FSSD300 w/ scb loss  29.3 505 301 115 311 425 259 395 418 192 459 579
DSSD321 280 461 292 74 28.1 476 255 371 394 127 420 626
DSSD321 w/ scb loss 295 491 312 105 300 47.6 263 397 410 162 431 619
SSD512 28.8 485 303 109 318 435 261 395 420 165 466 608
SSD512 w/ scb loss 304 506 320 130 345 423 266 406 426 177 486 586
FSSD512 31.8 528 335 142 351 450 276 424 450 223 499 620
FSSD512 w/ sch loss 333 564 349 179 352 438 282 440 466 277 497 596
DSSD513 332 533 352 130 354 511 289 435 462 218 491 664
DSSD513 w/ sch loss 344 570 361 165 357 499 294 445 473 266 492 64.7
Table 9
Table 6 ..
The recall rate of SSD300 on COCO minival5k. The recall rate of FSSD512 on COCO minival5k.
Method & threshold recall_small  recall_medium  recall_large Method & threshold recall_small recall_medium recalllarge
$SD300, 0.01 3893 534 952 FSSD512, 0.01 62.05 88.22 95.36
FSSD512 w/ scb loss, 0.01  66.20 88.76 95.31
SSD300 w/ scb loss, 0.01  46.42 84.66 95.17
FSSD512, 0.1 49.55 79.01 90.49
SSD300, 0.1 27.32 71.75 88.9
FSSD512 w/ scb loss, 0.1 58.16 81.6 89.82
SSD300 w/ scb loss, 0.1 41.39 79.71 91.09
FSSD512, 0.3 23.44 58.18 82.12
S5D300, 0.3 84 45.27 78.34 FSSD512 w/ scb loss, 0.3 35.77 65.1 81.84
SSD300 w/ scb loss, 0.3 22.52 58.91 815 Wi scb oss, O : . :
Table 7 b Its for large obj be considered that in th
The recall rate of SSD512 on COCO minivalSk. etter results or large o jects. It. can be considere that in t. e case
- where the localization information is not required to be high, in-
Method & threshold recallsmall  recall medium _ recall large creasing the input size has little effect on detecting large objects.
SSD512, 0.01 47.3 88.47 95.55 Another difference from results on VOC is that the recall rate of
SSD512 w/ scb loss, 0.01  56.25 89.17 95.36 FSSD is higher than that of SSD. Due to the higher complexity of
SSD512, 0.1 34.13 79.06 9036 COCO, FSSD can produce more reasonable features and use them
SSD512 w/ scb loss, 0.1 47.5 82.64 90.35 ’ p
SSD512, 0.3 11.65 54.54 81.3 to generate better results.
SSD512 w/ scb loss, 0.3 22.68 61.12 79.51
Table 8 4.2.3. Visualization of performance improvement on MS COCO
The recall rate of FSSD300 on COCO minival5k. Our proposed mett_lod performs better on sma.ll .ob]ects. For ex-
- ample, as illustrated in Fig. 4 column 1, the original SSD model
Method & threshold recall_small _ recall medium _recall large cannot detect the bird on the bench but it detects successfully with
FSSD300, 0.01 46.52 85.85 94.59 the scale-balanced loss. In addition, as shown in Fig. 4 column 1
FSSD300 w/ scb loss, 0.01  51.69 86.67 95.02 to column 4, SSD512 with scale-balanced loss detects small objects
FSSD300, 0.1 35.26 75.26 88.05 more accuratel
FSSD300 w/ scb loss, 0.1 47.47 81.36 90.44 Y-
FSSD300, 0.3 14.14 52.42 78.42 For FSSD512, our proposed scale-balanced loss also works well.
FSSD300 w/ scb loss, 0.3 30.95 65.03 82.07 As shown in Fig. 5, the performance of detecting small objects has

been significantly improved. The optimized model can not only de-
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person 0.88

person 0.86

Fig. 4. SSD512 vs SSD512 w/ scb loss. Both models are trained with COCO trainval35k dataset. The top row contains the results from the conventional SSD512 and the bottom
row is from SSD512 with scale-balanced loss. Bounding boxes with score of 0.3 or higher is drawn. Better viewed on screen.
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Fig. 5. FSSD512 vs FSSD512 w/ scb loss. The top row contains the results from the conventional FSSD512 and the bottom row is from FSSD512 with scale-balanced loss.

Settings in the inference time are same as in SSD512 above.

tect more small objects but also reduce false positives. This is sig-
nificant for small object detection in practice.

4.3. Speed

The only part of the model we modified is the loss function.
In the training process, the model needs to calculate the anchor
matching times for each object. It is negligible when compared to
the computation cost of the network. In the inference process, it
does not cost any additional time in the whole process. Compared
to the original SSD300, our proposed method has the same FPS® in
our experiment(about 50 FPS with two 1080ti). Actually, the scale-
balanced loss tries to make up the difference between the distri-
bution of generated anchors and training data. It will not affect the
speed of the original models.

5. Conclusion and future work
In this paper, we proposed the scale-balanced loss, which han-

dles the class imbalance during the matching process in exist-
ing detection pipelines. As we all know, objects with small scales

3 Frames per second.

are harder to be detected correctly than others. Moreover, in ex-
isting detection pipelines, the unbalanced object matching strate-
gies make them more difficult to be noticed. The scale-balanced
loss manages to make each object’s proportion in the loss func-
tion proportional to the information content generated during the
matching process. Experiments on PASCAL VOC and MS COCO have
proved that several popular methods make convincing improve-
ments after applying the scale-balanced loss. The recall rates of
small and medium objects get up to 15% improvements in both
PASCAL VOC and MS COCO datasets, and it adds no computational
cost in inference time for original models, which is meaningful to
apply the proposed loss in practice.

In the future, some more complex models can be integrated
with the scale-balanced loss for improvements, and it is worth
studying a more suitable form of loss for multi-stage detectors. The
performance of it can also be expected in other areas, such as face
detection, pedestrian detection, and object tracking.
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