

UWL REPOSITORY

repository.uwl.ac.uk

A predictive model for creep deformation following vertebral compression fractures

Luo, Jin ORCID: https://orcid.org/0000-0001-5451-9535, Dolan, Patricia, Adams, Michael A, Annesley-Williams, Deborah J and Wang, Yue (2020) A predictive model for creep deformation following vertebral compression fractures. Bone, 141. p. 115595. ISSN 8756-3282

http://dx.doi.org/10.1016/j.bone.2020.115595

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/7252/

Alternative formats: If you require this document in an alternative format, please contact: open.research@uwl.ac.uk

Copyright: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy: If you believe that this document breaches copyright, please contact us at open.research@uwl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Table 1. Estimation of the model parameter p using linear regression analyses for $(\ln \dot{\varepsilon}_c - \ln \dot{\varepsilon}_0)$ and $-\ln(1-\omega)$.

Models	B (S.E.)	P
Vertebral trabeculae $n = 27$, $R^2 = 0.72$		< 0.001
p_T	1.38 (0.17)	< 0.001
constant	-0.13 (0.20)	0.538
Vertebral bodies $n = 38$, $R^2 = 0.22$		0.003
$p_{\scriptscriptstyle VB}$	1.48 (0.47)	0.003
constant	0.21 (0.53)	0.691
Combined dataset $n = 65$, $R^2 = 0.37$		< 0.001
p_{COMB}	1.45 (0.24)	< 0.001
constant	0.06 (0.27)	0.816

Equation 5 in the text was used. p_T , p_{VB} , and p_{COMB} : model parameter estimated from mechanical data of vertebral trabeculae samples, vertebral bodies, and combined data, respectively. n: number of specimens tested; B: unstandardized regression coefficient; S.E. = standard error

Table 2. Results from regression analyses examining the moderation of endplate damage, cortical bone damage, disc degeneration, vertebral cross-sectional area (CSA), and vertebral aBMD on the model parameter p_{VB} (n = 38)

Moderation analysis	B (S.E.)	P
Model 1 : moderation effect of endplate damage R ² =0.24		0.002
$-\ln(1-\omega)\left(p_{VB}\right)$	1.34 (0.65)	0.048
Endplate damage (b_M)	-0.14 (0.49)	0.776
Endplate damage $\times [-\ln(1-\omega)]$ (b_I)	-0.93 (1.13)	0.415
Model 2 : moderation effect of cortical bone damage R^2 =0.26		0.039
$-\ln(1-\omega)\left(p_{VB}\right)$	1.43 (0.62)	0.027
Cortical bone damage (b_M)	0.67 (0.55)	0.229
Cortical bone damage $\times [-\ln(1-\omega)]$ (b_I)	0.25 (1.47)	0.867
Model 3 : moderation effect of disc degeneration R ² =0.28		0.001
$-\ln(1-\omega)\left(p_{VB}\right)$	1.35 (0.61)	0.034
Disc degeneration (b_M)	0.51 (0.39)	0.212
Disc degeneration $\times [-\ln(1-\omega)]$ (b_I)	0.74 (0.76)	0.333
Model 4 : moderation effect of vertebral CSA R ² =0.24		0.014
$-\ln(1-\omega)(p_{VB})$	1.39 (0.49)	0.008
Cross-sectional area (b_M)	-0.00 (0.00)	0.658
Cross-sectional area $\times [-\ln(1-\omega)]$ (b_I)	0.00 (0.00)	0.348
Model 5 : moderation effect of vertebral aBMD R^2 =0.28		0.005
$-\ln(1-\omega)\left(p_{VB}\right)$	0.94 (0.58)	0.113
Vertebral aBMD (b_M)	-1.15 (1.12)	0.309
Vertebral aBMD × $[-\ln(1-\omega)]$ (b_I)	-4.38 (2.49)	0.089

n = number of specimens; B = unstandardized coefficient; S.E. = standard error.