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Abstract: To diagnose Alzheimer's disease (AD), neuroimaging methods such as 

magnetic resonance imaging have been employed. Recent progress in computer vision 

with deep learning (DL) has further inspired research focused on machine learning 

algorithms. However, a few limitations of these algorithms, such as the requirement for 

large number of training images and the necessity for powerful computers, still hinder 

the extensive usage of AD diagnosis based on machine learning. In addition, large 

number of training parameters and heavy computation make the DL systems difficult 

in integrating with mobile embedded devices, for example the mobile phones. For AD 

detection using DL, most of the current research solely focused on improving the 

classification performance, while few studies have been done to obtain a more compact 

model with less complexity and relatively high recognition accuracy. In order to solve 

this problem and improve the efficiency of the DL algorithm, a deep separable 

convolutional neural network model is proposed for AD classification in this paper. The 

depthwise separable convolution (DSC) is used in this work to replace the conventional 

convolution. Compared to the traditional neural networks, the parameters and 

computing cost of the proposed neural network are found greatly reduced. The 

parameters and computational costs of the proposed neural network are found to be 

significantly reduced compared with conventional neural networks. With its low power 

consumption, the proposed model is particularly suitable for embedding mobile devices. 

Experimental findings show that the DSC algorithm, based on the OASIS magnetic 

resonance imaging dataset, is very successful for AD detection. Moreover, transfer 

learning is employed in this work to improve model performance. Two trained models 

with complex networks, namely AlexNet and GoogLeNet, are used for transfer learning, 

with average classification rates of 91.40%, 93.02% and a less power consumption.  

Keywords: Depthwise separable convolution, Alzheimer's disease, Deep learning, 

Transfer learning 

1. Introduction 

Alzheimer's disease (AD) is a neurodegenerative disease that can cause mental 
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disorders and even dementia in humans [1, 2]. AD patients are usually elderly, and a 

common symptom is the gradual loss of memory and understanding [3], which can 

inevitably lead to death. It is estimated that AD will suffer one in every 85 persons by 

2050 [4]. So far, the exact cause of AD is still not quite clear. It has been reported that 

there are no effective medications or treatments that can prevent or reverse the 

progression of AD [5]. Therefore, it is critical to early diagnose the AD and design a 

treatment plan to slow the progression of AD. In recent years, the diagnosis of AD, 

especially its transitional phase, that is, mild cognitive impairment (MCI), has received 

growing attention [6]. Every year roughly 10 percent -15 percent of MCI patients are 

transitioned to AD [7]. It is found the converting from MCI to AD is often accompanied 

by the loss of the grey matter [8], abnormal changes in the volume of the medial 

temporal lobe structures [9], the decreased functional connectivity in the right superior 

frontal gyrus [10] and the decreased volumes of para hippocampal gyrus [11]. Based on 

these potential visual evidences of AD, the research approach should be developed that 

not only enhances the understanding of the pathophysiological processes of AD, but 

also contributes to the clinical study of AD. 

Many neuroimaging techniques have been developed for exploiting the brain 

functions and structures, such as diffusion tensor imaging [12], magnetic resonance 

spectroscopy [13], electroencephalography [14], and magnetic resonance imaging 

(MRI) [15]. Recently, MRI has become increasingly popular in studying the brain nerve 

connections. MRI has shown tremendous promise as one type of well-developed brain 

imaging technology in providing detailed information for the diagnosis of high-level 

neurological disorders, such as depression and schizophrenia [16]. Rapid developments 

of neuroscience [17–22] and machine learning (ML) are widely used for automatic 

pattern recognition of clinical image data [23–26]. Recent studies have shown that in 

certain circumstances, ML algorithms can predict AD even better than clinicians [24], 

which is rather appealing and therefore, the computer-aided diagnosis has become an 

important research topic, due to its relatively low cost while training an expert system. 

Although statistical ML method such as support vector machine (SVM) [27] has shown 

some merits in automatic AD detection, a few recent deep learning (DL) methods have 

been found superior to the conventional statistical methods. The convolutional neural 

network (CNN) is popular in DL community thanks to its great success in image 

classification [28–30]. These achievements have attracted researchers to develop 

improved CNN-based systems for AD detection. However, despite great efforts have 

been made to improve the accuracy of classification, few works were done to optimize 

of the architecture of CNN for practical AD detection. In this paper, MRI-based feature 

is developed for AD classification using a depthwise separable convolution (DSC)-

based CNN, and decent recognition accuracy rate is achieved.  

The research approach of this work is divided in three-fold sequentially: 

1) A CNN is designed to train and identify a small number of MRI with an 
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obtained high classification accuracy. 

2) The CNN is further optimized to improve portability, which is a depthwise 

separable convolutional neural network. It decreases the number of parameters 

and the cost of computation, while the classification accuracy rate is maintained. 

3) Two well-trained networks are used for transfer learning and good 

classification accuracies are achieved, which evidenced the effectiveness of the 

proposed depthwise separable convolutional neural network. 

The remainder of the paper is structured as follows: similar works are summarized 

in Section II. Section III discusses the research methodology, and Section IV contains 

the experimental results and interpretation. Section V provides the conclusion and 

future work. 

2. Related Works 

The ML technique is commonly used in the automated pattern recognition based 

on images. [25], [31]. Classical ML algorithms, such as SVM algorithm [27] and linear 

judgment analysis algorithm [29], have been successfully applied to diagnose the early 

stage of AD using MRI. Recently, a feed-forward neural network [31], which used dual-

tree complex wavelet transform for feature extraction, was proposed to classify the MRI. 

Detailed discussion and its comparisons with other popular methods were also 

addressed in [31]. A study on four-class classification was proposed in [32]: The study 

investigated the diagnosis of AD, late mild cognitive impairment (LMCI), early mild 

cognitive impairment (EMCI), and healthy control (HC). Multi-core SVM [33] and the 

weighted random SVM [34] have also been used for the same types of classification 

and the performance continuously improved. The detailed recognition accuracy rates 

from these works are shown in Table I.  

Table I. Performance comparison of previous ML methods. 

Methods EMCI versus LMCI LMCI versus AD 

[32] 72.05% 81.70% 

[33] 73.60% 90.10% 

[34] 90.00% 88.89% 

In the area of AD recognition, DL is often considered advantageous because it does 

not require complex feature engineering and generalization beforehand. Recently, DL 

methods have become increasingly popular, and arguably surpass the traditional 

methods. In [35], it was recommended that a flexible DL program implement dropout 

strategy to classify AD patients at various stages of development. The results indicate 

that the dropout has a good effect in the diagnosis of AD with its final average 
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classification rate reached 74.10%, improving the classification accuracy by 5.90% on 

average, compared to the classical DL methods. As one of DL's most used architectures, 

CNN has gained a great deal of interest in the area of image classification [30, 36]. An 

AD detection system based on CNN, AD patches and HC being used to train a CNN to 

recognize deep learning characteristics of MCI subjects, was introduced in [37], and 

the final accuracy of recognition exceeded 79.9% with 818 subjects. 

A popular method [38] achieves a good classification by segmenting the entire 

brain into multiple anatomical or distinguished regions, and then extracting regional 

features. Another method [39] introduced that the features extracted from neuroimaging 

data are not isolated but have high correlations. Considering the relationship between 

these features, tree-guided sparse coding methods and resampling schemes using elastic 

nets have been proposed in [40] for AD diagnosis. The approach of [41] uses 

unsupervised CNN, PCANet, to achieve feature learning of MRI images. PCANet can 

learn the filters in CNN through traditional unsupervised machine learning algorithms. 

PCANet performs hash coding on the feature map obtained by the convolutional layer, 

and then uses histogram block coding, and finally outputs the extracted features. 

Although these DL algorithms provided good accuracy rates, the model structures are 

complex for deployments on the embedded devices with limited computing resources 

[18]. To address this challenge, this work aims to replace the standard convolution 

architecture of CNN by DSC to reduce the number of parameters and training time of 

the neural net model. 

The fine-tuning of the networks based on transfer learning have also been explored 

using medical image data. Studies using medical images in [42, 43] shows that fine-

tuning of the model based on transfer learning is better than training directly from 

scratch in most cases. Therefore, in this work the AlexNet and GoogLeNet models are 

separately used as the base for transfer learning to further classify AD. The results 

indicate the positive effectiveness of DSC for diagnosing AD. 

3. Methodology 

This section presents the methodology of the related methods proposed in this work, 

including CNN, DSC and transfer learning, as well as the pipeline of training and 

optimizing the neural network.  

3.1. CNN model 

As a multi-layer neural network, CNN is particularly effective when dealing with 

scenes involving a large number of images. The basic structure of a classical CNN 

consists of a convolutional layer, a pooling layer, and a fully connected layer. A classical 

CNN's basic structure consists of a convolutional layer, a pooling layer, and a totally 

fully layer. In detail, the convolutional layer is designed to extract different features of 

the image. The pooling layer further abstracts the original features, which greatly 
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reduces the training parameters and eases the over-fitting of the model. In summary, 

CNN allows a collection of features through the convolution kernel's filtering 

mechanism, which decreases the amount of network parameters through convolutional 

weight sharing and pooling activity. The soft-max classifier is inserted into the fully 

connected layer, after extracting the features, to classify the samples. 

Figure 1 displays the overall CNN layout configuration and can be split into the 

module for extraction of functionality and the module for classification. 'Conv.' and 

'Pool.' denote convolution operations and pooling operations, respectively. 

For the feature extraction of this work, there are N gray-scale images 𝑋𝑛 , 𝑛 ∈

[1,𝑁] after the data pre-processing, and their pixels are scaled to a size of 56×56 and 

normalized to the interval [0, 1]. Moreover, the standard convolutional layer of the 

convolution kernel of size 3×3 is then fed for feature extraction. For each convolution 

operation, batch normalization (BN) [44] function and rectified liner unit (ReLU) 

activation function is implemented. Thereafter, each convolutional layer is 

accompanied by a maximum pooling of size 2×2, which samples down by half the 

previous feature map. 

Three such standard convolutional layers are applied to this model. The CNN 

model framework is used as a benchmark in this work, as shown in Figure 1. 

 

Figure 1. The overall design of the architecture CNN from this work. 'Conv.' and 

'Pool.' denote the convolution and pooling processes, respectively. 

A 7×7×128 feature matrix is fed to the classification module after the previous 

feature extraction. Firstly, the feature map is flattened to 6,272 feature vectors, and then 

the feature vectors are densified by using two fully connected layers, each layer is set 

to contain 1024 neurons. C is the number of classifications in AD dataset. Then, the C-

dimensional score vector S([𝑆1… , 𝑆𝑙 , … 𝑆𝐶]) is expressed by the predictive probability 

with the soft-max function, and the value of each fraction is between [0, 1]. The soft-

max function is given by 

 𝑃(𝑦𝑛 = 𝑙|𝑋𝑛) =
𝑒𝑥𝑝⁡(𝑆𝑙)

∑ 𝑒𝑥𝑝⁡(𝑆𝑙)
𝐶
𝑙=1

, (1) 

where 𝑃(𝑦𝑛 = 𝑙|𝑋𝑛) is the forecasted likelihood for sample⁡𝑋𝑛⁡to be class l. 
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To avoid over-fitting of the network, the popular dropout regularization is used for 

each pooling layer of the CNN model [45]: Some neurons in the neural network are 

discarded at random during model training. In this work, 10% of the neurons are 

randomly removed. 

The network weight w and the cost function of the network need to be optimized 

during the process of CNN training. Regularized cross-entropy is used as cost-function 

in this analysis. The cost-function can be translated as 

 𝐿(𝑤) = ∑ ∑ 𝑦𝑛𝑐 𝑙𝑜𝑔[𝑃(𝑦𝑛 = 𝑙|𝑋𝑛)] + 𝛾𝑙2(𝑤)
𝐶
𝑙=1

𝑁
𝑛=1 , (2) 

where  𝑦𝑛𝑐 is 0 if the 𝑋𝑛 ground truth label is the lth dot, or if it is 1 otherwise. The  

𝑙2 regularization with its coefficient⁡γ controls the weight w while training the model, 

also detects the limitation of the model space so that over-fitting may be avoided. 

 

Figure 2. The structure of a standard convolution layer includes convolution module 

and pooling module. This framework is based on the case where the training step size 

is one and the input feature map is zero-padding. 

Figure 2 shows the standard convolution process. A standard convolution layer 

takes a⁡𝐷𝑖 × 𝐷𝑖 ×𝑀 feature map I as input and generates a 𝐷𝑖 × 𝐷𝑖 × 𝑁 feature map 

output O, where 𝐷𝑖 is the spatial width and height of the square input feature map, M 

is the number of input feature map channels, and N is the number of output feature map 

channels. Extracts function from the size 𝐷𝑘 × 𝐷𝑘  convolution kernel from the 

standard convolution layer. 𝐷𝑘⁡is convolution kernel spatial width and height. 

The standard convolution calculation process formula of the feature map I to the 

feature map O is given by 

 𝑂𝑘,𝑙,𝑛 = ∑ 𝐾𝑖,𝑗,𝑚,𝑛

𝑖,𝑗,𝑚

⁡ . 𝐼𝑘+𝑖−1,𝑙+𝑗−1,𝑚 , (3) 

where I represent the input features maps, O represents the output features maps, and k 
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represents the convolution kernels. i and j specify the Convolution kernel element 

location. k and l decide the location of the element in the input feature map and the 

output feature map, m represents the input feature map channel and n represents the 

output feature channel. 

The parameters of standard convolution are computed as  

 𝐹 = 𝑀 × 𝑁 × 𝐷𝑘
2. (4) 

The computing cost of standard convolution is shown by 

 𝐺 = 𝑀 ×𝑁 × 𝐷𝑖
2 × 𝐷𝑘

2, (5) 

where G represents the total number of parameters of the model, F represents the 

computational cost, M represents the number of channels of the input feature map, N 

represents the number of channels of the output feature map,⁡𝐷𝑖 represents the spatial 

width and height squared input features of the object map, and 𝐷𝑘  represents the 

convolution the spatial width and height of the convolution kernel. 

3.2. DSC operation 

The traditional convolution process uses weight sharing and pooling operations. 

Such techniques can significantly reduce the number of network parameters employed 

and the cost of computation, but still cannot satisfy the criteria of installing models on 

many embedded devices. In this work, A new approach for further reduce the number 

of parameters and the computational burden of a CNN is provided. The standard 

convolutional layer considers the input image data from the channel and space aspects 

simultaneously. DSC decomposes the traditional convolution into two sequential steps 

in order to reduce the potential redundancy of the standard convolution due to ignorance 

of information types: depthwise convolution followed by pointwise convolution (1×1 

convolution kernels). In detail, DSC divides the standard convolutional layer into two 

layers, one for filtering and the other for extracting features with multiple 1×1 

convolution kernel. Depthwise convolution first applies the convolution kernel to a 

channel of the image, and then the point-wise convolution is used to integrate the 

channel convolution output. The DSC uses a 1×1 convolution kernel instead of a 3×3 

convolution kernel to process the input image data. It is found in such design the DSC 

greatly reduced model parameters and the computational complexity compared with 

standard convolution, and the experimental results will be analysed in detail.  
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Figure 3. The structure of a DSC includes depthwise convolution module and 

pointwise convolution module. The stride is one and zero padding applies to 

depthwise convolution module. 

The DSC structure is expressed in Figure 3. For each input channel, Depthwise 

convolution applies a single filter with the stride of one and zero padding. Pointwise 

convolution is then used to construct a linear combination of the depthwise convolution 

output with a convolution kernel of size 1×1. Pointwise convolution achieves the effect 

of down-sampling by adjusting the stride. This work uses BN [44] and ReLU nonlinear 

function for both DSC layers. 

The feature map for the output of the depthwise convolution is expressed as 

 𝑂̅𝑘,𝑙,𝑚 = ∑ 𝐾𝑖,𝑗,𝑚𝑖,𝑗 . 𝐼𝑘+𝑖−1,𝑙+𝑗−1,𝑚, (6) 

where I represent the input feature maps, 𝑂̅ represents the output feature maps, and K 

represents the convolution kernels. i and j determine the element position of the 

convolution kernel. k and l decide the location of the input feature map element and the 

output feature map, m represents the input feature map channel. 

The parameter calculation and cost function for the depthwise convolution can be 

denoted by  

 𝐹2 = 𝑀 ×𝐷𝐾
2, (7) 

and 

 𝐺2 = 𝑀 ×𝐷𝑖
2 ×𝐷𝐾

2. (8) 

The number of parameters is related only to the number of input feature mapping 

channels and the convolution kernels. The computational cost is proportional to the 

number of input feature mapping sources, the convolution kernel and the square input 

feature mapping function. The parameters and computing costs of depthwise 

convolution do not need to consider the output feature mapping N. Compare to formulas 

(4) and (5), the formulas (7) and (8) above clearly demonstrate the simplicity of the 
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depthwise convolution. However, unlike the conventional convolution layer, DSC only 

filters input channels without combining them into new features. Therefore, this paper 

attempts to merge the performance features of the depthwise convolution layer with the 

pointwise convolution in order to produce new features.  

The parameter formula for DSC is calculated by 

 𝐹3 = 𝑀 ×𝐷𝐾
2 +𝑀 × 𝑁. (9) 

The calculation cost formula for DSC is given by  

 𝐺3 = 𝑀 ×𝐷𝑖
2 ×𝐷𝐾

2 +𝑀 × 𝑁 × 𝐷𝑖
⁡2. (10) 

DSC based on 3×3 convolution kernel is used in this work, which computes eight 

to nine times faster than the standard convolution, achieved a comparable accuracy 

(shown in Section V). 

The parameter reduction is described by 

  𝐹4 = 𝐹3 − 𝐹 = 𝑀 × 𝐷𝑘
2 +𝑀 × 𝑁 −𝑀 ×𝑁 × 𝐷𝑘

2. (11) 

The calculation cost reduction is given by 

 𝐺4 = 𝐺3 − 𝐺 = 𝑀 × 𝐷𝑖
2 × 𝐷𝑘

2 +𝑀 × 𝑁 × 𝐷𝑖
2 −𝑀 × 𝑁 × 𝐷𝑖

2 × 𝐷𝑘
2. (12) 

When training a neural network, BN function, ReLU function and pooling layer 

are used after each standard convolution layer. In DSC, BN and ReLU function are used. 

Their structure is shown in Figure 4. 

  

Figure 4.Standard convolution with BN, ReLU and pooling layer (Left), and DSC 

with depthwise and pointwise layers followed by BN and ReLU (Right). 

Specially, the standard convolution feature map is down-sampled by the pooling 
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layer, and the down-sampling in the DSC is achieved by adjusting the convolution stride. 

Table II. DSC network Architecture 

Type / Stride Filter Shape Input Size 

Conv / s1 3×3×1×32 56×56×1 

Conv dw / s2 3×3×32 56×56×32 

Conv / s1 1×1×32×64 28×28×32 

Conv dw / s2 3×3×64 28×28×64 

Conv / s1 1×1×64×128 14×14×64 

Avg Pool / s1 Pool 2×2 14×14×128 

FC_1 / s1 6272×1024 1×1×6272 

FC_2 / s1 1024×3 1×1×1024 

SoftMax / s1 classifier 1×1×3 

Table II shows a body architecture of the DSC used in this work. This architecture 

is an optimization of the previous standard convolution architecture, replacing the two 

standard convolutional layers of the standard convolutional architecture with two DSC 

layers. The pooling module in the standard convolutional layer performs a size 2×2 

down sampling operation on the input feature map. In pointwise convolution of DSC, 

the stride is set to two, which can effectively achieve the down-sampling operation, s1 

means the stride of convolution is one, and s2 means the stride of convolution is two. 

3.3. Transfer learning 

For small data sets, the classification accuracy rate would be relatively low if CNN 

are trained from the scratch by back propagation. In order to leverage multiple pre-

trained networks, it is possible to obtain a higher classification accuracy rate through 

transfer learning. In transfer learning, the network model uses pre-trained network. Its 

weights are pre-set, and only the last fully connected layer is retrained. In this work, 

two popular architectures are used including: 

1). AlexNet: AlexNet was proposed in [46] and won the 2012 ILSVRC competition. 

The top5 error rate was 16.4%, the second-best contest entry was 26.2% error rate. 

AlexNet's network structure contains eight neural networks, including five 

convolutional layers and three fully connected layers, containing 630 million links, 

650,000 neurons and 60 million parameters. 

2). GoogLeNet: GoogLeNet, a new DL structure, was proposed in [47], which won 

the ILSVRC championship in 2014 and reduced the error rate of Top5 to 6.67%. 
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GoogLeNet uses 22 layers of neural networks, but the parameters are only half that of 

AlexNet. Google LeNet points out that the best way to achieve high-quality models is 

to increase the model depth, but wider networks are vulnerable to overfitting and 

computational complexity. GoogLeNet converts some convolution and fully connection 

into a sparse connection, and propose for this reason a modular system called Inception. 

4. Results 

The dataset used in this work is first presented in this section, then the results of 

CNN, DSC and transfer learning algorithms on AD detection are analysed. 

A series of comparisons are presented: the results of CNN are compared with other 

relevant algorithms. The results of DSC are further compared with the standard CNN 

algorithm. Finally, the results of transfer learning are analysed. 

4.1. Dataset 

In this paper the Open Access Sequence of Image Studies (OASIS) structural MRI 

data is used. [48]. OASIS is a project that is intended to provide the scientific 

community free access to brain neuroimaging datasets. The examples from HC, MCI 

and AD groups are shown in Figure 5. OASIS provides two types of data, cross-

sectional data and longitudinal data. Because the purpose of this paper is to classify data 

sets into two and three categories, cross-sectional data meets the requirements. The data 

collection contains a cross-sectional sample of 416 subjects aged 18 to 96. 3 to 4 

separate T1-weighted MRI scans are obtained from a single scan for each subject. The 

subjects are right-handed, including men and women. Clinically, 100 subjects over the 

age of 60 had been diagnosed with very mild to moderate AD, among them. Among 

them, 100 subjects over 60 years old had been clinically diagnosed with very mild to 

moderate AD. In addition, the reliability dataset, which contains 20 non-dementia 

subjects, was tested again 90 days after their initial meeting. Whether the subjects in 

the dataset were ill was determined by the clinical dementia rating (CDR) variable, 

ranging from zero to two. Hypothesis zero represents HC, two represents AD, and the 

rest are MCI. 

 

Figure 5. Images from the OASIS MRI dataset (a) HC. (b) MCI. (c) AD. 
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The dataset includes 332 HC, 68 MCI and 30 patients with severe AD. Data of 

patients with MCI and AD are over-sampled, which can expand the amount of data and 

avoid the impact of data imbalance. At the same time, HC data is under sampled. After 

resampling, the final dataset includes 266 HC images, 136 MCI images and 90 images 

of patients with severe AD. Finally, data enhancement processing (clipping, flipping, 

increase contrast, rotate etc.) are performed on the OASIS dataset. After data 

enhancement, 532 HC images, 408 MCI images and 450 images of patients with severe 

AD were obtained. During training, data enhancement is also performed on the model, 

e.g. dropout [45] technology is applied. The OASIS dataset is randomly broken down 

into five sections, where cross-validation is used five times during training. The 

experiments in this paper secured that the patient-wise division is taken into account. 

In this paper, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is 

used as a test set to test the performance of the model. The ADNI is a longitudinal 

multiple centers study aimed at the development of clinical, imaging, genetic and 

biochemical biomarkers, as well as early detection and tracking of AD. At each stage 

of the ADNI dataset, new participants were recruited across North America and agreed 

to complete various imaging and clinical evaluations. This has made a significant 

contribution to AD the research. 

4.2. Experimental results for CNN algorithm 

The CNN model is trained for two classification scenarios in order to test the 

efficiency of the CNN model developed in this paper: binary and three-class 

classifications. The training for binary classification is conducted for two cases, i.e. HC 

versus MCI, and MCI versus AD. The demonstrate proposed in this paper is compared 

to other models, and a better performance is achieved. The classification accuracy rate 

of health control and mild cognitive impairment reach 84.65%, and the classification 

accuracy rate of mild cognitive impairment and AD is 72.96%. A comparison with other 

methods is shown in Table III. 

When classifying HC and MCI, training 100 epochs, the training loss and 

verification loss can converge quickly, the final training loss can reach 0.3919, and the 

verification loss can reach 0.4048. Their convergences are shown in Figure 6. When 

classifying MCI and HC, training 100 epochs, the training loss and verification loss can 

converge quickly, the final training loss can reach 0.4062, and the verification loss can 

reach 0.4243. Their convergences are shown in Figure 7. The training loss of HC and 

MCI is 0.0143 which is lower than MCI and AD, and the verification loss of HC and 

MCI is 0.0195 which is lower than MCI and AD. It can be seen from the experiment 

that because the number of samples of HC is larger, the training loss and verification 

loss of HC and MCI are lower.  
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Figure 6. Training loss and validation loss for classifying HC and MCI. 

 

Figure 7. Training loss and validation loss for classifying MCI and AD. 

In Table III, ACC stands for accuracy, SEN stands for sensitivity, SPC stands for 

specificity, and AUC stands for area under curve. EMCI describes a mild cognitive 

disability at an early stage and LMCI is a mild late cognitive impairment. Among all 
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these methods, the classification accuracy rate obtained from the proposed method 

appears to be outstanding. The sample sizes of the different classes of dataset used in 

this work are quite different compared to the datasets used in other methods. Among 

patients with MCI and AD, the number of samples is small. In particular, the sample 

size of HC and AD differs greatly, which is the main reason for the low classification 

accuracy rate between them. In 266 HC samples and 136 MCI samples, the 

classification accuracy rate is 84.65%. In addition, HC, MCI and AD are also classified 

into three classes, and the classification accuracy rate is 78.02%. Compared with other 

advanced methods, the proposed CNN method has better classification performance. 

For the proposed method, the sensitivity is 83.21%, the specificity is 82.15%, and the 

AUC is 85.23%. Compared with other methods, the proposed method achieves a similar 

detection performance. There are some minor differences under several specific metrics 

which is mainly due to that the datasets used in the approaches and the number of 

samples are different. However the main advantages of the proposed method are 

efficient network design and significantly reduced parameters and more details will be 

provided in next subsection. In particular, this work uses the ADNI dataset to test the 

generalization of the model. 353 MCI and 99 AD images are selected by ADNI dataset. 

ACC reaches 75.32%, SEN reaches 80.13%, SPC reaches 65.32%, and AUC reaches 

85.23%. It can be seen from the test results of ADNI data that there is a difference in 

SPC, which may be due to the differences between OASIS and ADNI. 

Table III. Performance comparison with other methods. 

Methods Number of samples ACC SEN SPC AUC 

Random forest [32] 
164 EMCI versus 189 LMCI 72.50% 79.00% 68.70% 78.50% 

189 LMCI versus 99 AD 81.70% 83.50% 72.80% 84.30% 

Random forest [25] 229 HC versus 188 AD 75.00% 72.00% 64.00% - 

CNN [37]  229 HC versus 188 AD 79.90% 84.00% 74.80% 86.10% 

Multi-kernel SVM [33] 114 EMCI versus 91 LMCI 78.80% 74.40% 82.10% 78.30% 

SVM [49] 33 HC versus 57 AD 81.10% 60.60% 93.00% - 

SVM [50] 127 HC versus 67 MCI 74.90% 61.10% 83.40% - 

Regression analyses [51] 42 HC versus 38 AD 82.50% - - - 

 

This work 

 

266 HC versus 136 MCI 84.65% 82.35% 79.50% 85.23% 

136 MCI versus 90 AD 72.96% 78.34% 82.15% 77.56% 

226 HC, 136 MCI versus 90 AD 78.02% 83.21% 75.32% 83.45% 
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353 MCI versus 99 AD (ADNI) 75.32% 80.13% 65.32% 81.41% 

 

4.3. Analysis for DSC algorithm 

The DSC is used to optimize the CNN model. The CNN model in this paper uses 

three standard convolutions and they are replaced by DSCs. Comparing to the 

optimized depthwise separable models with the standard CNN model, the results are 

shown in Table IV. 

Table IV. Depthwise separation convolution VS standard convolution. 

Resolution ACC AUC 
Million Mult-

Adds 

Thousand 

Parameters 

CNN model 78.02% 83.45% 29.804544 92.448 

One DSC 77.91% 83.23% 29.029952 92.201 

Two DSC 77.85% 82.35% 16.410688 76.105 

Three DSC 77.79% 81.95% 3.678528 11.145 

In Table IV, the levels of classification accuracy, the number of parameters and 

computational costs of the optimized DSC neural network are compared with the 

standard convolution model. The conventional convolutions are replaced by deep 

separable convolutions with less computing cost and model parameters, and very close 

classification accuracy and AUC. In particular, when all three standard convolution 

layers of the complete standard convolution model are replaced by DSC, the 

classification accuracy rate only decreases by 0.23% and the ACC rate decreases by 

1.50%, whereas the advantage of the proposed neural network reduces the number of 

million mult-adds by 84.25% and the thousand parameters by 87.94%. 

In the meantime, the advantage of the proposed model is that the number of million 

mult-adds is significantly reduced by 84.25%, and the thousand parameters is reduced 

by 87.94%.  
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Figure 8. When testing with the OASIS dataset, there is a trade-off between the 

computational cost of the model and the accuracy of the test. 

Figure 8 shows the relationship between test accuracy rate and computing cost 

between the CNN model and the DSC model. After a standard convolution layer is 

replaced by the DSC layer, it is found that the test accuracy rate is reduced by 0.11%, 

but the computing cost is reduced by 40.07%. After two standard convolution layers is 

replaced with DSC layers, it is found that the test accuracy rate is reduced by 0.17%, 

but the computing cost is reduced by 81.65%. When all three standard convolution 

layers of the complete standard convolution model are replaced by DSC layers, the 

classification accuracy rate only decreases by 0.23%. In the meantime, the advantage 

of the proposed model is that computing cost is reduced by 84.25%. Therefore, as more 

convolutional layers are replaced, the computing cost decreases, and the model 

proposed achieves a reasonable trade-off between accuracy and the computational cost. 

Figure 9 shows the relationship between test accuracy rate and model parameter 

between the CNN model and the DSC model. After a standard convolution layer is 

replaced by the DSC layer, it is found that the test accuracy rate is reduced by 0.11%, 

but the model parameter is reduced by 16.99%. After two standard convolution layers 

is replaced with DSC layers, it is found that the test accuracy rate is reduced by 0.17%, 

but the model parameter is reduced by 87.68%. When all three standard convolution 

layers of the complete standard convolution model are replaced by DSC layers, the 

classification accuracy rate only decreases by 0.23%. In the meantime, the advantage 

of the proposed model is that model parameter is reduced by 87.94%. Therefore, as 

more convolutional layers are replaced, the model parameter decreases, and the model 

proposed achieves a reasonable trade-off between model parameter and accuracy. 
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Figure 9. When testing with the OASIS dataset, there is a trade-off between the 

parameter of the model and the accuracy of the test. 

Comparative experiments show that the DSC layer is used to replace more 

conventional convolution layers in the CNN model, and this achieves a lower 

computational cost and parameters of the model while maintaining the test accuracy. 

Therefore, the AD classification system using the DSC model is very beneficial for 

embedded devices with limited computing resources. The proposed method in this work 

has low computational cost and low number of parameters, but the generalization 

performance can be further investigated. This can be addressed by optimizing the 

proposed model in the future work. 

4.4. Results of transfer learning algorithm 

In the case of small dataset, this may lead to over-fitting or under-fitting, and the 

classification accuracy of training a neural network model from scratch is generally not 

high. The pre-trained model is used for transfer learning, and the rate of accuracy is 

substantially increased. The models AlexNet and GoogLeNet are pre-trained on the 

ImageNet dataset, and are then used for transfer learning in this work. 

Table V shows the accuracy rate results for the four models, all of which are trained 

using the OASIS MRI dataset. It can be seen from Table V that due to insufficient 

training data, the classification accuracy of CNN and DSC models trained from scratch 

is low. The pre-trained AlexNet and GoogLeNet models are fine-tuned using the OASIS 

MRI data, and the classification accuracy rates are significantly improved. The pre-

training models of AlexNet and GoogLeNet are based on ImageNet data which includes 

a large amount of data, so they have very good generalization ability and can achieve a 
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good performance when applied to OASIS MRI data. The AlexNet and GoogLeNet 

models obtain classification accuracy rates of 91.40% and 93.02%, respectively. 

GoogLeNet uses more convolutions and deeper layers than AlexNet, so classification 

accuracy is higher. Note that both the AlexNet model and the GoogLeNet model use 5-

fold cross-validation and 500 iterations of training during transfer learning. 

Table V. Test models and corresponding average accuracy rates. 

Model Acc. (%) 

CNN (from scratch) 78.02 

DSC (from scratch) 77.79 

AlexNet (transfer learning) 91.40 

GoogLeNet (transfer learning) 93.02 

In Table V, it can be seen that transfer learning can achieve higher classification 

results, but AlexNet and GoogLeNet are very complex neural networks, and their 

computations are very intensive. Moreover, their frameworks also contain many 

standard convolution modules which can be replaced by the proposed DSC module to 

reduce the network complexity. This is one option for future research work. 

5. Conclusion 

A novel DSC network-based method for detection of AD is proposed in this paper. 

The conventional CNN method is first used to detect AD, and the classification 

accuracy rate reached 78.02% in a three-way classification scenario (AD, MCI and 

normal). Then, an AD detection method combining DSC and CNN is proposed. 

Compared with the CNN, the model parameters of the proposed method are reduced by 

87.94% and the computing cost is reduced by 84.25%, where the classification accuracy 

rate remains moderately the same. It is quite promising in implementing the 

functionality of AD detection on mobile embedded devices with limited computing 

resources. Experiments on OASIS MRI dataset show that DSC method has great 

potential for AD recognition. The common training models of AlexNet and GoogLeNet 

are used for transfer learning to improve the classification accuracy rate of AD detection, 

and a good result is obtained in this paper. Consequently, one potential future work will 

consider combining DSC with AlexNet or GoogleNet to further increase the AD 

classification accuracy rate and to obtain a more compact model. At the same time, 

using the proposed method in other application areas can also be investigated in the 

future. 
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