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Abstract 

The UK government is committed to reducing carbon emission levels by 80%, comparative to 

the 1990 baseline, by 2050. “Nearly Zero Energy Buildings” (nZEBs) were introduced by the 

‘Energy Performance Building Directive’ (EPBD) [recast] in 2010 as a realistic solution to the 

intrinsic environmental debt associated with most existing buildings. This paper aims to carry 

out a life cycle cost analysis (LCCA) to identify what is a cost-optimal level and how best to 

achieve this by examining and focussing on the exploration of realistically applicable energy 

efficient measures and retrofit scenarios for a typical UK dwelling. A sensitivity analysis is 

used to identify uncertainty and provide the expected economic benefits and losses of the 

applied scenarios over their respective lifetimes. It was established that the total life cycle costs 

(LCCs) of all the retrofit scenarios was in fact lower than the baseline scenario (i.e. not 

retrofitting the property) over the 30 years study period. Furthermore, it was found that the 

cost-optimal level for the retrofit of a typical UK residential dwelling is 75kWh/m2/yr; 

meanwhile, the UK’s current nZEB target stands at 44kWh/m2/ yr. Meaning there is a gap 

between the current NZEB target and the calculated cost-optimal level. 
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Notation 

α discount rate 

C cost (£) 

COa annual cost (£) 

COINIT investment cost (£) 

COM maintenance cost (£) 

CORNT replacement cost (£) 

COMSC miscellaneous cost (£) 

COP coefficient of performance 

D_f discount factor 

i year 

IEP energy price increase (%) 

j component  

RR real interest rate 

t time (h) 

τ0 starting year 

TC Calculation period 

U thermal transmittance (W/m2k) 

VALfin Residual value 
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1. Introduction 

A candid endorsement of the scientific consensus regarding our changing climate has been 

corroborated in the reports of the ‘Intergovernmental Panel on Climate Change’ (IPCC) and in 

the reports of major scientific bodies nationally and internationally. A recent report by the 

IPCC has highlighted that not limiting rising temperatures to 1.5oC will lead to “rapid, 

far-reaching and unprecedented changes in all aspects of society” [IPCC 2018]. Mitigation 

proposals have acknowledged that the building sector plays a vital role in contributing to the 

ambitious targets set for the transition towards an energy sustainable future. This is derived 

from statistics stating that the building sector is responsible for 40% of energy consumption 

across Europe; the domestic sector accounted for a quarter of the total final energy 

consumption [EC 2017]. 

Within this framework, on 19th May 2010, a recast ‘Energy Performance Building 

Directive’ (EPBD) was introduced within Europe after it had emerged that despite initial efforts 

of the 2003 EPBD the building sector continued to contribute to 40% of total energy 

consumption within Europe [Brian 2011; Directive 2010/31/EU (recast)]. It was stated that 

Member States need to reduce total energy consumption from the building sector and increase 

usage of renewable energy sources; more specifically this was to be achieved through 

‘Nearly-Zero Energy Buildings’ (nZEBs). 

Whilst the recast EPBD has set out a requirement for all new buildings to be nZEBs, 

including buildings that will undergo refurbishment by 2020, it had only provided a generic 

definition and no specifications, for instance in terms of specific energy consumption targets, 
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as to how this new concept should be implemented [EC 2012a]. Therefore, an open 

interpretation has been left for member states. Most importantly, the EPBD stated that, in cases 

where a cost-benefit analysis of the economic lifecycle of a building is conducted and proven 

to be negative rather than positive, then the nZEB standard does not need to be applied 

[Boermans et al., 2011; EC 2012b]. 

Ideally the concept behind a nZEB is that it is an energy efficient building which employs 

a renewable and/or microgeneration energy production system. However, in principle, certain 

traditional buildings can reach the nZEB standard by incorporating only a large renewable 

energy system. In a literature review study of nZEB definitions, Marszal et al., [2011] 

highlighted that a majority of the definitions reviewed considered only the incorporation of 

renewable energy sources, thereby neglecting the inclusion of energy efficiency measures to 

firstly reduce the energy demand of the building. Consequently, it was concluded that nZEB 

definitions should place emphasis on improving the energy efficiency of buildings. However, 

for most dwellings this approach will mean incorporating several energy efficiency measures 

(EEMs) to reduce the energy demand of the building combined with a small renewable system. 

This in turn leads to an increase in the capital costs involved in reaching the nZEB standard 

and further complicates the issue of reaching the standard with ‘cost-optimality.’ Nair et al., 

[2010] for instance highlighted that cost can be one of the most significant factors in 

influencing the energy efficiency investment for existing residential buildings. 

Studies have demonstrated that reaching the nZEB standard for residential buildings is 

technically feasible [Attia 2012; Alessandra et al., 2017; Salem et al., 2018]. Meanwhile, 
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reaching the nZEB standard whilst considering costs and cost-optimality of the retrofit process 

and of the individual EEMs remains challenging. Consequently, although there are many 

studies that focus on the retrofit of buildings to reach the nZEB standard, fewer take into 

account cost-optimality and reaching a cost-optimal solution. Moreover, many of the 

definitions that have been or are currently being released throughout the EU only consider 

energy efficiency, once again neglecting cost-efficiency of the retrofit process [D’agostino et 

al., 2016]. 

This paper will therefore examine whether retrofitting a typical UK dwelling to the 

current nZEB standard is cost-effective for a homeowner with current available standard and 

cost of technology. The aim is to carry out a life cycle cost analysis (LCCA) to identify what is 

a cost-optimal level in terms of primary energy consumption (PEC) for a UK residential 

dwelling. In addition, the paper will investigate how best to achieve this by examining and 

focussing on the exploration of realistically applicable energy efficient measures (EEMs) and 

retrofit scenarios. Firstly, Thermal Analysis Simulation software (Tas, Edsl) will be utilised to 

ensure the retrofit scenarios meet the nZEB standard’s energy performance targets. The life 

cycle cost analysis (LCCA) will be carried out by using building life cycle cost software 

(BLCC) to compute the life cycle costs (LCCs), net savings, and payback period. A sensitivity 

analysis will be used to identify uncertainty relative to the retrofit scenarios. Finally, the 

EPBD’s cost-optimal range methodology will be employed to select the cost-optimal solution. 

 

2. Literature review 

The analysis of various nZEB case studies and conclusions confirm that to successfully retrofit 
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an existing building into a nZEB the following factors or building elements need to be 

considered; firstly, because building fabric of most existing buildings is outdated and performs 

poorly, improvement of fabric insulation levels is necessary [Ma and Wang 2012; Attia 2012]. 

Improvement of the building fabric also refers to improved air tightness that contributes to 

minimal air leakage. Air tight constructions mean adequate ventilation is necessary to maintain 

high level of indoor air quality and prevent air leakage and overheating. With very high 

airtightness levels, mechanical ventilation becomes a requirement [Michael and Chris 2009; 

EST 2017]. 

Winter heating and domestic hot water (DHW) is a particularly important consideration 

for UK homes due to the UK’s cold dominant climate. Heating homes in the UK contributes to 

approximately 40% of emissions and is the main source of energy consumption within homes. 

[Jokisalo and Kurnitski 2005; Paressa et al., 2015, EST 2018]. Furthermore, improved glazing 

is a well-recognised way to significantly improve the overall energy efficiency of the building 

fabric. Without adequate glazing, even an energy efficient heating system, will not work or run 

economically [Paressa et al., 2015; Alessandra et al., 2017]. Lighting is the third largest 

contributor to emissions for UK homes. It accounts for 18% of a typical household's electricity 

demands and therefore if tackled and made efficient, it can have a very positive contribution to 

lowering consumption and overall emissions [Figueiredo and Martins 2010; EST 2017]. Finally, 

renewable systems are a vital part of achieving nZEBs as it is a requirement that energy 

generation within buildings should come mainly from renewables. [Kolokotsa et al., 2010; 

Alessandra et al., 2017]. 
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Hamdy et al., [2013] presented a multi-stage simulation-based optimisation method to 

find cost-optimal and nZEB solutions for a single-family house located in Finland. The results 

demonstrated that a nZEB with a PEC of 70 kWh/m2/yr is economically feasible and a range of 

≥93 and ≤ 103 kWh/m2/yr is a cost-optimal energy performance level. Furthermore, the 

sensitivity analysis showed that an optimal implementation of energy retrofit solutions depends 

on the installed heating/cooling system and the escalation rate of the energy price. A different 

study identified the cost-optimal range for nZEBs as 140 kWh/m2/yr and 0.33 W/Km2 

envelope insulation level, including transmission and infiltration losses per unit heated floor 

area [Kurnitski et al., 2011]. The UK’s current nZEB target stands at 44kWh/m2/ yr for the 

PEC. Giuseppe [2018] combined EnergyPlus and JEplus to conduct parametric energy 

simulations on an existing building case study. Once the combination of all cases was 

established the probabilistic global cost calculations were conducted based on Monte Carlo 

methods. This proposed probabilistic approach based on Monte Carlo proved to be effective 

and useful in comparing how affordable certain EEMs were for designers and home owners. 

Comparison of various wall, floor, roof insulation levels and two types of windows and 

mechanical ventilation with heat recovery systems for a reference residential house showed 

that a reduction of 23-49% in the space heating energy is the optimal range for retrofitting the 

house [Bryne et al., 2016]. Kalema et al., [2008] evaluated four building tightness levels, three 

ventilation-heat recovery types, and nine heating systems to select a cost-effective low-energy 

solution for a residential house. It was found that improving the thermal insulation of the 

building is the most preferable retrofit solution to lowering the dwelling’s heat energy demand. 
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On the other hand, a comparative analysis for the selection of an alternative residential energy 

supply system found that a micro-combined heat and power (CHP) system is a practical and 

cost-effective alternative in comparison to traditional heating systems [Alanne et al., 2007]. 

Despite perceived long payback periods and high initial capital investment costs it was 

demonstrated that triple glazed argon filled windows with a small window to wall ratio, and 

200 mm thick insulation on the wall with a payback period of 20 years present a cost-optimal 

solution for an office retrofit [Pikas et al., 2014]. This highlights the importance of carrying out 

a LCCA to identify which retrofit solutions and EEMs are truly cost-optimal rather than purely 

rely on the capital investment costs as an indicator of cost-effectiveness. A study conducted in 

Portugal in the suburbs of Porto on a multifamily building determined that retrofitting to the 

nZEB standard can be achieved with a payback period of 13.5-15.0 years [Ferreira et al., 2014].  

Rodrigues et al., [2015] concluded that the nZEB standard could be achieved for a 19th century 

masonry building with an 11 year-payback period. Across the literature there is a consensus 

that the payback period for nZEB residential retrofit is generally 15 years or more. 

Kapsalaki et al., [2012] investigated the design of cost-efficient nZEBs in various 

climates. It was found that the differences between a cost-efficient and inefficient nZEB can be 

more than three times in terms of initial and total LCCs. Neroutsou and Coxford [2016] 

investigated whether a deep retrofit of buildings is a better approach in comparison to a retrofit 

strategy with lower capital costs on an existing Victorian house in London. It was concluded 

that rising gas prices, low discount rates, and a long study period made the extensive retrofit an 

economically efficient option. Mc Grath et al., 2013 the operational energy of two case studies 
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pre/post-retrofit and new build. It was concluded that carrying out high-quality retrofit whilst 

an “intrusive” and “costly” process the results were in favour of this type of retrofit. The 

retrofitted building outperformed the new-build by 78 kWh/m2. 

Across the UK’s building energy sustainability literature, very few studies deal with 

reaching the nZEB standard and fewer studies have looked at or considered the costs 

associated with reaching the current standard. Furthermore, no studies have examined whether 

the UK’s current nZEB target, that is stipulated by the government, falls within the EPBD’s 

calculated cost-optimal level requirements. Therefore, based on the review of the literature, the 

overall objective of this work is to investigate whether reaching the nZEB standard for a 

typical UK dwelling is economically viable and whether the current nZEB target matches the 

cost-optimal level that will be calculated within this paper. 

 

3. Methodology 

3.1 Case study 

The case study building selected for this paper is a four-bedroom detached dwelling located in 

Bracknell, Berkshire, England. The dwelling is a typical pre-1990 building and the building 

regulations to which it was built were below today’s standards, making it more challenging to 

retrofit seeing as it may require more energy efficient measures (EEMs) to be incorporated 

before it is able to reach the nZEB standard. In terms of representation, the English Housing 

Survey (2017/18) has reported that 35% of the British population live in detached houses, 

making it the second most common type of residential dwelling, with semi-detached being the 

most common. This in turn leads to higher capital investment costs. The energy model and 
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results will be carried out on Tas v9.4.4 software [Tas Edsl, 2018]. The files used to complete 

the model on Tas are the plan views shown in figure 1a and figure 1b show the outcome of the 

3D model created on Tas. Table 1 is showing a summary of the modelling and simulation 

details. 

The following process will be followed: 

 Building an accurate 3D model on Tas: Tas has both graphic user interface and text- 

based results viewer which facilitates the copying of text information to other 

programs like Excel for analysis. The TAS modeller has the capability of identifying 

and fixing gaps in the space boundaries, incorrectly orientated surfaces and adjacency 

problems. TAS has the facility to optimise the building environment, energy 

performance and occupant comfort, all of which aligns with the scope and aims of this 

work. 

 Thermal simulation of the building and plant/system modelling by the TBD and TSD 

files, respectively. 

 Obtain results such as the energy consumption. The total energy consumption value 

obtained from Tas considers heating, cooling, auxiliary, lighting, domestic hot water 

(DHW) and is the net of any electrical energy displaced by renewable/microgeneration 

systems, if applicable. The PEC is the amount of primary energy consumed in order to 

meet the building’s energy demand (heating, cooling, DHW, lighting, and auxiliaries) 

and is also the net of any electrical energy displaced by C/CHP generators, if 

applicable. 
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 Utilise TasGenOpt v3.1.1 to conduct parametric simulations and generate retrofit 

packages that meet the stipulated nZEB target. See section 3.3 for more detail on 

TasGenOpt. 

 Perform LCCA using building life cycle cost software (BLCC) to obtain LCCs, net 

savings, and payback period for all scenarios including the baseline scenario, 

Refer to Amaoko-Attah and Bahadori-Jahromi (2014) for detailed description of the 

modelling process on Tas. 

 

3.2 Energy model and scenarios 

Per EPBD guidelines “Framework Regulations for calculating cost-optimal levels of minimum 

energy performance requirements (No.244/2012),” individual EEMs were selected and then 

grouped into retrofit packages or sets. These sets are the retrofit scenarios of the dwelling, with 

one scenario being the existing state of the dwelling. The directive has proposed a 

‘cost-optimal range’. To identify the cost optimal level, the LCCs of the various retrofit 

scenarios will be compared to the PEC (kWh/m2/yr) to create a cost-optimal curve as 

illustrated in figure 2a. The lowest point along this curve is the cost-optimal retrofit scenario. 

Furthermore, annex I of the EPBD states that “the energy performance of a (nZEB) 

building shall be expressed in a transparent manner and shall include an energy performance 

indicator and a numeric indicator of primary energy use, …”. It also highlighted that whilst 

member states can use other indicators, they must not neglect setting a specific value for the 

PEC. Based on this, it has been recommended that the energy performance indicator should be 

stipulated as “energy needs for heating and cooling” [Kurnitski 2013]. In essence this means 
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that lowering the energy demand of the building is necessary. For this study, the total PEC will 

be considered on an annual basis. Consequently, the main indicators to be used throughout the 

study to assess whether the building has reached the nZEB standard will be the PEC and CO2 

emissions. As for the energy consumption although its results will be investigated, it will not 

act as an indicator seeing as there is no specific requirement in the EU directive (and as a result 

in any of the currently available nZEB definitions) that require a specific energy consumption 

of the building.  Table 2 is showing a summary of the u-values of the selected scenarios and 

table 3 is showing a summary of the selected scenarios that meet the nZEB target [EC 2017; 

Tas 2018]. 

In order to select individual EEMs and create retrofit scenarios that meet the nZEB target 

TasGenOpt v3.1.1 was utilised. TasGenOpt is a utility within Tas software that performs 

parametric simulations. It minimises the number of simulations and time needed to achieve 

desirable design options (in this case the nZEB standard target values). GenOpt is currently the 

most utilised optimisation tool across the literature and was first utilised by Wetter and Wright 

[2004]. Karaguzel [2014] has demonstrated that Genopt can be used to successfully reduce the 

LCCs of an office building by 28.7% over 25 years whilst reducing the energy consumption by 

33.3%. 

Similarly, Hasan et al., [2008] minimised the LCCs of a typical detached Finnish house 

by combining GenOpt and IDA ICE 3.0. The space heating was reduced by 23-49%. For this 

study, in order to get design solutions that meet the nZEB standard TasGenOpt is utilised to 

find optimised values for the various design variables such as external wall u-values, glazing 
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width and type etc. that result in lower overall energy consumption than the baseline scenario 

[E0]. A range is selected for each of those variables as per typical practise within the literature. 

The range for this study is ±10% from the desired value (nZEB target). As there is no limit to 

the number of input and output variables with TasGenOpt the retrofit scenarios are easily 

generated by inputting multiple variable at once. Figure 2b. is showing an example of how 

TasGenOpt finds the optimum solution for a desired U-value whilst considering the effect on 

the heating and cooling demand (and thereby consumption) on the building. 

 

3.3 Life cycle cost analysis: calculation and assumptions 

The purpose of conducting the LCCA is to be able to analyse which scenario offers the most 

profit, in terms of lowest LCCs and therefore highest net savings. This is in correspondence 

with the EPBD guidelines which state that member states are to select design solutions with 

calculated “cost-optimal levels,” as discussed earlier. However, when selecting the final 

solution, it is essential that one finds a balance between the ‘cost-optimal’ solution and the 

‘near-zero’ solution. Many studies have concluded that cost optimality and reaching the nZEB 

standard are two fundamentally related concepts within the EPBD [Famuyibo 2012; Ferreira et 

al., 2013; Paressa et al., 2015; Alessandra et al., 2017]. Therefore, if one were to focus on the 

selection of only a cost-optimal solution, then a near-zero solution will not be reached, and vice 

versa. 

The evaluation of the global LCCs is carried out according to standard EN 15459-1:2017: 

the LCCs LCC(τ) which is referred to starting year τ0 are calculated by taking the sum of the 

initial investment costs COINIT for component j, the annual cost COa for year i which is 
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discounted by the discount factor D_f (and is dependent on the discount rate α), and the residual 

value VALfin of component j in year TC at the end of the calculation period is referred to starting 

year τ0 [equation 1]. The calculation period is 30 years as recommended by the European 

Commission Delegated Regulation’s guidelines for residential buildings. The residual value 

refers to the remaining value of a measure or a retrofit scenario until the end of its lifespan. The 

European Committee for Standardisation (EU CEN) proposes that residual values are calculated 

by “linearly prorating the initial investment costs.” To elaborate, if we take an EEM with a 

projected useful life of 60 years, with the study period being 30 years, the residual value will be 

roughly 50% of the initial investment costs of that measure. 

 ( ) ( ) ( ) ( )

1

( ) _ ( )
TC

TC

INIT a i i fin

i

LCC CO CO j x D f VAL j 



 
   

 
       (1) 

The real interest rate RR is affected by the interest and inflation rate Rinterest, Rinflation and is 

calculated using equation 2. As for the discount rate  it can be calculated using equation 3. 

Alternatively, for residential retrofit projects such as this it can be obtained from the Office for 

National Statistics, which recommends that for projects of 0-30 years a 3.5% discount rate 

should be adopted. 

1
100

interest inflation

R
inflation

R R
R

R






               (2) 

1

1
100

i

RR


 


 
  

                (3) 
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The net present value, NPVTC is a “multiplying factor that aims to figure the reduction of 

the value at the end of period of calculation” and is calculated according to equation 4. It is 

essentially the sum of the cash flows discounted based on the discount rate which will reflect 

the “cost of money over time” [SCSI 2012]. Because the LCCA includes cash flows and costs 

taking place at various time periods of the life cycle of the dwelling it is essential that all those 

costs are converted to their present values. The present value factor therefore allows for the 

comparison of the calculated costs of LCCA, including the value of projected future costs, 

based on the current value of the money. 

, , ,

1 1 1

,,

1 1

(1 ) (1 ) (1 )

(1 )(1 )

(1 ) (1 )

TC TC TC
MNT i RNT i MSC i

NIT i i i
i i i

TC iiTC TC
GAS i gELEC i e

i i
i i

I

NPV
x ix i

  

 

  

 

  
   

  


  


 

  

 

       (4) 

For this work the NPV is split into costs and savings that result from the initial 

investment (discounted to the time of investment).  The NPV is calculated for each scenario 

and compared to the base-case. The NPV is therefore calculated by summing the (ΔINIT) 

investment cost; replacement and maintenance costs (ΔM/RNT); miscellaneous costs ΔMSC; in 

addition to the cost of electricity and gas consumption multiplied by the real energy price 

increase IEP (for gas and electricity) for year i. The energy price increase rate IEP differs from the 

inflation rate and is therefore calculated using equation 5 where Rep refers to the expected rise in 

electricity and gas prices which equals 1.60% ie and 0.70% ig, respectively [UK Power 2018a]. 

Current average cost of gas and electricity for the UK is 3.80 and 14.37 pence/kWh [UK Power 

2018b]. 
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(1 ) 1
1

1

i

ep ep

EP

R ep R

R R
I

R R R

  
    

             (5) 

Using the above formulae, BLCC software computes the life-cycle costs (in present-value) 

for the base-case and each alternative retrofit scenario. The software also calculates additional 

indicators of cost effectiveness such as the net savings and payback period. 

 

4. Results and analysis 

4.1 Operational energy use 

The various scenarios outlined earlier were implemented in the building on the simulation 

software Tas and the outcome is shown in table 4. On a purely energy target basis, one can see 

that scenario E10 is the optimal solution. The retrofitting measures incorporated for this 

scenario resulted in a reduction of the building’s annual energy consumption and carbon 

emissions of 119.59kWh/m2 (88%) and 43.57Kg/CO2/m
2 (84.23%), respectively. Whilst 

scenario E1 and E2 did not meet the standard (as expected), their annual energy consumption is 

36.61% and 34.54% lower than the baseline model. The carbon emissions also decreased by 

49% for scenario E1 and 46.24% for scenario E2. The reason why scenarios E1 and E2 were 

included in this study, even though they are not nZEBs, is because the incorporation of those 2 

scenarios will provide valuable insight as to whether the nZEB option is in fact more cost 

efficient despite the expected higher initial investment costs. 

 

4.2 Life cycle cost results 

A breakdown of the different costs for each individual scenario has been generated and the sum 

has been used as the capital investment cost. This was gathered from various databases for UK 
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2018 energy retrofit of dwellings [innovate UK; Gov; LCF; EST]. Possible grants and/or loans 

were not taken into consideration for this study, however, schemes such as the Renewable Heat 

Incentive (RHI) domestic scheme and the Feed-in-Tariff (FIT) scheme were considered, where 

applicable. 

The different elements making up the LCCs for each scenario were sorted into the 

following categories: ‘Energy costs,’ ‘Maintenance Costs,’ ‘Replacement Costs,’ and ‘Initial 

investment Costs.’ Energy costs included fuel and electricity costs (space heating/cooling, 

DHW heating, lighting, ventilation, and auxiliary). Maintenance and replacement costs 

involved fabric and systems maintenance and replacements; annual servicing of boilers, CHP, 

and Mechanical Ventilation (MV) filters; and possible typical servicing and repairs throughout 

the study period. Miscellaneous costs refer to any investment costs not related to the EEMs; 

they range from staff fees to planning application costs. 

The comparison of the cost contribution of the different elements of the LCCs shown in 

figure 3 illustrates that for scenarios E3-E10, the capital investment costs, are the most 

significant cost items over the 30 years calculation period. In comparison to this, the most 

significant costs in the E0, E1, and E2 scenarios are the energy costs. It is unsurprising to see 

that the baseline scenario has the highest annual energy costs in comparison to all the other 

scenarios. The average percentage decrease for the energy related costs between the baseline 

and the nZEB retrofit scenarios is 61.64%. 

Comparing the energy and investment costs highlights an interesting relationship; that is, 

the higher the investment cost the higher the potential energy performance of the building. In 
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real life applications however, it is simply not possible to just increase investment costs to 

reach the standard and budgets are usually limited. Therefore, it is necessary to fully explore 

the cost analysis so that the true benefits may be investigated, rather than just take into 

consideration surface values such as the initial investment. However, even a small investment 

still contributes to a reduction in energy costs as demonstrated by scenarios E1 and E2. 

Looking at figure 4, one can see that the total LCCs of all the different scenarios is lower 

than the baseline scenario over the 30 years study period. This means that regardless of which 

scenario is selected for retrofitting, the selected scenario is in fact cost-effective. In other words, 

not retrofitting the property is the most expensive option and least profitable over the 30 years 

calculation period. 

The above results demonstrate that looking for a solution with the lowest initial capital 

investment and shortest payback period is an inadequate indicator of actual cost effectiveness. 

The payback period is often one of the most significant factors for investors when selecting 

energy efficient solutions, therefore an investor may be more inclined to select a solution with 

the shortest payback period even if it is the least profitable solution. Scenarios E8, 9 and 10 had 

the longest payback period of 20 and 22 years, respectively. Scenarios E1 and E2 had a 

payback period which is approximately half the time span of the nZEB retrofit scenarios. 

However, whilst it may seem that the payback period analysis does not justify the high costs, it 

should be noted that this type of analysis does not represent the true economic viability of the 

measures. 
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As mentioned in section 3.1, if a solution was to be selected on a purely energy target 

basis, then scenario E10 is the optimal scenario. Looking at this now from a purely financial 

basis, the results above would suggest scenario E1 is the ‘cost-optimal solution,’ it had the 

lowest LCCs and thereby generated the highest net savings. However, scenario E1 is not a 

near-zero solution. Followed by this would therefore be scenario E3, which generated the 

second highest net savings. 

Interestingly, the total LCCs of all retrofit scenarios were within a very close range of 

£70,000-£73,000. This is because the very small initial investment costs of scenarios E1 and 

E2 meant that energy costs did not decrease significantly in comparison to scenarios E3-E10. 

Meanwhile, despite the substantial decrease in energy costs for scenarios E3-E10, the high 

investment costs meant that the total LCCs remained high. What this indicates is that 

retrofitting the dwelling to nZEB standard may in fact be as cost-effective as the simple retrofit 

of the dwelling which does not contribute as much to overall energy savings. 

 

4.3 Sensitivity analysis 

4.3.1 Effect of varying discount rate 

One of the most significant considerations in LCCA calculations is the discount rate. The results 

presented above assumed a discount rate of 3.5%. Neroustou (2014) states that the discount 

rate “represents a quantification of the uncertainty associated with benefits arising from 

investments.” The discount rate therefore has a significant influence on the LCCs and net 

savings over the study period. Figure 5 demonstrates the effect of increasing the discount rate 

for the various scenarios. The general trend observed is that as the discount rate value is 
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increased, all retrofit scenarios become impractical. In more detail, for scenarios E1-E2 and 

scenarios E3-E10, a discount rate of 8% or more and 5% or more, respectively, means 

retrofitting is no longer cost effective. A discount rate of 2% or less will mean that scenario E3 

surpasses scenario E1, in terms of net savings, and becomes the most cost-effective alternative. 

 

4.3.2 Effect of varying energy/fuel cost 

According to UK Power, it has been predicted that there will be a 35% increase in energy 

demand by 2040, thereby leading to a steadying increase in energy prices. An increase in the 

fuel price by 5% has meant that all the nZEB retrofit options become more cost effective as 

shown in figure 6. On the other hand, increasing the energy price meant that scenarios E1 and 

E2 which are heavily affected by the fuel price, as opposed to the nZEB options, had a 

significant increase in their energy LCCs. This led to an increase in the overall LCCs which in 

turn decreased the net savings. Meanwhile, scenarios E3-E10 experienced an increase in net 

savings as fuel price increased. A decrease in fuel price by 2.5% and more will cause the nZEB 

scenarios to become uneconomical. This is because the LCCs of the E0 scenario decreases 

significantly. However, seeing as such fuels are finite resources it is very unlikely that fuel 

prices will be experiencing any significant reductions compared to current prices. In contrast, 

an increase of 2.5% or more significantly decrease the economic viability of scenarios E1 and 

E2. A 5% increase or more means that those two scenarios will no longer be generating any 

substantial net savings. 
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4.3.3 Effect of varying study period 

From figure 7 it can be seen that a longer study period generates higher overall net savings. 

The net savings are higher for the nZEB retrofit scenarios in comparison to the scenarios E1 

and E2. A study period of 20 years and less means that all nZEB scenarios are no longer cost 

effective. For the nZEB retrofit scenarios this occurred because even with the substantial 

reduction in energy costs, the initial investment cost remains too high and cannot be balanced. 

Meanwhile, a study period of 15 years and less caused scenarios E1 and E2 to become 

unprofitable, because despite the lower investment costs, the large energy costs eventually led 

to the total LCCs increase which decreased net savings. Recent statistics have shown that 

recently homeowners are moving on average 1.8 times over their lifetimes in comparison to 3.6 

times prior to 2008 [Finder 2018; BSA 2018]. This means that homes are being re-mortgaged 

only once every 20 years, with majority of homeowners not moving at all and spending an 

average of 39 years in the property [Finder 2018; FCA 2018]. Projections estimate that this 

figure will only increase with rising house prices across the UK. Therefore, for the average UK 

homeowner a study period of 30 years and more should be considered. 

 

4.3.4 Effect of varying weather data 

The scenarios were simulated once more under future climate projections to see the effect of 

implementing nZEB retrofit under potentially different climatic conditions. The energy costs of 

the scenarios were therefore recalculated based on the new energy consumption values 

generated under future weather projections (assuming the initial constant fuel price). The future 
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weather projections investigated are the ‘High’ scenarios for the 2020s, 2050s, and 2080s 

weather data sets [Cibse 2018]. Interestingly, figure 8 shows a decline in net savings as future 

weather projections are simulated for the nZEB scenarios; meanwhile for scenarios E1 and E2 

there is a slight increase in the net savings. This is because the projections showed a continuous 

increase in temperatures over stipulated timelines which led to an increase in the energy 

consumption. The high levels of insulation and airtightness for the nZEB scenarios meant that 

the cooling demand increased significantly in comparison to scenarios E1 and E2 which did 

not include improvement to the building envelope and therefore were not affected in the same 

way as the nZEB retrofit scenarios. 

 

4.4 Cost-optimal solution 

The results obtained provided valuable insight regarding which measures are the most 

cost-effective relative to their contribution. The following deductions can be obtained from the 

sets of EEMs above: 

Rather than simply increasing the thickness of insulation materials an optimal thickness 

needs to be determined and selected. This can be seen by looking at the U-values for scenarios 

E6-E10, which use the same material but had an increase in thickness. This showed that 

increasing the thickness of material past a certain thickness provided little/no decrease in 

U-values. Although, several variables were changed within the retrofit package, these findings 

have been corroborated amongst other studies [Ma and Wang 2012; Alessandra et al., 2017; 

Salem et al., 2018]. Furthermore, based on the sensitivity analysis results, improving the 
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building envelope should be carefully selected to ensure that under future climate change the 

building can maintain its near-zero status. 

In terms of cost effectiveness, the solar thermal heating system and high efficiency 

biomass boilers are the most cost effective at meeting heating and DHW demand whilst having 

lower initial investment costs and benefiting from their eligibility for the RHI and FIT schemes 

which further lowers the LCCs. Although Ground/Air source heat pumps are eligible for the 

RHI scheme, their very high initial investment costs and the lower efficiency, in comparison to 

the other two measures, mean the investment cost is too high to be justified. Similarly, Moran 

et al., 2017 conducted a LCCA and a sensitivity analysis on 8 Irish dwellings and concluded 

that future nZEB buildings should be designed to utilise heating systems with a “low impact on 

the natural environment, such as a biomass boiler.” 

To meet all/most of the electricity demand a 4kW PV system is the most suitable option 

and will allow the nZEB standard to be reached even if other elements are neglected. This will 

further lower the initial costs. Similarly, the 2kW micro-CHP system can meet and even exceed 

the annual electricity demand of the dwelling. Furthermore, the CHP system also has the 

benefit of supplying heat and can meet most of the DHW demand. Nonetheless, it should be 

noted that nZEBs are intended to be truly energy efficient buildings. Asdrubali et al., (2019) 

concluded that when longer study periods are considered renewable energy technologies offer a 

higher reduction of energy consumption and emissions. Therefore, rather than just meeting the 

near-zero balance, it is important that the energy efficiency of the dwelling overall is improved 

to lower the demand of the dwelling; as opposed to introducing a large renewable system to 
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meet the existing high demand. This is also highlighted by Moran et al., 2017 whereby it was 

found that super-insulated, high air-tight retrofitting offers a better alternative to just adding 

renewable technology in a temperate oceanic climate. However, issues of overheating under 

future climatic conditions must be taken into consideration before implementing such an 

approach [Salem et al., 2019]. The CIBSE adaptive comfort approach places emphasis on 

designing buildings so that they allow occupants to control their environment, thereby comfort 

can be achieved [CIBSE 2013 and 2015]. 

Financially, it is more effective to select double glazing (with a low emissivity coating) 

rather than triple glazing. Although scenarios with double glazing did not meet the nZEB target 

for window u-values, overall the space heating demand, energy consumption, and carbon 

emissions did not vary significantly. Instead, sets with double glazing had lower initial 

investment costs, total LCCs and shorter payback periods thereby leading to higher investment. 

Although other studies have demonstrated that triple glazing can form part of a cost-optimal 

solution, these are typically based in colder climates [Kuusk and Kalamees 2015; Moran et al., 

2017]. 

Mechanical ventilation systems increased investment and LCCs under current and future 

weather projections. Overall, they contributed very little to the overall energy and 

cost-efficiency of the dwelling. Adequate insulation combined with natural ventilation 

performed more effectively under future weather projections. Natural ventilation is typically 

not a realistic option for nZEB buildings, and this is due to the overall ventilation rate changing 

as a result of improving the building envelope. However, because the building envelope in this 
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case will not be significantly improved to the required nZEB standard, natural ventilation will 

now suffice to meet the required ventilation airflow. 

As discussed previously, the directive has proposed that the cost-optimal solution is 

selected based on the comparison of the LCCs of the different combinations of scenarios to the 

PEC of the dwelling (kWh/m2/yr). However, prior to comparing the PEC with the LCCs, the 

nZEB scenarios were altered according to the findings above and their LCCs recalculated. The 

scenarios were altered because, as discussed previously, the initial criteria for the simulations 

focussed only on meeting the nZEB target and having lower total energy consumption than the 

baseline scenario. Whilst this lowered the energy costs, and thereby LCCs, the aim, however, 

was to look further into the type of EEMs that were compatible with the dwelling in terms of 

not only energy performance, but also costs based on the above findings and considerations.  

The alterations were as follows: 

 The insulation of scenarios E3-E10 will be changed so that the external wall is 130 

mm EPS, the Roof and Ground floor are 95 mm and 80 mm XPS, respectively. Any 

further increase in thickness increases costs unnecessarily. 

 Natural ventilation will be simulated for all scenarios 

 Measures which used Ground/Air source heat pumps will be altered so that they use a 

high efficiency gas boiler. 

 All glazing for scenarios E3-10 will be changed to ‘Double Glazing, Argon Filled, 

Low-e.’ 
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The altered scenarios are now labelled AE3-AE10. The LCCs and primary energy 

demand of scenarios E0-E10 plus scenarios AE3-AE10 were used to make up the cost-optimal 

range shown in figure 9. The previous LCC calculations showed that solution E3 was the 

cost-optimal solution. Correspondingly, the altered solutions also demonstrate that scenario 

AE3 is the cost-optimal solution as it is the lowest point on the cost-optimal curve. The 

percentage decrease in investment cost and LCCs between solution E3 and AE3 is 39.12% and 

32%, respectively. In general, the altered solutions showed a 35-45% decrease in cost in 

comparison to the initial scenarios. Whilst this altered solution does not meet all the different 

targets (e.g. u-values) outlined earlier in table 3, the energy consumption and carbon emissions 

did not exceed the nZEB goal. Based on this it can also be seen that the cost-optimal level for 

the retrofit of a typical UK residential dwelling is 75kWh/m2/yr; meanwhile, the UK’s current 

nZEB target stands at 44kWh/m2/ yr. Meaning there is a gap between the current NZEB target 

and the established cost-optimal level. One of the simplest ways to bridge this gap would be to 

improve the rates for the currently available incentive schemes and possibly introduce new 

ones to further support the economic feasibility of the nZEB standard. 

 

5. Conclusions 

This paper explored a LCCA of various energy efficient and nZEB retrofit scenarios on a 

typical pre-1990 UK residential dwelling. Areas of focus to retrofit the dwelling were 

categorised based on a descriptive methodology. A parametric optimisation utility within Tas 

software was adopted to select the sets of retrofit scenarios. 
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The following general conclusions can be made about reaching the standard with a focus 

on cost efficiency, firstly, the building to be retrofitted should be analysed, and its base 

performance determined to establish areas of focus. Based on this, the next step should be to 

select the appropriate retrofit scenarios with EEMs applicable to the dwelling. Once this is 

done the energy performance, including the PEC, of the dwelling for each scenario may then 

be checked for compliance with selected standard. Subsequently, the economic calculations for 

each retrofit scenario may then be carried out for the selected study period. The cost-optimal 

solution may then be selected based on a balance between nZEB targets and the LCCs of the 

retrofit measures. 

The results highlighted that incorporating a renewable/trigeneration system is crucial to 

achieving the Near-Zero standard. Even with triple glazing and very high levels of insulation 

the energy consumption and carbon emissions levels would not meet the nZEB standard when 

simulation trials were being conducted initially. Moreover, incorporating renewables did not 

have a significant impact on overall cost-effectiveness as illustrated by the lack of difference of 

the LCCs between scenarios E1 and E2 and the nZEB scenarios. 

For this paper it was decided that the most cost-effective solution is the nZEB solution 

with the lowest LCCs and therefore highest net savings, which was scenario E3 and finally the 

altered scenario AE3. Scenarios E1 and E2 showed that it is possible to improve the energy 

efficiency of the dwelling with very low initial investment costs (less than £70/m2) and still 

generate net savings. The results showed that with the current prices of EEMs, retrofitting 

dwellings to reach the nZEB standard may mean the initial investment costs are higher than 
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certain landlords’ budget capacity. Therefore, from this point of view it may be more realistic 

to improve the energy efficiency of the dwelling to some extent now by 40-50 percent, as in the 

case of scenarios E1 and E2, then as EEMs’ application becomes more widespread, leading to 

lower costs, they can be incorporated in the future. 

Retrofitting to improve the building fabric increased the overall investment costs 

significantly; meanwhile, their contribution to reducing energy consumption and carbon 

emissions were insignificant in comparison to some of the renewable measures which had 

similar initial costs. Moreover, the energy consumption and carbon emissions targets were 

achieved when the building fabric measures were not improved for the altered scenarios. 

However, this does not mean they should be entirely neglected; as an alternative, building 

fabric material should be carefully sized and selected to reasonably improve overall u-values 

whilst keeping costs to a minimum. This also emphasises that to successfully retrofit existing 

buildings, it will be necessary to redefine the energy performance level of the building fabric to 

match a realistic cost-effective level, that will also consider the requirements of the investor. 

The purpose of conducting the sensitivity analysis is not only to investigate the influence 

of various fluctuating variables and analyse which of those variables have the greatest impact on 

net savings, but to also examine under which conditions do the nZEB retrofit scenarios increase 

in cost-effectiveness. The sensitivity analysis therefore showed that the ‘ideal’ combination of a 

discount rate , an increase in fuel price , and a longer (  calculation/ 

investment period considered will mean the nZEB retrofit scenarios become more cost-effective 

for the homeowner. It was interesting to observe that the nZEB retrofit scenarios decreased in 
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cost efficiency as future weather projections were simulated. To counteract this issue, two 

options are available, one would be to include an energy efficient cooling system as part of the 

retrofit. On the other hand, the other option would be to exercise cautiousness when improving 

the building fabric to avoid any overheating because of raised temperatures in the future. 

Generally, this illustrates the importance of careful planning and designing to retrofit a resilient 

building that performs up to standard even under potentially different climatic conditions. 

Although there was a mismatch between the PEC for the current nZEB target and the 

cost-optimal solution, the results demonstrated that the nZEB retrofit is still a viable option in 

comparison to the baseline scenario over the 30 years study period. 

Overall, the cost-optimal solution that was selected for this paper was based on net 

savings over the calculated study period. In real life applications, the cost-optimal solution will 

largely depend upon the requirements of the investor. However, the same steps of creating 

several retrofit scenarios and comparing them is essential to reaching the nZEB standard with 

cost-optimal levels. 
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Table 1. Summary of modelling and simulation details 

 

Construction database NCM Construction -v5.2.tcd 

Zone - occupancy levels, people 

density, lux level 

Bedroom - 0.0229 person/m2, 100 lux 

Toilet (water closet/WC) - 0.024 person/m2, 100 lux 

Food prep/ kitchen- 0.023 person/m2, 300 lux 

Bathroom – 0.0187 person/m2, 150 lux 

Circulation - 0.016 person/m2, 100 lux 

Common area – 0.0196 person/m2, 100 lux 

Lounge – 0.0188 person/m2, 150 lux 

Dinning – 0.0169 person/m2, 150 lux 

Building Fabric – Calculated 

area weighted average U-values 

Wall – 0.32 W/m2K 

Floor – 0.57 W/m2K 

Roof – 0.29 W/m2K 

Window – 3.45 W/m2K 

Cooling No Cooling system 

Heating Type: conventional boiler system 

Fuel: natural gas 

Temperature Set point: 21oC 

Heating Capacity: 2kW 

Working Temperature: 50-70oC 

Heating distribution: Central heating radiators 

Schedule: October-April 5am-9pm [ONS, 2017] 

Domestic Hot Water (DHW) Type: Gas boiler 

Temperature: 50oC 

Average daily consumption: 140 litres per person per day 

Ventilation Type: Passive/Natural 

Schedule: 8am-10am; 7pm-8pm 

Fuel Source Natural Gas – CO2 Factor – 0.198 Kg/kWh 

Grid Electricity - CO2 Factor – 0.4121 Kg/kWh 

Orientation 51.4174° N; 0.7249° W; +0.0 UTC 

Air Permeability 6 m3/h/m2 @50Pa 

System efficiencies  ASHP – COP of 3  

GSHP – COP of 3 

CHP – 37% elec. efficiency & 47% heat efficiency  

Biomass Boiler – 85% efficient  

MVHR -Specific fan power = 0.5 & heat recovery efficiency = 

90% 

SWH – Zero loss collector efficiency = 0.81; heat loss coefficient 

= 3.9  

Downloaded by [ University of West London] on [07/05/19]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript 
doi: 10.1680/jensu.18.00055 

40 
 

Weather data  TRY (CIBSE) for London. Includes: Global solar radiation, 

Relative Humidity, Wind Speed and Wind direction, Dry Bulb 

Temperature, Diffuse Solar radiation, and Cloud Cover. 

Occupancy Profile Weekday [Mon-Fri]: 6pm-8am 

Weekend [Sat-Sun]: 24 hrs [ONS, 2017] 
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Table 2. The nZEB target values and summary of u-values for all scenarios 

 

 Detached House 

(‘Balanced’/nZEB)1 

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 

External Wall 

U-value 

(W/m2k) 

0.15 0.32 0.30 0.32 0.17 0.16 0.15 0.33 0.30 0.16 0.15 0.15 

Ground floor 

U-value 

(W/m2k) 

0.13 0.57 0.57 0.56 0.15 0.14 0.13 0.13 0.14 0.14 0.12 0.10 

Window 

U-value 

(W/m2k) 

0.80 3.45 2.93 2.70 0.80 0.95 0.81 0.90 1.12 2.65 2.80 2.32 

Roof U-value 

(W/m2k) 

0.13 0.29 0.27 0.30 0.12 0.15 0.15 0.17 0.15 0.12 0.11 0.11 
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Table 3. Summary of all the different scenarios selected to undergo simulation and lifecycle cost (LCC) analysis 

 

Scenario Energy Efficient Measures (EEMs) -NCM constructions database v 5.2.tcd 

 EEM1 

(Thermal Insulation) 

EEM2 (Ventilation) EEM3 (Heat/ 

Domestic Hot 

Water -DHW) 

EEM4 

(Lighting) 

EEM5 (Glazing) EEM6 

(Renewable/Microgeneration 

Systems) 

E0 (Baseline) External wall: 85mm mineral wool 

quilt 

Roof: 50mm mineral wool quilt 

Ground floor: 35mm Expanded 

polystyrene (EPS) 

Natural Ventilation Old gas boiler Incandescent Uncoated glass, air filled N/A 

E1 (Energy 

efficient -but 

not nZEB) 

External wall: 85mm mineral wool 

quilt 

Roof: 50mm mineral wool quilt 

Ground floor: 35mm EPS 

Natural Ventilation  Low 

Temperature 

Hot Water 

(LTHW) 

boiler 

Incandescent Double Glazing, Air 

filled, Low-e 

2kW Solar thermal heating 

(Flat collectors) 

E2 (Energy 

efficient -but 

not nZEB) 

External wall: 85mm mineral wool 

quilt 

Roof: 50mm mineral wool quilt 

Ground floor: 35mm EPS 

Natural Ventilation High 

Efficiency gas 

boiler 

Incandescent Double Glazing, Coated 

glass, Argon filled 

2kW Solar panels [18 panels 

– 28.8m2] 

E3 External wall: 95mm Rock Wool 

Roof: 95mm Extruded Polystyrene 

(XPS) 

Ground floor: 140mm XPS 

Mechanical 

Ventilation: Natural 

inlet and 

mechanical extract 

8kW Ground 

Source heat 

pump 

(electric) 

Light emitting 

diode (LED) + 

Auto Presence 

detection 

Triple Glazing, Argon 

filled, Low-e 

Monocrystalline Solar panels 

(roof) - 16% efficient 3kW 

module (with electricity 

storage) 
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E4 External wall: 95mm Mineral 

wool batt 

Roof: 95mm Mineral wool batt 

Ground floor: 100mm mineral 

wool 

Mechanical 

Ventilation with 

heat recovery 

(MVHRV) 

High 

Efficiency 

(gas) Boiler 

Compact 

fluorescent 

lamp (CFL) + 

Auto presence 

detection 

Triple Glazing, Air filled, 

Low-e 

Monocrystalline Solar panels 

(roof) - 20% efficient 4kW 

module (with electricity 

storage)  

E5 External wall: 120mm Glass wool 

quilt 

Roof: 95mm Glass wool  

Ground floor: 150mm mineral 

wool 

Mechanical 

Ventilation with 

energy recovery 

ventilator 

High 

Efficiency 

(gas) Boiler 

LED Double Glazing, Argon 

filled, Low-e 

Micro-CHP 2kWe with heat 

recovery system 

 

E6 External wall: 100mm EPS 

Roof: 95 mm XPS  

Ground floor:  60 mm XPS 

Mechanical 

Ventilation with 

variable refrigerant 

flow (VRF) 

6kW Ground 

Source Heat 

pump 

Halogen 

incandescent 

(with dimmers) 

Triple Glazing, Argon 

filled, uncoated 

Monocrystalline Solar panels 

(roof) - 16% efficient 3kW 

module  

E7 External wall:  120mm EPS 

Roof: 100mm XPS  

Ground floor: 70 mm XPS 

Mechanical 

Ventilation: 

Mechanical inlet 

and extract 

High 

Efficiency 

(biomass) 

Boiler 

CFL Triple Glazing, Air filled, 

uncoated 

Monocrystalline Solar panels 

(roof) - 20% efficient 4kW 

module  

E8 External wall: 130mm EPS 

Roof: 120mm XPS  

Ground floor: 80 mm XPS 

Automatic 

mixed-Mode 

ventilation 

LTHW (gas) 

Boiler 

LED Triple Glazing, Argon 

filled, Low-e 

Micro-CHP Fuel Cell 

System– 2kWe  

E9 External wall: 160mm EPS 

Roof: 130mm XPS  

Ground floor: 90 mm XPS 

Mechanical 

Ventilation with 

heat recovery 

(MVHR) 

5kW Air 

Source Heat 

Pump 

(ASHP) 

LED Double Glazing, Coated 

glass, air filled 

Monocrystalline Solar panels 

(roof) - 16% efficient 3kW 

module (with electricity 

storage) 
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E10 External wall: 180mm EPS 

Roof: 140mm XPS  

Ground floor: 100 mm XPS 

Mechanical 

Ventilation with 

VRF 

High 

Efficiency 

(gas) Boiler 

CFL Double Glazing, Argon 

filled, low-e 

Micro-CHP 2kWe 
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Table 4. The nZEB target values and summary of results for all scenarios. 

 

 Detached 

House 

(‘Balanced’

/nZEB)1 

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 

Air permeability 

rate (m3/h/m2 

@50Pa) 

1.0-5.0 6.0 3.5 5.0 2.5 2.2 1.5 2.5 2.5 2.0 1.0 1.0 

Space 

heating/cooling 

demand 

(kWh/m2/yr) 

46 76 60 65 47 46 45 48 46 46 45 44 

Annual Energy 

Consumption 

(kWh/m2)2 

10-19 135.91 86.15 88.96 17.64 19.12 17.34 19.60 18.79 17.69 17.03 16.32 

Annual Carbon 

Emissions 

(KgCO2/m2)2* 

10 51.73 26.38 27.81 10.56 9.94 7.73 10.75 10.12 9.59 9.20 8.16 

1 Values are obtained from Zero Carbon Hub [ZCH, 2009-216]  

2/2* Final values are shown after displaced electricity (because of renewable/ trigeneration systems) has been considered where applicable 
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Figure 1. Floor plans and 3d modelling outcome of the building case study [Salem et al., 2018]. 

(a) Floor plans of the case study building with a scale of 1:50. (b) Tas 3D Modelling results 

 

 

(a) 

 

(b) 
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Figure 2. (a) Reproduced example of a cost-optimal curve. (b) Reproduced example of 

selection of the optimum u-value using TasGenOpt 
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Figure 3. Breakdown of the various factors of the total LCCs 
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Figure 4. Results of the LCCs calculation for the various scenarios 
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Figure 5. Effect of varying the discount rate on net savings (present value - £) 
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Figure 6. Effect of varying energy/fuel cost on net savings (present value - £) 
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Figure 7. Effect of varying the study period on net savings (present value - £) 
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Figure 8. Effect of varying the simulated weather data on net savings (present value - £) 
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Figure 9. Life cycle costs against primary energy consumption for all the retrofit scenarios 
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