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Abstract 

Introduction:  Vertebral deformities often occur in patients who recall no trauma, and display no 

evident fracture on radiographs.  We hypothesise that vertebral deformity can occur by a gradual creep 

mechanism which is accelerated following minor damage.  “Creep” is continuous deformation under 

constant load. 

Materials and Methods:  Forty-five thoracolumbar spine motion segments were tested from cadavers 

aged 42-92 yrs.  Vertebral body areal BMD was measured using DXA.  Specimens were compressed 

at 1 kN for 30 minutes, while creep in each vertebral body was measured using an optical MacReflex 

system.  After 30 minutes recovery, each specimen was subjected to a controlled overload event 

which caused minor damage to one of its vertebrae.  The creep test was then repeated. 

Results: Vertebral body creep was measurable in specimens with BMD <0.5 g/cm2.  Creep was 

greater anteriorly than posteriorly (p<0.001) so that vertebrae gradually developed a wedge deformity.  

Compressive overload reduced specimen height by 2.24 mm (STD 0.77 mm), and increased vertebral 

body creep by 800% (anteriorly), 1000% (centrally) and 600% (posteriorly).  In 34 vertebrae with 

complete before-and-after data, anterior wedging occurring during the 1st creep test averaged 0.07 

(STD 0.17), and in the 2nd test (after microdamage) it averaged 0.79 (STD 1.03).  The increase was 

highly significant (P<0.001).  Vertebral body wedging during the 2nd creep test was proportional to the 

severity of damage, as quantified by specimen height loss during the overload event (r2=0.51, 

p<0.001, n = 34). 

Conclusions:  Minor damage to an old vertebral body, even if it is barely discernible on radiographs, 

can accelerate creep to such an extent that it makes a substantial contribution to vertebral deformity. 

 

Keywords:  vertebral deformity; fracture; creep; BMD; cadaveric; damage. 
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Introduction 

Vertebral fracture is an important cause of pain and disability in elderly people, [1,2] and its impact is 

increasing in our ageing society.  Visual assessment of vertebral fracture on plain radiographs is 

notoriously subjective [3] so semi-quantitative and quantitative schemes have been developed to 

measure vertebral body deformity as a more reproducible indicator of fracture [1,2,4,5]. 

Several types of vertebral deformity can be distinguished, [6] but the most common involves 

disproportionate height loss from the anterior vertebral body [5]. Vertebral bodies become wedged 

anteriorly, thereby increasing thoracic kyphosis [7] and decreasing lumbar lordosis.  The resulting loss 

of self esteem arising from an exaggerated kyphosis can rival more medically-related aspects of the 

problem, and many elderly people seek expensive ‘cement augmentation’ therapies to halt their 

progressive deformity [8]. 

Vertebral deformity can often be found in individuals who do not recollect any incident that could 

have resulted in a vertebral fracture, so that the deformity does not come to medical attention [4,9].  

This suggests that vertebrae may possibly deform as a result of gradual time-dependent processes as 

well as from injuries [10]. 

Bone has long been known to display time-dependent ‘visco-elastic’ materials properties when 

subjected to sustained or repetitive loading [11,12].  Mechanical experiments on small bone samples 

have reported residual deformation after such loading [10,13] even though the bone samples were 

macroscopically undamaged.  Following on from this work, we used a sensitive optical technique to 

measure deformations of whole cadaveric vertebrae that were subjected to physiological loading for 

periods of up to 2 hours.  Results showed that many vertebral bodies did indeed deform in a slow 

continuous manner under a constant compressive load, and that these “creep’ deformations were 

incompletely reversed when loading was removed [14,15].  The phenomenon was extremely variable, 

but the anterior vertebral body consistently lost more height than the posterior, so that vertebral bodies 

developed an anterior wedge angulation which averaged 0.08o.  Although these experiments were 

performed on dead tissues at 21oC, they established the principle that vertebral deformity can be 

created by chronic loading as well as by injury.  The mechanisms of bone creep are obscure, but may 

possibly involve fluid flow, or slipping between structural elements [14]. 

The purpose of the present experiment is to explain why some vertebrae “creep” so much more than 

others.  Our previous work showed that creep was greater in old specimens with low bone mineral 

density (BMD), and was particularly high in four vertebrae with radiographic evidence that suggested 

minor pre-existing bone damage [14].  We now hypothesise that minor damage to a vertebral body, 

which may be insufficient to be recognized as a “fracture” on radiographs, may nevertheless 

accelerate bone creep so that it leads to substantial vertebral deformity. 
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Methods  

Cadaveric material  Human thoraco-lumbar spines were removed within 72 hours of death from 26 

cadavers (15 male and 11 female).  Death was unrelated to any condition known to affect bone 

metabolism, and none of the subjects had experienced prolonged bed rest prior to death.  Spines were 

dissected into 45 specimens consisting of two vertebrae (19 specimens) or three vertebrae (26 

specimens), including the intervertebral disc(s) and ligaments.  (In two-vertebra specimens, each 

vertebra is loaded naturally on one side by an intervertebral disc, whereas both sides of the central 

vertebra are loaded naturally in a three-vertebra specimen, and it was of interest to gauge the effect of 

these influences on vertebral creep.)  After dissection, all specimens were stored at -20oC.  Average 

specimen age was 75 yrs (range 42 - 92 yrs).  All spinal levels from T7 to L4 were included.  Grade of 

disc degeneration was assessed from macroscopic features evident at dissection after testing, using the 

first four points of a scale of 1-5 which emphasizes tissue integrity [16,17].  Before mechanical 

testing, the areal BMD of each vertebral body was measured in the sagittal plane using dual-energy X-

ray absorptiometry (DXA). 

Mechanical testing apparatus  Each motion segment was secured in two cups of dental plaster 

(Figure 1) in such a manner that compressive loading could be applied evenly to its outer surfaces by 

a hydraulic materials testing machine [14].  Two low-friction rollers of variable height allowed 

compression to be applied to a specimen maintained at some constant angle of flexion or extension.  

An initial period of compressive creep loading (300N for 15 minutes) was applied in order to reduce 

post-mortem disc hydration to typical physiological levels [18].  All experiments were performed at 

room temperature, with polyethylene film wrapped around the specimen to keep its surface wet. 

Creep loading  Each specimen was positioned in 0o of flexion, and subjected to a constant 

compressive load of 1 kN for 30 minutes.  This force is appropriate to simulate moderate activity in 

upright postures [19].  (Applied force was not normalised for endplate area because area is not the 

most important determinant of vertebral strength [20].) Four specimens with particularly low BMD 

were tested at 0.5 kN to avoid premature damage.  In all cases, the applied load increased linearly over 

5s.  ‘Elastic deformation’ was defined as all deformation recorded during load application (5s) and in 

the first 2s after load application.  ‘Creep deformation’ was measured as the continuing deformation 

during the following 30 minutes of static loading. Specimens were allowed to recover for a further 30 

minutes under a nominal load of 3N. Some limited height recovery after creep was noted in our 

previous experiment [14], but recovery was not measured in the present experiment because there is 

evidence that full recovery would take many hours [10]. 

Measuring bone deformations  Vertebral body deformations in the sagittal plane were monitored 

using an optical 2D MacReflex system (Qualisys Ltd., Goteborg, Sweden), which located the centres 
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of 6 reflective markers glued to map pins inserted into the lateral cortex of each vertebral body 

(Figure 1) with a resolution better than 10µm [21,22].  (These pins may possibly have caused some 

minor damage to trabeculae, but any such damage would have been the same before and after the 

overload event and so would not influence the ‘before vs after’ results.) Two markers each defined the 

anterior, middle and posterior height of each of the 116 vertebral bodies tested, and deformations were 

expressed as a proportion of initial vertebral height at zero load.  During creep, deformations were 

measured at 1 Hz.  Measuring vertebral deformation in a single (sagittal) plane increases the precision 

of this system, as discussed previously [14].  Digital smoothing (30-point moving-average) was used 

to reduce random noise.  Bone strain was measured as the % change in the vertical distance between 

each pair of reflective markers [14]. 

Preliminary tests on a porcine vertebra compared MacReflex measurements of vertebral body height 

loss with height loss measured by the linear variable displacement transducer (LVDT) of the materials 

testing machine.  LVDTs are highly sensitive and accurate, and so can be used to calibrate the optical 

MacReflex measurements. 

Inducing vertebral damage  By increasing the height of the front roller (Figure 1) each specimen was 

positioned in moderate (6-8) flexion to simulate a typical stooped posture, and then compressed at 3 

mm/s to simulate back muscle forces during manual labour [23]. A force-deformation graph was 

plotted in “real time”, with deformation being measured by the LVDT mounted on the actuator of the 

materials testing machine, and force being measured by the machine’s load cell (Figure 1).  Loading 

was removed as soon as the ‘yield point’ was reached, as indicated by a distinct reduction in stiffness 

(gradient of the force-deformation graph).  Previous work has shown that minor compressive damage 

induced in this manner affects only one vertebra [4], and this was confirmed in the present experiment 

by dissection, and by close comparison of before-and-after radiographs taken in the sagittal and 

frontal planes.  Damage severity was quantified as the change in specimen height after  damage, 

measured while the specimen was subjected to a reference compressive force of 1 kN. 

Creep loading after damage  The creep loading test was repeated on all specimens, using the same 

load as in the first creep test. 

Statistical analysis  A repeated measures mixed ANOVA was used to detect differences in pre-

damage creep strains between the three different regions of the vertebral body (within-subject factor), 

and between gender and degree of disc degeneration (between-subject factors).  A repeated measures 

ANOVA was used to detect differences in strains before and after damage.  Linear regression was 

used to examine the influence of age and BMD. 
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Results 

Accuracy of the MacReflex  Vertebral height loss in the anterior cortex of the pig vertebra, as 

measured by the optical MacReflex system, was linearly related to height loss measured by the Dartec 

LVDT (r2 = 0.94).  The gradient of the relationship (0.984) was close to 1, indicating that MacReflex 

measurements were accurate as well as linear. 

Creep in undamaged vertebrae  Loss of signal from one or more reflective markers meant that 

complete creep data could not be obtained from 10 vertebral bodies before damage, and 11 vertebral 

bodies after damage.  Usually this was caused by blood staining, or physical disturbance of a 

reflective marker during testing. 

Typical creep curves (Figure 2) were analysed in order to measure the initial elastic deformation, and 

the total creep deformation occurring over 30 minutes.  Group t-tests showed no significant 

differences (P>0.05) between results from vertebrae in two- or three-vertebra specimens, so results 

were pooled for all vertebrae.  Baseline data from specimens before damage (Figure 3A) showed that 

creep deformations were comparable in size to the initial elastic deformations, and both were greater 

anteriorly than posteriorly (p<0.01).  Greater anterior creep caused the wedging of vertebral bodies to 

increase during the first creep test by 0.06 (STD 0.18, n = 106, p<0.001). Small angles of vertebral 

deformation can easily be accommodated under load (Figure 1) by complementary deformations of 

the adjacent discs, which are much more compliant. 

Creep in undamaged vertebrae was not influenced significantly by age, gender, or grade of disc 

degeneration (possibly because most specimens were old and degenerated), but it did depend on 

BMD.  Areal BMD of all 116 vertebral bodies, measured in the sagittal plane, averaged 0.58 (STD 

0.28) g/cm2.  BMD had little influence on creep deformation in male specimens (p>0.05), but in 

female specimens, decreasing BMD was associated with increasing creep of the anterior cortex, and 

with increasing anterior wedging, during the creep test (Figure 4).  These influences were significant 

in female specimens with BMD <0.5 g/cm2.  The ratio of creep/elastic deformation (all specimens) 

was significantly larger in the anterior vertebral body compared to the posterior (p = 0.032) suggesting 

that the anterior region is not only more deformable, but particularly susceptible to creep. 

Vertebral damage  The mean compressive force at the yield point was 2.73 kN (range: 1.20 – 5.50 

kN).  Usually a single cranial endplate was depressed, either centrally or anteriorly, with disruption to 

adjacent trabeculae.  Specimen height (vertebrae plus discs) was reduced by an average 2.24 mm 

(range 1.09 - 4.72 mm) after damage.  Radiographic appearances of damage resulting from this testing 

protocol are shown in Figure 5.  Such images have previously been considered by an experienced 

radiologist [4] who reported that 40% of (different) specimens tested according to the same protocol 
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showed no discernible fracture on the after-damage radiographs.  In the present experiment, 

specimens revealed slight signs of damage only if the before-and-after radiographs were compared 

carefully (Figure 5).  Hence we use the term ‘minor’ damage to characterise the effect of the 

controlled mechanical overload. 

Effect of minor damage on vertebral body creep  Creep deformation increased greatly after damage, 

especially in the anterior and middle regions of the vertebral body (Figure 3B).  On average, creep 

deformation of the anterior, middle and posterior vertebral body increased by 800%, 1000%, and 

600% respectively (all p<0.001).  Rounded numbers are quoted because the small before-damage 

measurements of strain were influenced by random errors, which were then magnified when % 

increases were calculated.  In those 34 specimens (of both genders) for which there was complete 

before-and-after creep data from all six reflective markers, anterior wedging during the 30 minutes 

creep test increased by approximately 1000%, from 0.07 (STD 0.17) before damage, to 0.79 (STD 

1.03) after damage (p<0.001).  Creep deformation of the anterior cortex increased in proportion to 

the severity of damage (Figure 6), as measured by specimen height loss immediately after the 

overload event (r2=0.51, p <0.001, n = 34).  Regional creep strains could exceed 200,000 micro-strains 

(i.e. 20% deformation) in the most damaged specimens (Figure 6).   

Discussion 

Summary of findings  Minor vertebral body damage that could barely be detected on radiographs was 

sufficient to increase continuous “creep” deformations of old human vertebrae by 600-1000%.  Creep 

was greatest in the anterior vertebral body (where trabecular density is least [24,25]) and where most 

damage occurred during compressive overload.  After damage, 30 minutes of moderate sustained 

loading increased vertebral body wedging by an average 0.79, which is similar to the average 0.95 

wedging caused by the injury itself, and reported previously for this in-vitro compressive injury model 

[26].  Note that creep is a slow continuous process, even in the damaged vertebra (Figure 2), and 

should not be confused with repeated injuries.  These results therefore support our hypothesis: they 

indicate that minor damage to a vertebral body accelerates bone creep to the extent that it can make a 

substantial contribution to vertebral deformity. 

Strengths and weaknesses of the study  A strength is that elderly human vertebrae were used, and were 

loaded in a physiological manner by means of their adjacent intervertebral discs.  Similar creep results 

were obtained from two- and three-vertebra specimens, suggesting that vertebral body deformations in 

two-vertebra specimens are not greatly influenced by the adjacent dental plaster.  Comparing creep 

before and after damage minimized the influence of inter-specimen factors such as age, genetic 

inheritance, and BMD.  Another strength is the sensitivity and accuracy of the optical strain-

measuring system, which enabled strains to be compared in different regions of the vertebral body. 
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The main weakness of the study is the use of dead tissue, tested at laboratory temperature.  As 

discussed previously [14], death and frozen storage would have little influence on the results, although 

creep would be expected to increase at body temperature [27,28].  Creep in small samples of bone 

recovers substantially if the tissue is unloaded for a long period [10], and approximately 40% of the 

creep in whole human vertebrae during a 30 minutes test was reversed after 2 hours [14].  Another 

confounding factor is that the rate of creep decreases with time (Figure 2) to such an extent that creep 

measured during 2 hours is not much greater than that measured during 30 minutes [14].  Therefore 

the present study can not specify how rapidly vertebral body wedging would accumulate in a living 

spine: that would depend on the relative duration of loading and unloading, as well as on temperature 

and BMD.  The present results merely show that creep processes in old human vertebrae increase 

substantially following minor damage, so that the anterior wedging deformity during creep is 

comparable to that which is caused by injury. 

Relationship to other studies  The present results are compatible with previous measurements of creep 

in human [14] and animal [29] vertebrae, although the latter study appeared not to distinguish between 

creep in the bone and cartilage endplates.  Present results are also compatible with measurements of 

creep and residual deformation in trabecular bone samples [10,30].  Our previous work showed that 

old human vertebrae creep as much as their adjacent intervertebral discs, and deform elastically by a 

similar amount [15].  Evidently, viewing the elderly human spine as a segmented column of rigid 

vertebrae separated by deformable discs is an over-simplification. 

Explanation of results  The origins of bone creep are obscure.  Creep in soft tissues such as articular 

cartilage and intervertebral discs is due mostly to fluid expulsion [18], and can be reversed after 

loading by the osmotic pressure of proteoglycans sucking the water back in again [31].  Fluid flow 

within canaliculi [32] may play a similar role in bone creep, with the slowness of the process being 

determined by the small diameter/length ratio of canaliculi.  However, the fact that some bone creep is 

either permanent, or recovered very slowly [14], suggests additional mechanisms unrelated to fluid 

flow.  Possibilities include the propagation of microcracks [33,34,35], slipping between osteons [36], 

viscoelastic deformation of collagen [27], and slipping between [28,37]  or within [28] hydroxyapatite 

crystals.  Plastic deformation must be involved, because total strains (creep plus elastic) measured in 

the present experiment greatly exceed those at the elastic limit of trabecular bone [30,38]. 

The results of the present experiment give some additional insights into the creep mechanism, 

particularly when creep is compared in the anterior and posterior regions of the vertebral body.  The 

ratio of creep to elastic deformation increases anteriorly (Figure 3A), indicating that extra creep 

anteriorly is not simply due to the applied loading being concentrated in this region by a degenerated 

intervertebral disc [25,39].  The anterior bone must be intrinsically more susceptible to creep.  
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Trabecular spacing is greatest anteriorly [25] and may have been further increased by the overload 

event which created most damage anteriorly (Figure 5).  This suggests that creep is accelerated by the 

bending of relatively isolated and unsupported trabeculae.  Modelling studies predict that bone strain 

rises to particularly high levels in those regions of individual trabeculae that are deformed most in 

bending [37].  In these regions, local strains may exceed the elastic limit so that plastic deformation 

occurs, by one or more of the mechanisms suggested above.  According to this view, vertebral bodies 

creep because the least supported trabeculae within them undergo progressive plastic deformations, 

reducing support for the cortical shell, which then slowly (and perhaps irreversibly) deforms.  

Abnormal load-sharing in degenerated spines probably explains an initial loss of trabeculae from the 

anterior vertebral body [25] which is then vulnerable to microdamage and to accelerated creep 

deformations, leading to anterior wedging and spinal deformity.  Once initiated, spinal kyphosis is 

likely to progress because of the increased back muscle forces required to balance the forward 

bending moment arising from anterior displacement of the upper body [40]. 

Clinical relevance Vertebral deformity in patients with osteoporosis can be caused by fracture, or by a 

continuous creep process, or by a combination of both whereby one or more minor injuries serve to 

accelerate the creep process.  We suggest that a combined etiology is most likely, because minor 

vertebral injuries are naturally more likely to occur than major ones.  We speculate that each minor 

injury would be followed by accelerated creep for a period of days or weeks, before cell-mediated 

healing processes would (partially) restore the bone’s mechanical properties [41].  Vulnerable patients 

should perhaps be advised to minimize the time they spend in a stooped posture, because spinal 

flexion concentrates loading on to the anterior vertebral body, especially when the intervertebral discs 

are degenerated [42]. 

Unanswered questions and future research  We are currently investigating how temperature increases 

vertebral creep (and creep recovery) in-vitro, and how cement augmentation techniques [26] can 

diminish it.  Longitudinal studies on osteoporotic patients are required to establish the contribution of 

creep to the deformity of living bones. 
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Figure Captions 

Figure 1.  A two-vertebra specimen subjected to compressive loading by a hydraulic materials testing 

machine (anterior on left).  The height of each roller could be adjusted to allow the specimen to be 

loaded in pure compression (as shown) or in flexion (height of the anterior roller increased).  Black 

circles indicate the six reflective markers attached to each vertebral body. (A photograph of such a 

specimen was published previously [14].)  

Figure 2.  Typical ‘creep’ curves for the anterior region of an L3 vertebral body (male, 89 yrs) during 

a 30 minutes test.  Initial elastic deformations have been omitted to enhance the contrast between the 

very slight creep of the undamaged vertebra (lower graph) and the much greater creep that follows 

vertebral microdamage (upper graph).  Note that creep appears to be a continuous process, even in the 

damaged vertebra, and that the rate of creep (gradient of the graphs) falls steadily with time.  Data are 

shown before smoothing. 

Figure 3.  A) Before damage, creep deformations were comparable in size to initial elastic 

deformations, and both types of deformation increased from posterior to anterior.  * anterior > 

posterior (p<0.01).  B) Creep deformations increased greatly after minor vertebral damage, especially 

in the anterior vertebral body.  + after damage > before damage (p< 0.001). Error bars indicate the 

SEM.  10,000 micro-strain = 1% height loss. 

Figure 4.  Anterior wedging of undamaged female vertebral bodies during the first 30 minutes creep 

test increased as BMD decreased, in the range BMD < 0.5 g/cm2 .  (r2=0.33, p <0.01, n = 24).  This 

relationship was insignificant for male specimens. 

Figure 5.  Lateral radiographs of a two-vertebra specimen, before (upper) and after (lower) minor 

compressive damage (Male 66 yrs, T10-11, anterior on the right).  In the lower radiograph, note the 

disturbed anterior trabeculae (arrow).  Damage reduced the height of this specimen by 2.29 mm.  Pins 

were inserted into the vertebrae for the attachment of reflective markers. 

Figure 6.  Creep deformation of the anterior vertebral body increased in proportion to the severity of 

damage, as measured by specimen height loss during the overloading event (r2=0.51, p <0.001, n = 

34).  10,000 micro-strain = 1% height loss. 
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