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Abstract

Blockchain has been adopted to address significant challenges, such as trust in diverse domains, including voting, logistics
and finance. However, transaction malleability has been identified as a threat for blockchain, which can potentially lead
to an inconsistent state that can result in further attacks such as double-spending. In this context, this paper is focused on
investigating the feasibility of transaction malleability within a typical blockchain application aiming to identify scenarios
that may lead to a successful transaction malleability attack. Our objective in doing so is to highlight conditions which
cause such attack to facilitate the development of protection mechanisms for them. Specifically, this paper presents a
successful simulation of transaction malleability attack within the context of blockchain-based electronic voting. The
evaluation has identified the impact of parameters, such as network delay and block generation rate in achieving a

successful transaction malleability attack, which highlights future directions of research.
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1. Introduction

The fundamental concept of the blockchain data struc-
ture is similar to a linked list. It is shared among all the
nodes of the network where each node keeps its local copy
of all the blocks (associated with the longest chain) start-
ing from its genesis block [1]. Blockchain technology has
introduced a new model of application development pri-
marily based on the successful implementation of the data
structure within the Bitcoin application. Recently, many
real-world applications have been developed in diverse do-
mains, such as the Internet of Things [2], artificial intelli-
gence [3] and e-document management [4]. These applica-
tions leverage benefits of blockchain technology due to its
self-cryptographic validation structure among transactions
(through hashes), and public availability of distributed
ledger of transaction-records in a peer-to-peer network.
Creating a chain of blocks connected by cryptographic
constructs (hashes) makes it very difficult to tamper the
records, as it would cost the rework from the genesis to
the latest transaction in blocks as illustrated by [5].

The above-defined characteristics of blockchain have
attracted significant interest from a wide range of appli-
cations to leverage benefits of blockchain technology, es-
pecially where trust is of fundamental importance. Con-
sequently, blockchain has enabled the development of a
decentralized trustworthy environment for diverse appli-
cation domains, from cryptocurrency to electronic vot-
ing system, banking and finance industry to supply-chain
management, and from health care to blockchain-based
identities, such as passport and e-residency. Within this
context, leveraging cryptographic fundamentals underpin-
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ning blockchain technology, the cost of illegitimate record
tampering is higher than reproducing these records [6]
thereby achieving tamper-resistant auditing of informa-
tion.

Although research around e-voting systems has ma-
tured in recent years, a major concern in such systems is
the trustworthiness of the voting processes as well as the
security of the e-voting software and its resilience against
emerging threats. This raises several new technical con-
cerns such as the security of governance process within
such e-voting system, the security of the e-voting software
against application-level threats, the protection mecha-
nisms implemented to achieve secure, tamper-proof audit-
ing. One of the limitations of e-voting systems including
Direct Routing Electronic (DRE) voting is that it does
not provide end to end (E2E) verifiability requirements
set out in [7]. In E2E verifiable election system, the lever-
age is given with which it can be verified by the voter that
their vote has been cast as per his will. The casting vote
must have a part of the record which can be tallied later
on as identified by [8].

Within this context, blockchain technology can be ben-
eficial for implementing e-voting where it will be difficult
to re-use the token (vote) twice, as in order to be a part
of blockchain, all the nodes are required to be initialized
from the same genesis block to add transactions into the
blockchain which is synchronized among all peers. There-
fore when this technology is adopted within e-voting, the
foundations of blockchain can potentially increase the cost
of double utilization of a token exponentially as every proof
of work for validating a vote transaction will be computed
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based on all the transactions from the genesis block to the
latest block. Moreover, since blockchain technology is de-
centralized, every node will be running their local copy of
the blockchain which may later be used for consensus as
elaborated in [9, 8].

This paper is focused on investigating challenges in the
adoption of blockchain to achieve decentralized trustwor-
thy applications, considering e-voting as an application
scenario with particular focus on the public voting model.
E-voting is one of the emerging applications of blockchain
whereby researchers have aimed to leverage features, such
as integrity, anonymity and non-repudiation, that are crit-
ical for a voting application. Use of blockchain to facilitate
e-voting applications has recently received significant at-
tention with efforts such as [10] leveraging blockchain tech-
nology to achieve secure and verifiable voting. However,
transaction malleability has been identified as a threat for
blockchain-based applications, which can lead to an incon-
sistent state potentially resulting in further attacks, such
as double-spending. This paper, therefore, presents the
outcome of our investigation into the feasibility of trans-
action malleability within blockchain-based e-voting. We
aim to identify scenarios which may lead to a successful
transaction malleability attack, thereby highlighting con-
ditions causing such attack to facilitate the development
of protection mechanisms for them.

Rest of the paper is organized as follows. Section 2
presents a thorough discussion around the transaction mal-
leability attack in blockchain and its potential impact on
different application domains, including e-voting. This is
followed by a critical review of existing efforts concerning
attack simulations within blockchain as well as our appli-
cation in focus i.e. e-voting in section 3. Attack model for
transaction malleability is explained in section 4, followed
by a detailed discussion about the simulation of transac-
tion malleability in section 5. Experimentation results are
presented in section 6 followed by an in-depth analysis of
these results in section 7. Section 8 concludes the paper.

2. Transaction Malleability Attacks in Blockchain

Although blockchain technology has attracted signifi-
cant attention in the recent past, several weaknesses have
been exposed in the blockchain fabric and exploited by ma-
licious actors. Consequently, a number of efforts have been
made to review and identify security threats for blockchain.
For instance, Li et al. [11] carried out a thorough study
on the major attacks on blockchain, highlighting loopholes
in the proof of work based consensus system in terms of ;,
50% attack. They illustrated how the control over mining
power by a single entity or group of entities may cause
significant damage to a major feature of blockchain i.e.
decentralization. Similarly, other attack vectors such as
encryption scheme used in the transactions, methods for
verifying transactions and breaches in the design of the
transaction have been identified as a source of threats for

blockchain-based applications. Minhaj [12] discussed var-
ious types of threats for blockchain from the perspective
of different logical layers per varying processing and func-
tioning zone of IoT devices. Authors classified the attacks
in the low, intermediate, and high-level zones mapping the
attacks into different layers of IoT security issues. Further-
more, Tuon-Chang [13] highlighted various security chal-
lenges of blockchain which can be used to carry out at-
tacks. Authors specifically highlighted the risk of > 50%
attack, forking problems, scalability of blockchain which
can have a significant impact on blockchain security.

The efforts summarized above identify, collate and cat-
egorize potential threats for a typical blockchain system;
however, to the best of our knowledge, there has not been
any research which specifically discusses the impact of
transaction malleability attack on different application do-
mains. Consequently, in this paper, our focus is on the
transaction malleability attacks for blockchain which can
be considered as software design-based attack and can po-
tentially lead to double-spending attacks. In particular,
in transaction malleability attack, the ID of the transac-
tion is changed before it gets mined in the blockchain net-
work. Typically, the aim is to make use of this confirmed
malleable transaction in repeating the original transaction
which could not be mined first [1]. The consequence of
a successful transaction malleability attack can be in the
form of double-spending. As illustrated by [14], in a suc-
cessful attempt to perform double spending attack, the
receiver typically is made to believe that their transaction
has been confirmed whilst attempting to get another sim-
ilar transaction (malleable transaction) accepted by the
network (we explain it further in section 5). The merchant
(beneficiary of the transaction or the person respounsible for
receiving the asset through transaction) in this case will
not receive the intended coins.

One of the important factors to note is that although

the underlying technology for all the applications of blockchain

is same, the impact of transaction malleability attack dif-
fers widely across these areas of implementation. An e-
voting application is considered more sensitive as com-
pared to cryptocurrency due to the sentiments of people
and the role of voting in modern democracies. For in-
stance, the interference in the 2016 election in the U.S. that
resulted in the dismissal of 35 Russian diplomats shows
the significance of the e-voting and the real-world conse-
quences of disruption in the expected standard. As there
is no fixed timeline for the arrival of new transactions in
blockchain (due to factors such as network delays), double
utilization of a vote may occur [15], which can be easily
facilitated by transaction malleability attack as witnessed
in the case of Mt. Gox Exchange [16]. Such attack may
be planned by controlling block generation rate to create
an inconsistent version of blockchain (through blockchain
forking) and may further be supported through selfish min-
ing [17] (feasible if the system has designated and sus-
pected miners). Apart from this, even if the blockchain re-
stores itself to its consistent state, the resources expended



for honest mining(taken over by selfish mining during the
attack) can be significant [18] and may also lead to slow-
ing down the system, eventually losing voter participation.
Another significant potential threat in blockchain-based e-
voting is early verification of the voting transaction. This
is because mostly a genesis transaction of assigning a vot-
ing asset to the voter is expected to be closer(in terms of
several intermediate transactions) to the transaction mov-
ing voting asset from a voter to the candidate in contrast
to Bitcoin or any other cryptocurrency-based transaction
moving Bitcoin to pay to the receiver [5]. This early veri-
fication of transaction may support forking which can lead
to double spending and wastage of computing resources.
Therefore, transaction malleability attack has the poten-
tial to sabotage the democratic process of voting and re-
quires dedicated efforts to mitigate against it effectively.

3. Related Works

Double spending attack is the possibility to spend a
transaction twice or more as a consequence of transaction
malleability. One of these transactions will be included in
the public ledger while others will be considered invalid
and discarded by the network. One way to assess the im-
pact of transaction malleability in the blockchain is to arti-
ficially inject multiple malleable transactions immediately
after an original (honest) transaction by changing the non-
functional fields i.e. fields that do not change the seman-
tics of the transaction, such as sender’s address, receiver’s
address, amount. Although these fields are cryptograph-
ically signed by the sender, a modification in these can
result in changing the hash of the transaction ID (TxID).
Such efforts exemplify malicious attempts by attackers to
identify and exploit vulnerabilities to achieve transaction
malleability and, therefore, require efforts to develop ap-
propriate protection mechanisms. For instance, the con-
sensus bug issue regarding OpenSSL was indirectly fixed
by BIP66 and has been active from block 363,724 which
was added to the blockchain on July 4, 2015 [19]. Similarly,
Bitcoin’s use of Elliptic Curve Digital Signature Algorithm
(ECDSA) to generate transaction IDs has been attacked
to the effect that new hashes (transaction IDs) may be
formed against the substantially similar transaction. If
any of the malleable transactions gets mined before the
original transaction, the miners will add this transaction
to the block as the valid transaction because the criti-
cal fields in the transaction were unchanged. However, if
the sender of the transaction looks for the confirmation
of the transaction by its transaction ID in the transaction
database (publicly shared blocks), they will not find it as
the original transaction would be rejected by the miner as
a double-spend [14].

Within this context, the solution proposed by Andrychow-

icz and Dziembowski [1] for handling transaction malleabil-
ity requires elimination of important script of the transac-
tion which may cause malleability. The script is removed

before the computation of hash which is signed by the au-
thor and is, therefore, expected to be a significant cost
to compromise. Decker and Wattenhofer [18] investigated
the incident of Mt. Gox regarding transaction malleabil-
ity attack to identify how it caused double-spend in the
Bitcoin. Although they carried out an analytical study,
the authors did not provide any specific solution to the
problem of transaction malleability. Rajput et al. [20]
presented a solution to counter the problem of transac-
tion malleability in Bitcoin and proposed alterations in
the process of computing a final transaction hash to iden-
tify a transaction. Specifically, they proposed calculating
hash value separately without using scriptSig field of a
transaction (to be appended to the hash of the transac-
tion generated through existing method) as this field gives
an attacker the liberty to add or replace keywords which
do not change the semantics of the transaction. Although
this solution proposes a scheme to address signature mal-
leability for Bitcoin, the solution has limitations concern-
ing its integration with blockchain-based applications in
wider domains.

Segregated Witness (also known as SegWit) [16] was
initially proposed as a solution to address scalability chal-
lenge in Bitcoin; however, it is also considered a defence
against transaction malleability attack due to signature
malleability. This is because the organization of data for
signature of transaction is separated, and not a part of
the transaction which is called “witness”. Due to this, it
is also considered as a useful barrier to execute a trans-
action malleability attack successfully. One of the major
problems of using SegWit [16] is compatibility i.e. the
transactions following this scheme remain separated from
the conventional transactions of blockchain and has split
up the Bitcoin community into two groups; Bitcoin and
Bitcoin Cash (BCH). As BCH community does not use
SegWit, transaction malleability is still a problem in Bit-
coin cash. Although the recent attack by BitClub in 2017
highlighted the need for SegWit to avoid transaction mal-
leability attack in Bitcoin, the challenge still exists for de-
velopers who believe that the attack is possible even after
the implementation of SegWit [16].

Recently, many attempts have been witnessed to dis-
rupt and tamper electoral processes. For instance, inci-
dents such as alleged external interference in the U.S. 2016
elections resulted in President Obama’s decision to dis-
miss 35 Russian diplomats [21]. Consequently, researchers
have investigated use of technology to strengthen such
democratic processes and protect against disruption to
the desired operation leading to the development of major
projects, such as My Vote [22] and BitCongress [23]. How-
ever, the protocols used are ambiguous in keeping their es-
sential properties, and their scientific contribution is lim-
ited. Another monetary-based system for e-voting was in-
troduced by Zhao and Chan [24] where reward is given by
enforcing smart contracts over the distributed network but
it affects the actual freedom of ballot. Recently, there has
been several approaches in blockchain-based online vot-



ing which provide secrecy of the ballot including [25] and
[26] which work on the secrecy of ballot. With respect
to double utilization in e-voting, existing approaches rely
on the assumptions that the majority of computing re-
sources are controlled by honest miners. Therefore, to the
best of our knowledge, we believe that the processing sub-
domain of electronic voting is an area where further sci-
entific contributions are required to specifically target the
possibilities, and potential of double utilization of tokens
in a blockchain-based decentralized network.

Double-spending attacks are unavoidable in blockchain
as they are subject to the Fischer, Lynch, Paterson (FLP)
impossibility result [15], which inferences that consensus
cannot be made in distributed systems that do not provide
a fixed timeline for new message arrival i.e. new blocks.
Transaction malleability attack may serve as a platform for
further malicious activities such as blockchain-forking and
disbelieving the voter that his vote has not been caste.
Therefore, our focus in this paper is to simulate trans-
action malleability attack to highlight the need for fur-
ther research concerning protection mechanisms to miti-
gate against this threat.

4. Attack Model for Transaction Malleability

Transaction malleability is fundamentally a blockchain-
based attack agnostic of the application domain. Existing
instances of transaction malleability attack have targeted
Bitcoin, such as Mt. Gox exchange and BitClub in re-
cent years. Therefore, although the experimentation con-
ducted in this paper has been simulated with an e-voting
application (specifically a public voting scenario), the out-
comes are valid for wider application domains. Further-
more, we have studied existing efforts within blockchain
security analysis in general and analysis of blockchain-
based e-voting in particular to identify current practice.
For instance, Khader [27] carried out a statistical evalu-
ation of existing protocols and discovered that their so-
lution was able to address the issue of voter entitlement
and utilization of voting token more than once (a mal-
leable transaction has a tendency for double utilization of
vote). Furthermore, there have been several approaches
in blockchain-based online voting which provide secrecy of
the ballot, such as [28] and [29]. With respect to double
utilization in e-voting, these approaches rely on the as-
sumptions that the majority of computing resources are
controlled by honest miners. Therefore, it is believed that
further scientific advancements are needed within e-voting
domain to specifically target the potential of double uti-
lization in a blockchain-based decentralized network [30].
In this context, the experimentation presented here can
help researchers investigate effective countermeasures to
address this significant challenge.

The attack model for carrying out transaction mal-
leability is explained as follows. Two semantically same
but syntactically different transactions Th(honest transac-
tion) and Tm (malleable transaction) are broadcasted to

the blockchain network at time ¢;, and t,,, respectively. Due
to delays in the network or any other disruption caused
by an attacker, malleable transaction Tm which was sent
after honest transaction Th, got mined by one of the min-
ers. The addition of blocks (event) in a blockchain is com-
pletely independent of each other and can be evaluated
using Poisson distribution. There is always a chance for
a mutated transaction to be mined even earlier than the
original honest transaction. This scenario fulfils our re-
quirement to carry out a successful transaction malleabil-
ity attack under a realistic assumption. Fig 1 shows the
attack model for the given scenario.

Fig 1 shows the scenario of our attack model which
causes a malleable transaction to get into a blockchain
block. Furthermore, Fig 2 shows the process model di-
agram showing the possibility of transaction malleability
attack in a controlled but realistic environment. In or-
der to model the above mentioned scenario, we can make
following assumptions:

e The system follows a strong secure cryptographic
scheme, such as [25]. Transactions in the blockchain
are identified by their hashes, which are generated by
hashing the transaction data twice using the Secure
Hash Algorithm (SHA-256), as explained in section
5

e Hash rate refers to the computational strength of a
machine. In this case, it has been kept consistent
by sending honest and malleable transactions using
the same machine to provide an equal opportunity
in terms of hash rate for both types of transactions
to get mined as explained further in section 7.

e Difficulty level has been kept constant by pre-calculating

the nonce value against the same pre-calculated hash.
This had to be maintained constant (as illustrated
in Fig 15) along with hash rate to observe the im-
pact of transaction mining time, which is the most
critical factor for carrying out a successful attack as
explained in section 7.

The blockchain system has been designed for trans-
action databases (usually financial transactions, such as
Bitcoin), which are publicly shared by all the nodes in
the network. Each transaction contains a transaction ID,
which is hash of all the fields in a transaction. It has
been studied recently [1, 6] that signed transactions are
slightly malleable such that it is possible to modify a signed
transaction in certain minor ways without invalidating the
signature. Cryptography ensures that the critical details
about a transaction, such as sender, receiver and amount
cannot be changed but certain non-functional fields that
do not contribute to the critical parts of a transaction may
be changed, which cause the hash (transaction ID) to be
changed for the same transaction. This answer depends
upon the domain of the application under focus and the
platform upon which it is being run. For instance, in the
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case of Bitcoin, the transaction structure depends on the
fields compatible with the exchange of Bitcoin. In this
context, the fields which do not contribute in the amount
being transferred between the sender’s and receiver’s ad-
dresses are treated as non-functional fields. Therefore, to
avoid transaction malleability, one should not accept the
transactions having fewer than an acceptable number of
confirmations because all the following transactions in a
blockchain depend upon the hashes of the previous trans-
actions, and those hashes can be changed until they are
confirmed in a block.

5. Simulation of Transaction Malleability Attack

The success of the above defined attack model depends
on the percentage in which the mutated transaction gets
mined and the original transaction gets rejected by the
miners on the network. This success is measured by the
number of miners that receive the mutated transaction
first and original transaction later. In order to achieve
success, the mutated transaction needs to be broadcasted
to the network much faster than the original transaction.
In this section, we present detailed explanation of different
aspects of the experimentation setup.



5.1. Conditions for Successful Transaction Malleability

Transaction malleability attack is possible if the at-
tacker manages to change transaction, let’s say Th, to
transaction T'm, which is syntactically different from trans-
action Th but semantically similar to it. This can be
achieved by exploiting the malleability of signature schemes
used in Bitcoin transaction. One of the transactions will
be included in the public ledger whereas other will be dis-
carded by the network as it will be considered invalid. In
order to achieve a successful transaction malleability at-
tack, the following scenarios are possible.

e One way to assess the feasibility of malleability im-
pact in Bitcoin is to artificially inject multiple mal-
leable transactions immediately after an original trans-
action by changing the non-functional fields, such
as Sender’s address, Receiver’s address and amount.
These are all cryptographically signed by the sender
but can result in modification of the hash of the
TxID. Now, if any one of the malleable transac-
tions gets mined prior to the original transaction,
the miners will add this transaction to the block as
a valid one because the critical fields in the transac-
tion were unchanged. The hash value changes when
non-functional fields change due to collision resis-
tance property. A typical Bitcoin transaction is in
the form of (message M, signature S on M). Attackers
compute another valid signature let’s say S’ for trans-
action Th, by doing so another Tm is created from
(message M, signature S’), which is a valid transac-
tion with the same message as Th but with different
signature.

e Another way of creating mutated transaction is by
adding dummy PUSH and POP instructions to the
signature S producing S’, which is operationally equiv-
alent to S but from the syntactic point of view it is
different. The attacker, after creating mutated trans-
action, broadcasts it to the network. If the attacker
is lucky then this mutated block will be confirmed
first and miners will include Tm into the blockchain
instead of Th.

e Transaction malleability attack model can also be
successful in blockchain if the sender uses hash or
transaction ID to track their transaction in the pub-
lic ledger and resend the assets, if the expected trans-
action ID is not found in the blockchain public ledger.

5.2. Ezperimentation to Simulate TM Attack

In order to simulate successful transaction malleabil-
ity attack, we have used libraries available within Python
following the major mathematical processes necessary for
simulating basic characteristics of a typical blockchain net-
work, such as creation of genesis transaction, creation of
genesis block hash, creation of honest and mutated trans-
action and their cryptographic schemes. The overall ar-
chitecture of the system used for this experimentation is

User Interface
Form, Output Terminal

Implementation Layer

| Validations | ‘ Merkel Root Tree || Transactions |

Consensus Algorithms Block Structure

| Mining |

Software for Simulating Attack

Blockchain

Python IDE / Interpreter

Operating System

Figure 3: System architecture for experimentation

presented in Fig 3 whereas details of the hardware and soft-
ware used are presented in Table 1. With respect to experi-
mentation with blockchain in a real-life scenario, hardware
specifications affect the hash rate in proof of work based
blockchain systems. However, for these experiments, the
setup has been controlled by sending honest and malleable
transaction from the same machine to observe the impact
of transaction mining due to delayed arrival of transaction.
Therefore, with respect to this experiment, any change in
the hardware specification for honest or malleable trans-
action is not expected to cause any significant change in
the results. Factors such as background processes, mem-
ory utilization, running services on the same machine are
not expected to vary significantly while sending honest and
malleable transaction.

5.2.1. General Assumptions for TM Attack

In order to develop the above mentioned scenario, the
system has been tested and run on a single machine so
that the hash rate, mining process and difficulty level (ad-
justed through pre-calculated real values) can be kept the
same. The delay is induced programmatically (to simulate
network latency) to enable the mutated transaction mine
earlier than honest transaction.

In this simulation, we have used the Proof of Work
(PoW) as consensus algorithm which is used in Bitcoin
blockchain for its mining process. A proof of work includes
finding data which consumes energy, cost, time and takes
significant effort to compute but is very easy to verify. A
large number of trial and error iterations are executed to
eventually find the acceptable hash of the new block. Dif-
ficulty should be adjusted at a particular level to provide
equal ground for honest and mutated transaction to be
mined, and to limit the rate of generating new blocks.

Difficulty is stored in blocks in packed representation
and every miner must decode into hexadecimal to find
target hash for that specific block. We are considering
0x19015f53 as bits to set a difficulty level where we al-
ready have the knowledge that an acceptable hash will be
generated at a certain value of nonce. When the miners
look to start mining, they actually enter into a race of cre-



Hardware Specification
S. Not Platform Processor Memory Page File
Intel Core
. . 5586MB Used
Windows 10 i3-4005u CPU
01 Pro 64-bit @ 1.70GHz 4096MB RAM 188.7MB
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}VI\; lrrrlliogiigllz Intel Core
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Table 1: Hardware and software specifications
Total coins in my wallet:  40btc
Enter address 12345
Enter amount 12 H
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e —— utputhash 7189f586d7a3613f2a24d5396 H
Show Mutated Transaction_id

Send Mutated transaction to miner

Figure 4: Sample application interface

ating a new block header hash so that they may be able to
get their block entered into the blockchain. Miners start
building the header using the Merkle root hash (history of
all the transactions) of 32 bytes in length, version num-
ber which is of four bytes in length, hash of last block in
the chain which is also of 32 bytes in length, Timestamp (a
number showing total time elapsed since 1970-01-01 00:00)
and the nonce, a four byte random number which is gen-
erated and repeated to find the required hash.

5.2.2. Producing Honest Transaction

Generating Raw Transaction: The process to produce
honest transaction starts by seeking user input for asset
and the address. The graphical interface of our application
is presented in Fig 4. Here, the asset is assumed to be
an amount whereas the address will be used later on to
initialize the output script parameter.

In order to achieve our objective to conduct simula-
tion process of honest and controlled mining, certain real-
istic values of several parameters have been assumed which
contain same number of bytes (as it is used in the con-
text of Bitcoin) so that a raw transaction (distributed to
the miner) may be created. This raw transaction will be
later used to create transaction ID by applying SHA256
of encoded hexadecimal digest available in hashlib class of
Python. We produce a raw transaction by concatenating
version field, number of inputs, previous transaction out-
put hash, next sequence, length of script signature, script
signature, sequence, no of outputs, amount(transferred),
length of outputs, output script, lock time, hash code type.
Fig 5 presents the attribute/value pairs used to produce
the raw transaction whereas Fig 6 presents the raw trans-
action generated as a result of this experiment.

Generating a 64 bit Transaction ID: In order to get
transaction ID from raw transaction, we applied SHA256

76a914ddbccedf255a8ccl 7bdagha0373df8e861 |
ch866e88ac :

Sequence
_Noofoutputs
Amount

Hashcodetype 01000000

Figure 5: Attributes/ values for raw transaction
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3730f8e861chB66e88ac fFF T 811219123450080060001000000

Figure 6: Raw transaction hash

of encoded hexadecimal digest available in hashlib class of
python and display it on output. The 64-bit transaction
ID generated through this process is presented in Fig 7.
This represents an honest transaction and is used to
later create another transaction which will be semantically
same but will produce a different hash as its transaction
ID. We will call that transaction as a mutated or malleable
transaction. The race will then start (although depending
upon several factors which will be discussed later, such
as network latency, picking up of transaction by miner
to solve proof of work) regarding which transaction gets
mined and become a part of blockchain in the new block.

5.2.3. Producing Malleable Transaction

Generating Raw Transaction: As we discussed in the
previous sections, a transaction can be made malleable by
changing it in a way that it remains semantically same but
produces different hash as its transaction ID. In this exper-
iment, we produced malleable transaction by appending
“00” in the creation of malleable raw transaction for the
original honest transaction we generated above. There-

3aee278c8e8f68¢9222ccheffF399478h6c1d14386af7fd3
aeR4arb72b27243

Figure 7: 64-bit transaction ID



| Attributes
| Versionfield 1 01000000
+ Noofinputs

! noutputhash
: Nextsequence i 00000000
! Lengthofscriptsig | 6b
! Scriptsig
| Sequence
i Noofoutputs ¢
: Amount

i Lengthofoutputs
* Outputscript

! Locktime

i 194 “00”
! Address for transfer here it is ;12345

Figure 8: Attributes/Values for malleable transaction

0100060061be66e10da854e7aead338c1f91cd489768d1d6d71897586d7a3613
Rew Tx: 2a24d5396000908086076a914dd6cce9f255a8cc 1 Tbdadbad373df8e861chds
Be8Bacf T ff01121908123450000606001060800

64-bit 45dd6ab3129e51f2fca8538819d6T45449a597d3b 1429
Tx 1D: 3d30fhle68fage300

Figure 9: Malleable raw transaction and 64-bit ID

fore, in this experiment, transferring amount and address
fields, which are being taken as input are same i.e. ad-
dress is “12345” and transferring amount is “12”. The
only difference in producing the raw transaction of honest
and malleable transaction is the appending of “00” just
after the parameter of “length of outputs” as shown in
Fig 8 while the rest of the parameters are same as those
were used earlier for generating honest raw transaction.
The raw transaction that we get here in this experiment
is presented in Fig 9.

Generating 64 bit Transaction ID: The encoding pro-
cedure was replicated from generating raw transaction by
applying SHA256 of encoded hexadecimal digest available
in hashlib class of Python. The raw transaction and the
64-bit transaction ID generated as a result is presented in
Fig 9.

5.2.4. Target Hash Computation for Mining

Mining is effectively a process of calculating the hash of
the newly proposed block by the miner, which is less than
the target hash. Since header creation has most of its
fields fixed, we can assume some realistic values of certain
parameters that will be used for block header‘s creation.
The fields which we have used for header’s creation include
version, previous block hash, Merkle root tree hash, times-
tamp, bits for setting up difficulty level and nonce. Fig 10
shows the values, which have been assumed for creating
new block header.

The block header hash in this case contains only one
variable, which will be iterated to get a hash less than the
current target. We will now compute the current target by
calculating difficulty level in the context of how it is cal-
culated for Bitcoin implementation. Firstly, a miner uses
the packed illustration of block to get the current target
as hash by deciphering this packed illustration. In our ex-

pessassssesaacoioaaas e e T LR L]
' "
'
'

Attributes | Values--Taken

! previous block | 000000000000000117¢80378b8da0e33550h5997f2acl55e2f7d1 |

! hash | Bec197509717 ‘
i merkle root tree | 871714dcbae6c8193a2bh9h2a69fe1c0440399f38d94b3a0f1h44 |
phah TS ‘
i time stamp | 0x53058h35 |
rb\ts ............... r0x19015f53 ........................................................ :

¢ Arbitrary Number which is incremented by one in each

! nonce
' ! iteration

Figure 10: Attributes/ Values for creating block header hash

periment, we have considered a known and familiar value
of this packed illustration of block i.e. ‘0x19015f53’ for
simplicity. Separating first two numbers from this packed
version, we get 19 (in hexadecimal) and if we convert it
into decimal we get 25. The remaining number in this
packed format is ‘015f53” and if we convert it into base 10
we get 89939. After working out these values by bitwise
right shift(24 shifts), performing AND operation (with
OxfIffff), putting it in a difficulty formula and getting it
in a 64 bit hexadecimal format we get current target as:
00000000000000015 f5300000000000000000
000000000000000000000000000.

The computed hash of newly proposed block header
must be less than this target. Our mining process will start
computing this block header hash for various incrementing
values of nonce in a quest to generate required hash. In
order to enable the malleable transaction to get mined
first, an artificial delay was induced just after transaction
formation but before the start of the mining process of
this transaction to mitigate as a network delay. To make
use of this delay, another instance was used (within the
span of the delay) to send the malleable transaction with
an immediate start of its mining process. In this way, in
a simulated but with a realistically assumed environment,
a malleable transaction was able to become part of the
blockchain.

Since the value of nonce required for the desired hash
was already known and the program instances were run
on the same machines, the only significant factor was the
time when the transaction was picked up by the miner.
In this case, a race started between an honest transac-
tion(with an artificially injected delay) and a malleable
transaction (without any delay) by keeping the difficulty
level and hash rate same in both the runs. In this way, the
transaction malleability attack was successfully simulated.
Fig 11 displays the final output of the successful transac-
tion malleability attack when nonce reaches to a value of
856192328.

5.2.5. Malleable Transaction Mining

As explained in section 4, we assume that the mal-
leable transaction was sent after honest transaction but
was mined before original (honest) transaction. This shows
that although the honest transaction existed before send-
ing malleable transaction but was mined after the mal-



Figure 11: Attributes Values for creating block header hash

leable transaction. In real world, it may happen due to;

e Possible network latency, which may cause malleable
transaction to reach earlier to the miner.

e Due to early picking of a malleable transaction from
the mining pool by the miner. The addition of new
blocks (event) follows Poisson distribution and is com-
pletely independent of each other.

e Attacker gets lucky to mine his transaction into the
block. For instance, possibility that the miner who
picked up the malleable transaction finds the required
nonce earlier than the miner who picked up honest
transaction.

For the purpose of experiments presented here, the
above real world possibilities have been modelled in the
following way. A race was started between an honest trans-
action (with an artificially injected delay) and a malleable
transaction (without any delay) by keeping the difficulty
level and hash rate same. This is equivalent to the real
world condition of network latency and therefore enables
our setup to simulate close to real-world scenario.

Another important factor which was helpful for suc-
cessfully carrying out transaction malleability attack was
to win the race for solving mathematical puzzle (proof of
work) in case of malleable transaction (by the miner), as
mentioned above. This was achieved by making less num-
ber of iterations to find the correct nonce for malleable
transaction in contrast to have more iteration for honest
transactions (through pre-calculation of required nonce).
Fig 12 represents the time series for the occurrence of
events responsible for carrying out a successful transac-
tion malleability attack. It can be seen in Fig 12 that the
malleable transaction (which was created and initiated af-
ter the honest transaction was sent to the blockchain),
won the race and was picked up by the miner before its
original version and got mined into the block. The suc-
cess of attack was achieved by simulating network delays
for honest transaction, and by making miner of malleable
transaction lucky in calculating solution of mathematical
puzzle for malleable transaction as it happens in real world
(by reducing number of iterations for finding the required
target hash).

6. Experimentation Results

The experiment was conducted while observing several
performance indicators, which may play a key role in run-

Th Tm
Creation  Creation T, T,  picked up by Miner  mined into the block

Sending  Sending T, T,

%

Figure 12: Example Timeline for successful transaction malleability
attack

ning the internal background processes behind blockchain.
The operational characteristics of blockchain in this exper-
iment were recorded in the following way.

In order to observe the behavior of the blockchain in
terms of the time elapsed for producing new blockhash to
mine the honest transactions, different numbers of inde-
pendent iterations were performed to draw a pattern and
a comparison with the same pattern for malleable trans-
actions. The Fig 13 below shows how the data for elapsed
time was recorded individually for each honest transac-
tion at different time instances when the desired hash of
the block is found. It can be seen from this figure that the
elapsed time ranges from 71 milliseconds to 102 millisec-
onds against an honest transaction when it was run on the
same machine in each trial.

Another important aspect to notice is that the nonce
value for the required blockhash is already known in this
simulation so that the computation may be performed at
a reasonable time. The required number of iterations to
reach this nonce value was fixed across all the attempts for
finding out the elapsed time for all the honest transactions
as the starting nonce value was fixed to achieve the value
lower than the target hash at a realistic time. Therefore,
the computational power in terms of hashes per second of
the machine (which is running simulation) could be found
against every mined transaction. In every attempt of find-
ing out the elapsed time, the conditions were almost sim-
ilar except the independent parameters of machine which
are related to the state of machine which may vary and can
affect the performance of the system like background pro-
cesses, memory utilization and running services. A number
of experiments were conducted and a sample is presented
in Fig 13 which demonstrates behavior of the system when
the honest transactions took more time to mine than their
respective malleable transactions. Similarly sample exper-
iments presented in Fig 14 show the behavior of the system
when the malleable transactions were being processed.

These sample measurements were taken to facilitate
the mining of malleable transactions earlier not by any ar-
tificial programming delay in case of honest transactions
but by setting up the starting nonce value at a num-
ber, which is larger than the number was used to mine
the respective malleable transaction. This is much better
approach to discourage honest and encourage malleable
transaction while simulating and recording data for a shorter
elapsed time in case of malleable transactions than the
honest transactions. This was done with a realistic as-



Figure 13: Sample experiments to demonstrate elapsed time for honest transaction

Figure 14: Sample experiments to demonstrate elapsed time for malleable transaction

sumption that the attacker node would likely reach the
desired block hash in a quicker period of time than the
victim’s node so that the chances of a successful transac-
tion malleability attack may be increased.

Therefore, at the time of execution of a successful trans-
action malleability attack, the support will not only come
in the form of programming delay while releasing an honest
transaction (to simulate network delay) but also in terms
of added computational strength in the mining process of
generating required block hash for a malleable transaction
as the starting nonce value would have been shorter to
reach to the solution quickly (for simulating more hash
power). In case of honest transaction, it was programmed
to run 2238 iterations find the solution while in case of
malleable transactions the required iterations to find the
required block hash were programmed to be 127 (since the
final nonce value was pre-calculated). The iterations re-
flect to the number of required hashes unless the final hash
is found.

Table 2 and 3 show the tabulated data for individual
honest and malleable transactions along with their elapsed
time and hash rate (number of hashes per second) respec-
tively. Hash rate was calculated by dividing the number
of generated hashes to the total elapsed time until the re-
quired blockhash is produced in order to get the number of
hashes per unit time (in seconds). The data was recorded
without any programming delay and the elapsed time for
malleable transactions was reduced due to lesser number
of required hashes than the respective honest transaction
by manipulating nonce values for both of these cases.

7. Discussion and Analysis

As discussed in section 6 the elapsed time was pro-
grammatically reduced to assess the feasibility of transac-
tion malleability. Since the starting nonce value for honest
transaction was not much closer to the final nonce value
for producing required acceptable hash in contrast to the
case of malleable transaction, the elapsed time was de-

10

creased for malleable transactions. This factor can rea-
sonably increase or decrease the chances for the success of
the transaction malleability attack.

In a typical attack scenario, the attacker’s machine is
expected to calculate the desired block hash earlier than
the honest machine i.e. it should take lesser time to com-
pute the required hash. In this simulation, the scenario is
managed by requiring the attacking instance of the pro-
gram to compute fewer steps than the honest instance.
Consequently, the graph in Fig 15.A shows the difference
between the elapsed time for honest and malleable trans-
action. It can be seen in the graph that the maximum
value of elapsed time for a malleable transaction is 4 mil-
liseconds, which is much lower than the minimum value of
elapsed time for an honest transaction i.e. 71 milliseconds.
It means that in this simulation run, the malleable trans-
action needs to be mined at least approximately 18 times
(17.75 times) quicker than the existing elapsed time if it
needs to rationally increase chances of denying a transac-
tion malleability attack. Similarly, another very interest-
ing inference may be made from this statistic that rather
than expecting an attacker to slow down his hash rate for
a failed attack (which is highly unlikely), an effort may
be made to increase the hash rate at least to a level to
outwit the attacker. This implies that in this case if the
elapsed time for mining the honest transaction is reduced
to a percentage of 97.183% of the current minimum oper-
ational elapsed time which makes almost 69 milliseconds
and would make elapsed time closer to 4 milliseconds, then
there is a chance for the honest machine to put a com-
petition to the attacker otherwise the current condition
supports heavily to a successful transaction malleability
attack.

As it has been stated earlier, in the current simulation,
the difference of elapsed time has been made by starting
with a close nonce value for malleable and a relatively
larger value of honest transaction so that the honest in-
stance of the program would have computed more hashes
than its equivalent dishonest instance for the malleable



Tx. No. Elapsed Time Hash rate
(ms)
1 102 22.8235
2 86 27.0697
3 71 32.78873
4 82 28.39024
5 79 29.6835

Table 2: Hashrate/mining time for honest transaction

version of the transaction. In a real world scenario, this
can be achieved by migrating honest node to a more pow-
erful machine of a higher hash rate. Since in this case of
simulation, almost 97% improvement is required to chal-
lenge the attacker‘s instance of malleable transaction. An
important aspect to note here is that the level of challenge
was not same for the honest and malleable instances in
terms of computational work (required number of hashes
to propose the block). This was required to simulate the
successful attack along with programmatically induced de-
lay for honest transaction. Nevertheless the difficulty level
and hash rate (run on same machine) were kept same to
observe the behaviour of the system in the context of delay
and elapsed time for transaction processing.

Fig 15.B and Fig 15.C shows the hash rate against
for the individual and average transactions. The average
hash rate was 28.108 kilo hashes/second and 28.363 kilo
hashes/second for honest and malleable transactions re-
spectively which is almost similar as the simulation was
run on the same machine. The hash rate and difficulty
level had to be maintained constant across honest and
malleable running instances so (as illustrated in Fig 16
that the comparison and inferences may be based upon
the transaction mining time in terms of controlled nonce
values (for indirectly controlling the computational steps
on the similar machine platform) and then finally induc-
ing some delays programmatically in honest transaction
release to ensure a successful transaction malleability at-
tack.

8. Conclusion

Blockchain technology has attracted significant interest
from researchers across diverse domains to address chal-
lenges fundamentally concerning trust, non-repudiation and
auditing. However, transaction malleability has emerged
as a threat to blockchain that can corrupt the blockchain
state resulting in attacks, such as double-spending. This
paper has focused on investigating the feasibility of trans-
action malleability attack in blockchain, aiming to identify
scenarios that may lead to a successful transaction mal-
leability attack. Through our efforts, we have highlighted
conditions causing such attack to facilitate the develop-
ment of protection mechanisms for them. Specifically, this
paper has presented transaction malleability attack within
the context of a chosen application domain i.e. blockchain-
based e-voting. We implemented the sample application
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Tx. No. Elapsed Time Hash rate
(ms)
1 4 31.750
2 4 31.750
3 4 31.750
4 5 25.400
5 6 21.166

Table 3: Hashrate/mining time for malleable transaction

use-case as well as blockchain simulations using Python
libraries. The evaluation identified the role of parameters,
such as network delay and block generation rate in achiev-
ing a successful transaction malleability attack. It, there-
fore, showed that the transaction malleability attack can
produce an inconsistent blockchain, encouraging attackers
to exploit the situation for a variety of malicious purposes.
We are continuing our research with further evaluation us-
ing a real-life test-bed for the approach presented in this

paper.
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