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A STATISTICAL ANALYSIS OF THE DYNAMIC RESPONSE OF A
RAILWAY VIADUCT

André H. Jesusa, Zuzana Dimitrovováa,∗, Manuel A.G. Silvaa

aDepartment of Civil Engineering, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516
Caparica, Portugal

Abstract

A statistical analysis of the dynamic response of a railway viaduct, modelled after an actual structure,
is presented. The finite element model of the viaduct is based on the data provided by the Portuguese
Railway Company REFER EPE. The train load is simplified by a set of constant moving forces and
the range of velocities implemented corresponds to typical velocities of circulation. The viaduct is
composed of eight modules, but, for the sake of simplicity, only the first viaduct module is included in
the analysis.

In order to perform the statistical analysis, the viaduct is subjected to a two-level factorial design. It
is shown that key parameters cannot be analysed individually because in some cases interaction effects
can be more important than single effects.

Response functions of significant results are presented. Their usage for dynamic response estimates
is exemplified. Further it is shown how they can be used for the determination of a probability that a
certain value of interest is exceeded, provided the range of key parameters corresponds to the interval
of uncertainties, where the true value obeys the normal distribution.

This type of straightforward application of statistical analysis highlights the interaction of adequately
selected key parameters, provides useful information for design guidelines and is believed to lead to
better planning and more realistic representation of the actual response of railway bridges.

Keywords: dynamic analysis, railway bridges, resonance, factorial design, residuals, response
function

1. Introduction

1.1. General
Railway bridges are important connecting in-

frastructures that require specific design consider-
ations supported by an adequate numerical mod-
elling. The wide range of factors that influence
the design, followed by the choice of the adequate
numerical procedure, requires a fair amount of
simplifications of this complex system.

∗Corresponding author
Email addresses: andrehjesus@gmail.com (André

H. Jesus), zdim@fct.unl.pt (Zuzana Dimitrovová),
mgs@fct.unl.pt (Manuel A.G. Silva)

Deterministic analyses of complex engineering
structures can lead to wrong conclusions, because
of uncertainties in the input data. Therefore a sta-
tistical treatment of input as well as output should
be accomplished. In this context determination of
key input data governing the dynamic response
of the system is extremely important. Numerical
models usually require calibration measurements
to achieve the model/structure agreement. How-
ever, field measurements are also subject to ex-
perimental error.

Although simplified models of railway tracks
are widely used, the growth in numeric and
computational efficiency made complete models
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involving several structural details feasible and
preferable. The computational speed is a very im-
portant factor and based on hardware and algo-
rithmic efficiency has been constantly improving
over the years. Therefore, some computationally
intensive statistical methods have become usable.
Statistical methods can enhance the analysis by
providing results that are more realistic, and con-
sequently give a better insight on the situation of
interest and help in the calibration of the models.

1.2. Bridge and train models
Over the last centuries various types of bridge

models have been developed to address the fun-
damental problems of bridge dynamics. Due to
the rich history and considerable extent of the
topic a general review would be unnecessarily
lengthy. The progress in numerical methods, like
the finite element (FE) method, presents very ac-
curate and efficient modeling of complex mecha-
nisms [1]. The components of the bridge and rail-
way track can be modelled in a simpler or a more
sophisticated manner depending on the objectives
of the model [2].

There are essentially two cases of dynamic mod-
els: either with continuously distributed mass,
or with lumped masses along the length of the
bridge. Other models implement a combination
of those two approaches. Some of the contin-
uum models of simply-supported Euler-Bernoulli
beams [2, 3, 4] were by far the most popular, due
to their simplicity and ability to lead to closed-
form solutions. These models are still frequently
used, e.g. in the analysis of a bridge-track-train
interaction [5]. Despite the fact that these con-
tinuum models are a good first approximation of
the bridge system, their practical applicability is
limited to bridges of simple configuration.

There are mainly three types of models with re-
gard to loading: (i) the moving force model [6, 7];
(ii) the moving mass model [8, 9]; and (iii) the
moving system model [10, 11] that comprehends
a system of masses, springs and dampers. In the
present work the moving force model can be safely
used since the ratio of the moving mass load over
the mass of the bridge does not exceed 30 % and
the load velocity will not reach 20 % of the crit-

ical one, as shown by parametric analysis [12].
This simplification was already used in the au-
thors’ previous work [13] and it is also mentioned
in the monographs [1, 2].

1.3. Design of experiments
To idealise railway bridges the associated com-

ponents of the structure are subject to certain
simplifications and the input data to a related
numerical model are supplied with a certain level
of uncertainty. The additional overall complexity
of the problem can significantly mislead the cal-
culated response when deterministic models are
employed. Statistical method analyses implement
data within a certain range and consequently the
calculated response is determined with a certain
probability of occurrence giving a better insight
of this problem. This approach of combined dy-
namic response of bridges with statistical treat-
ment by design of experiments is under growth in
the scientific community. It can be found in [14]
and related works of the first author. In Kar-
alar [15] statistical methods are applied to the
analysis of isolation of bridges. Structural health
monitoring (SHM) on bridges is another field of
structural engineering that is currently employing
statistical treatment [16, 17].

Previous works addressing parametric analyses
of railway bridges considered the influence of key
parameters (factors) individually. It is clearly
shown in many statistical publications [18, 19, 20]
that this one-variable-at-a-time strategy fails fre-
quently because it tacitly assumes that the max-
imising value of one variable is independent of the
level of the other. Simultaneous consideration of
the influence of several key parameters provides a
better representation of reality.

Statistical analysis of numerical results allows
to define a set of key input data and key results, in
order to study complex mechanisms interactions
and understand if the involved factors play a role
in the response in an interactive or simply addi-
tive way. Key factors are selected by the user and
the factorial experiment stands for the statistical
analysis of the variance of the results due to the
changes in the key input data. One of the possible
usage of such outcomes is the calibration of nu-
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merical models. Then the determined key results
identify the characteristics to be measured by in-
situ experiments [21] and the key input data serve
for model calibration. The experimental design,
if adequately adjusted to the situation can reduce
significantly the experimental error. Another us-
age, implemented in this paper, is to consider the
variations of key input data in accordance with
the uncertainty of the actual values, i.e. to assume
that the key input value occurrence within the
specified interval verifies the normal distribution
with the mean coincident with the middle value.
Associated standard deviation has to ensure negli-
gible probability outside this interval. Then from
the approximate response function it is possible
to determine the probability of exceedance of a
certain result depicted by the user.

Dynamic analysis of a viaduct involves a large
number of variables and is therefore unsuitable
for a direct factorial analysis. It is preferable to
run several parametric studies first and gradually
select the most relevant factors. In a previous
work [13] ballast stiffness, concrete stiffness, soil
stiffness, train speed, ballast damping and rail-
pad damping were selected as key factors. In
this context the concrete stiffness is represented
by Young’s modulus. The main conclusions re-
garding peak displacements revealed dominance
of single effects, led by the concrete stiffness for
displacements at the deck level and by the train
speed for displacements at the soil level. Peak
accelerations showed strong interactions between
factors led by the train speed and its interaction
with the ballast stiffness. It was concluded that
this interaction deserves more attention, which is
conducted in this paper. Due to the fact that the
influence of the concrete modulus is obvious and
affects significant part of the model, this factor
was omitted and attention was focused on the rail-
way superstructure. It is shown that the super-
structure parameters can influence significantly
the global behaviour. In order to detail the ballast
stiffness interaction with the train speed, also dy-
namically activated ballast mass, ballast constitu-
tive model and damping are included in the anal-
ysis. The ballast behaviour model is considered
in this paper as the only qualitative factor. Only

one single force and one value for the reference
train speed 180 km/h was used in [13]. Hence,
special attention is placed here on the train speed
and on a more realistic train model.

The question of whether the train speed is a
valid factor in the two-level factorial analysis is
addressed in detail. It is known (e.g. Yang [1])
that structures subjected to repetitive moving
loads increase their dynamic response at reso-
nance speed. The analysis presented in Yang [1]
is valid for simply supported beam representing
the bridge. This analysis can be extended to dou-
ble beam with an elastic layer. Results are not
easily obtainable analytically, but a simple model
can be tested numerically. Details of this analysis
are given in Section 4.1. It was concluded that
within the range of typical train velocities it is
safe to perform two-level factorial design, where
one of the factors is the train speed.

Given the summary above the objectives and
new contributions of this paper are:

(i) To check the existence of new dominating
factors and interactions that influence the
dynamic response results with importance
on the superstructure;

(ii) To show numerically that interaction effects
can be more important than single effects;

(iii) To establish the final response function and
to calculate the probability of exceeding a
certain value of interest.

2. The Santana do Cartaxo viaduct

Train specification and in-situ measurements of
the soil foundation properties were supplied by
REFER EPE [22]. The case study refers to a
location in the Portugal North Line, second sub-
link Setil Sul Vale de Santarém, which develops
from km 56 + 625 until km 65 + 287 and is part
of the rehabilitation of the North Line. The San-
tana do Cartaxo segment, where a new railway
was included over a viaduct built at km 59 + 000
to km 60 + 000 (Figure 1) is an exception in the
rehabilitation, which otherwise follows closely the
original railway route design. A more detailed de-
scription of the structure can be found in previous
work of the authors [13].
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(a) General view

(b) Embankment

Figure 1: Santana do Cartaxo viaduct

The viaduct is composed by a set of eight mod-
ule sections in the longitudinal direction. Each
module is connected to the other through transi-
tion pillars which are larger and have more piles
than the intermediate pillars. Designating by as-
cending direction (AD) the one from south to
north and by (DD) the descending and oppo-
site one, then the first of the eight modules com-
prises three spans of 25, 30, and 25 m, finalizing
a length of 80 m, while the other seven modules
have spans of 25, 4×30 and 25 m, yielding the
length of 170 m, bringing the total viaduct length
to 1312 m. On the plan view (see Figure 2) the
viaduct develops linearly and at the end starts a
left transition curve of 1750 m radius.

The geological layers are visualised in Figure 2.
Material properties were obtained by in-situ mea-
surements and are given in Appendix A. The allu-
vium layer is divided in three geologically different

P1P2P3 P46

3
3m

1312m

Alluvium

Miocene

Pleistocene

Emb.Emb.

and Miocene

AD DD

Figure 2: Viaduct top and left view

categories A1, A2 and A3, but regarding their me-
chanical properties they can be grouped in two
categories A1 and A2/A3. For the sake of sim-
plicity, in this paper a single layer with average
properties is considered.

The traffic over the viaduct is practically
equally distributed between Alfa Pendular and In-
tercidades trains (Figure 3). Travelling speeds can
be seen in Table 1.

Locomotive Mass
[ton]

Speed
[km/h]

Merchandise
TAKARGO

LE-4700 87 100

Passengers
Intercidades

CP-5600 87 190 (AD);
180 (DD)

Passengers
Alfa Pendular

CP-4000 58 190 (AD);
180 (DD)

Table 1: Circulation characteristics

The Intercidades train was selected to perform
analyses in this paper.

3. Finite element model

3.1. General considerations

The numerical model is developed with the
ANSYS/LS-DYNA module. The parametric
analyses with automatic extraction of key results
are coded with APDL (ANSYS parametric design
language) [23].

For the sake of simplicity, only the first of the
eight modules, the one having three spans of 25,
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(a) CP-5600 Locomotive

(b) Corail carriage

Figure 3: Train photos

30 and 25 m, is modelled. This module is sup-
ported at its ends on one embankment and one
transition pillar that connects it with the rest
of the viaduct. The other seven modules were
modelled by representative spring and dampers.
Bending natural frequencies were used as a base
for checking the accuracy of the modulation, be-
cause bending vibration modes have decisive con-
tribution to the dynamic response. As the model
is fully parametric it was easy to compare nat-
ural bending frequencies of an arrangement con-
stituted by either one or two modules, and they
were found sufficiently proximate.

Several structural simplifications, generally
adopted by other researches, that keep the com-
putational effort at a tractable level were intro-
duced. Rail-pads and ballast are represented by

linear and rotational spring and damper elements
acting in three directions. The arrangement is
a three-dimensional extension of the system used
in [24] and it is displayed in Figure 4.

Rails, sleepers, pillars, foundation blocks and
piles have one dominant dimension and therefore
are approximated by beam elements. Low thick-
ness with respect to cross section of the viaduct
deck justifies implementation of shell elements on
the viaduct deck. The viaduct pillars are mod-
elled with a rectangular section and connected at
the top to the shell elements that represent the
lower deck. The connection allows for rotation
around an horizontal axis parallel to the sleep-
ers. The piles and foundation block are idealised
as a pair of beams connected by a third concrete
block. Beam elements are superposed directly on
the edges of soil elements to avoid additional con-
straints. Only a part of the soil layers is included
and modelled by three-dimensional elements. The
surrounding soil is substituted by representative
springs and dampers. Springs represent the rigid-
ity of the surrounding layers and dampers ensure
smooth wave propagation into surrounding layers
without reflections from the artificial boundary.
The method of coefficients estimation of these
representative springs and dampers and their val-
idation is presented in the previous work [13].
Some remarks are also included in Appendix C.
Springs and dampers are also used to model the
embankments.

y

z x

cδ

kθ

cθ

kδ

δ = x, y, z

αβ

θ = α, β
ballast

rail pad

Figure 4: Spring-damper ballast system

All input data used in the numerical analyses
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are summarised in Appendix A, B and C.

3.2. Modal analysis

(a) 2.645 Hz (b) 3.158 Hz

(c) 3.507 Hz (d) 5.030 Hz

(e) 5.783 Hz (f) 6.809 Hz

(g) 6.981 Hz (h) 7.125 Hz

(i) 8.160 Hz (j) 9.392 Hz

Figure 5: Mode shapes

The ten first mode shapes are illustrated in Fig-
ure 5. The first three bending modes are the 5th,
the 7th and the 8th mode, respectively, shown in

Figure 5e, g and h. A simple check shows that
the value of 5.78 Hz is comparable with the ap-
proximate value, obtained for a simply supported
beam corresponding to the middle span.

The modal analysis was also used to certify
the representative stiffnesses of the lateral springs.
For numerical values consult Appendix C.

3.3. Experimental validation
The adequacy of the finite element model is

being confirmed experimentally by in-situ mea-
surements. Detailed analyses will be submitted
as a separate research paper. The first indica-
tion of the validity of the numerical model and
results is the confirmation of the first bending fre-
quency. Velocity profiles were measured by geo-
phone sensors during train passages and trans-
formed by Fourier transformation into frequency
domain. The extraction point of this result is lo-
cated at the deck level inside the central span of
the module on a small containing wall located at
4.4 m from the viaduct central axis. The sensor
was glued to the wall in order to avoid relative
slips and inherent vibrations of the device.

It is seen in Figure 6 that the experimen-
tally measured first bending frequency is around
5.72 Hz, the one from the explicit model indicates
5.63 Hz, and the implicit model gives 5.78 Hz. It
is noted that the ANSYS explicit module does not
perform modal analysis and the estimate was ob-
tained by Fourier transformation of the velocity
results. The value of 5.63 Hz includes the effect
of damping, differently from the implicit model.

It is also worthwhile to add that geophone mea-
sures are not viable below 2 Hz and therefore these
values are not shown.

This validation also confirms that viaduct mod-
ules do not interfere significantly and thus it is
possible to analyse them separately.

3.4. Nonlinear ballast behaviour
Ballast behaviour was selected as a qualitative

factor for the factorial design and a nonlinear be-
haviour (high level) was tested against the lin-
ear one (low level). All the ballast springs are
assumed to have either linear or nonlinear be-
haviour. A type of nonlinear behaviour curve
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Single-Sided Amplitude Spectrum of y(t)

Frequency (Hz)

|Y
(f
)|

2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5 ×10−3

measured
numerical

Figure 6: Numerically and experimentally obtained veloc-
ity in frequency domain

and a connection between the linear and nonlin-
ear behaviours was established. According to [25],
the appropriate function describing the nonlinear
ballast behaviour has a cubic polynomial form.
The parameters (coefficient with the linear K̃l and
cubic terms K̃c), that govern the nonlinear be-
haviour were calculated from two conditions: (i)
same elastic force at a given displacement and (ii)
same elastic energy accumulated at a given dis-
placement. The linear elastic force in the former
condition was reduced to 90 %, thus:{

0.9Fl(δ1) = Fc(δ1)
Ul(δ2) = Uc(δ2)

(1)

where Fl and Fc represent the elastic forces, and
Ul and Uc stand for the accumulated energy in
the linear and nonlinear (cubic) springs, respec-
tively, and δ1 and δ2 are the specified displace-
ments. Displacement δ2 was chosen as a typical
displacement of 1 mm and δ1 as 50 % of δ2, i.e.
0.5 mm. It was verified numerically that changing
δ2 does not affect the results significantly.

Solving the equations for the coefficients of the
cubic spring, one gets:

K̃l =
0.1Kl(−20δ21+9δ22)

−2δ21+δ
2
2

K̃c = 0.2Kl

−2δ21+δ
2
2

(2)

The graph in Figure 7 presents a typical force
displacement relation of the linear and cubic
springs related to the vertical spring, i.e. when
Kl is equal to 120000 kN/m.

Linear - cubic spring

Displacement δ (mm)

Fo
rc
e
F
(k
N
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

linear
cubic

Figure 7: Cubic (solid green) and linear (dashed red)
spring force-displacement graph

4. Results

Explicit analysis is performed with LS-DYNA
software with a time step calculated according to
the element sizes and properties as 0.017 ms. The
full train needs 4.47 s to traverse the model at the
speed of 185 km/h, which would imply an exces-
sive number of results to be filed. Therefore only
results from 500 selected files are saved and re-
sults are not available for all times. The model has
64878 elements and each analysis took around 2 h
and a half for the speed of 185 km/h and around
2 h for the speed of 195 km/h. Mesh size is vari-
able over the model; it gradually increases from
10 cm in rail to 1 m in soil. Small elements in rails
were chosen in a way that allows adequate repre-
sentation of the rail deformation between sleepers.
It was verified numerically that soil elements are
sufficiently small.

4.1. Resonance parametric analysis

In this section results of parametric analyses
with respect to the velocity of the moving load
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are shown in order to confirm that there is no in-
crease of the structural response within the inter-
val of analysed train velocities. Factors variation
is given in the next section, but it is advanced
that two reference velocities were selected with
2.7 % variation covering approximately the inter-
val from 180 to 200 km/h, which corresponds to
the range of true operating velocities.

The critical velocity vcr of a load moving on a
simply supported beam is derived e.g. in Frýba [4]
as:

vcr = 2f1L (3)

where f1 is the fundamental frequency and L
is the beam length. By using the numerical
value of 5.63 Hz, which corresponds to the first
bending mode and essentially excites the middle
span of 30 m length, the critical velocity yields
337.8 m/s=1216 km/h. Therefore the critical ve-
locity of a single load is not of concern. Note that
in this case it makes more sense to use the first
frequency from the explicit model.

Resonance resulting from the successive pas-
sage of equidistant loads or groups of loads was
analysed by several authors. The analysis given
in monograph [1] is valid for simply supported
beams. The resonance velocity vresn,j is derived as:

vresn,j =
fnd

j
(4)

where d is the distance between the loads, fn is
n-th natural frequency in Hz and j is an inte-
ger (see Figure 8). In such a case the deflection

v
d d d

d d d

Figure 8: The model of simply supported beam under a
moving train, adapted from [1]

shape is first mode dominant, the contributions
of other modes decrease with 1/n2 and therefore
only n = 1 can be considered. For the same reason
also the second resonant velocity (j = 2) is not
very important and does not produce significant

response increase, especially in downward ori-
ented displacement.

It is known that simply supported beam on
elastic foundation behaves differently, the order
of the mode having the highest contribution
can be calculated as the closest integer verifying

jcr =
L

π
4

√
k

EI
(5)

where k is the stiffness of the foundation and EI
is the bending stiffness of the beam. The drop
in other modes contributions is not so significant
as in the previous case [26]. In a mixed case
of double beam with an elastic layer where
the lower beam represents the deck, the upper
beam the rail and the elastic core stands for the
ballast, conclusions are dependent on the relative
stiffnesses.

In our case, due to the high bending stiffness
of the viaduct deck, ballast springs and the up-
per beam (rail) have very small influence on the
natural frequencies and relative modes contribu-
tions. It was verified numerically on a simple
finite element model of the corresponding dou-
ble beam, that the response is again first mode
dominant and, for instance, the third mode fre-
quency is only less than 3 % below the third fre-
quency of an equivalent simply supported beam.
The deflection shape of the rail resembles the
deflection of a beam on an elastic foundation su-
perposed to the global deck deflection, that is
dominant. The extreme values are again governed
by the first natural frequency as in the case of a
simply supported beam described above. For this
reason the formula (4) can be used.

The distance between bogies in the Interci-
dades locomotive CP-5600 and in the carriages
is 10.5 m and 18 m, respectively. The length d
from Figure 8 is 26.4 m. This means that for
f1 = 5.63 Hz, velocities of 59.1 m/s=213 km/h,
101.3 m/s=365 km/h and 148.6 m/s=535 km/h
should be tested for possible resonance. It is seen
that only the first value is close to the range of
operating velocities.

The maximum downward displacement of the
middle point of the middle span on the external
rail subjected to the load was extracted in para-
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metric analysis where the velocity variation step
was 1 km/h. The numerically obtained velocity
that induces the highest value is 205 km/h (see
Figure 9a), which is quite close to the analyti-
cally determined velocity of 213 km/h. It is seen
that the variation of the maximum displacement
within a much larger range of velocities than the
one examined is only around 4 % and therefore
negligible. Larger variations would be seen in up-
ward displacements, but this was not analysed in
this paper. From the factors considered in this pa-
per the ones that influence the natural frequencies
and consequently the resonance peaks in velocities
are the ballast stiffness and the dynamically acti-
vated ballast mass. Considering these variations,
the first bending frequency suffers changes only
within 0.5 % and thus the same change is trans-
ferred to the resonance velocities. This change,
however, still places the low resonance peak out-
side the examined interval.

In Figure 9b the deflection curves for subse-
quent velocities from 197 km/h to 206 km/h are
plotted. It is seen that there is no increase of the
response as subsequent loads are passing. Also,
the residual response, i.e. the response of the
middle point when the load is over the bridge,
does not present excessive values. There is a sud-
den change in displacement shape of the curve
related to 200 km/h, but local extreme values
are not significantly different and thus it can be
considered that the smooth changing in the ve-
locity induces smooth changing in the response,
confirming that the two-level factorial analysis
with one of the factors being the train veloc-
ity can produce valid results. The effect of res-
onance is not pronounced due to the vertical
flexibility of the supports (pillars), which gener-
ally smoothes the resonance response, and, in ad-
dition, by influence of the other spans that act as
rotational springs at the simple supports of the
middle span.

4.2. Statistical analysis
The statistics toolbox of Matlab [27] was used

to produce deviation plots of single effects and
interactions from a reference normal distribu-
tion, response functions and residuals diagnostic
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(a) Maximum downward displacement variation in mid-
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(b) Time variation of displacement for set of velocities
between 197 and 206 km/h

Figure 9: Parametric analysis of maximum displacement

checks.

Key results (vertical)
Factors (variation) Peak acceleration

velocity, displacement
A. Ballast stiffness (40 %) rail level (a)
B. Ballast mass (6 %) sleeper level (b)
C. Ballast behaviour (L-NL) deck level (c)
D. Loads speed (2.7 %) free rail level (e)
E. Ballast damping (30 %) soil level (d)
F. Rail pad damping (15 %)

Table 2: Factors, their variation and key results
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The selected factors, their variations and key
results are presented in Table 2. The variation of
selected factors indicated in Table 2 means that
the change is applied to the mean representative
value of the model to get the low and high levels.
Regarding the ballast mass it is necessary to high-
light that the objective is to analyse uncertainty
of the cone of dynamically activated ballast, thus
the variation is applied to these values, and the
total ballast mass is maintained constant. Non-
activated ballast mass is associated directly to the
deck. Dynamically activated ballast mass varia-
tion thus induces very low alterations in natural
frequencies, since the total mass of the structure
is maintained and only some terms are in different
positions of the global mass matrix. This factor
should be more correctly named as the dynami-
cally activated ballast mass, but for the sake of
simplicity it is kept in the following as “ballast
mass”.

The key results are extracted from the middle
point of the middle span of the viaduct at several
levels that are placed on a vertical line that passes
the external rail of the track that is subjected to
the load passage. They are designated as levels
(a), (b), (c) and (d) in Figure 10 and Table 2.
In addition, one more point is considered at the
rail level that is placed close to the middle of the
span, but lies between two sleepers and it is des-
ignated as the free rail level (e) (see Figure 10 and
Table 2).

Two values of the reference train velocity were
considered: v0=185 km/h and v0=195 km/h. As
the speed varies by 2.7 % around the reference
velocity, i.e. approximately 5 km/h to each side,
the interval from 180 km/h to 200 km/h is cov-
ered. A two-level full factorial analysis was ac-
complished. Such an analysis of the results as-
sumes that by switching only one factor from its
low to its high value and fixing the others, the
response is symmetrically positioned around the
global mean. It is also assumed that by chang-
ing the value of one quantitative factor the re-
sponse evolution is smooth and without internal
extremes. In total 26 = 64 runs were performed,
leading to a total computing time of 184.5 hours
for each reference velocity. The total computing

× ×
×

×

×

rail

deck

soil

(e) (a)

(d)

rail-pad sleeper

ballast (b)

(c)

Figure 10: Points of results extraction (not scaled)

time could have been halved if a fractional fac-
torial analysis was considered. The efficiency of
such method has already been proven in previous
work by the authors [13]. The drawback is that
then there are not enough results to represent cor-
rectly the higher interactions that can be used for
calculation of the standard error σ, necessary for
the deviation plots.

The resulting data are output of FE analysis
and therefore there is no error associated to ex-
perimentation, because the FE results on a model
with unchanged parameters are unique.

Only the results exhibiting few dominant sin-
gle and/or interaction effects are presented, be-
cause they are suitable for drawing some conclu-
sions. Consequently, the corresponding response
functions are simple and in some cases can be
easily visualised. The other results exhibit an
excessive amount of significant effects and inter-
actions and therefore are not suitable for draw-
ing valid conclusions and further analyses are re-
quired. The selected results are peak accelera-
tion at the free-rail and rail level, peak velocity
at the free-rail, peak acceleration at the sleeper,
peak velocity at deck and peak displacement at
the soil. In addition to the justification above
it can be pointed out that velocities at the deck
and free rail level were chosen because the former
case was the only case where interaction effect ex-
ceeded single effects and the latter case was the
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only case where ballast behaviour was among the
significant effects.

Significant single and combined effects are pref-
erentially visualised with the help of deviation
plots (see [18]). They are obtained by plotting the
effects calculated on a horizontal axis and setting
a reference t-distribution with a number of de-
grees of freedom (dof) equal to the higher order
interactions of the design. Having 63 effects, then
22 of them, the ones that correspond to interac-
tions of 4, 5 and 6 factors, define the number of dof
of the distribution and can be used for the stan-
dard error σ estimation. The effects that fall out-
side the reference distribution can be considered
as significant, but a better definition of significant
effects will be presented later, when the response
function will be established. This error is not a
measurement error variance but rather an error
associated with the interaction of the present fac-
tors and with the nature of the result being cal-
culated.

It is confirmed that the standard error is
very similar for the same kind of result, when
the comparison is made between the lower and
higher reference velocity. Regarding the loca-
tion of the result extraction, the farther the lo-
cation, the smaller the standard error and thus
more significant effects appear. Regarding the
type of result, generally, the results presenting
less smoothness have a tendency to exhibit a
larger variation error, therefore accelerations have
higher error than displacements.

4.2.1. Deviation plots
Deviation plots are shown in Figures 11-14.
It can be concluded from Figure 11 that around

the lower reference velocity an increase in velocity
within the interval specified decreases the free rail
acceleration (by approximately 30 m/s2); on the
other hand around the higher reference velocity
an increase in velocity increases significantly (by
approximately 75 m/s2) the free-rail acceleration.
At the reference speed of 195 km/h the change in
results with increasing velocities can be concluded
higher than at the reference speed 185 km/h.

For the rail acceleration there is only one
significant effect visible at higher reference veloc-
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(b) v0 = 195 km/h; λ = 127.64; σ = 2.99 m/s2

Figure 11: Deviation plots of the peak acceleration at the
free-rail level

ity (see Figure 12). An increase in value of the
rail pad damping within the interval specified de-
creases the acceleration by almost 10 m/s2.

In both previous cases the effects that fall out-
side the distribution are singular effects (with no
additional interactions). Those factors (D-load
speed and F-rail pad damping) have unequivo-
cally a direct influence on the peak accelerations
at the rail and free-rail level. When considering
the free-rail peak velocity and sleeper peak accel-
eration, see Figures 13 and 14, interactions are
significant and therefore the singular effects can-
not be evaluated separately. Better insight into
real dependencies can be given by a two-way ta-
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Figure 12: Deviation plots of the peak acceleration at the
rail level

ble of interaction presented in the next section.
This is important for the lower reference veloc-
ity, where only single effects A and D and their
interaction AD are significant.

4.2.2. Half normal plots and interaction tables
When the standard error is very low, the as-

sociated normal distribution is very narrow, and
the visualisation could be compromised. In these
cases the half normal plots were used instead, for
the sake of better visualisation. However, the dis-
advantage of these plots is that the significant
effects are presented in an absolute value, there-
fore direct conclusions if a selected significant
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(b) v0 = 195 km/h; λ = 39.5; σ = 0.071 mm/s

Figure 13: Deviation plots of the peak velocity at the free
rail level

effect induces an increase or decrease of the re-
sult analysed cannot be taken.

In this section the peak velocity at the sleeper
level and the peak displacement at the soil level
are presented (Figures 15 and 16).

Regarding the peak velocity at the deck level,
it is seen that the dominant effects are the bal-
last mass, (factor B), the load speed (factor D)
and their interaction. Around the lower refer-
ence velocity (Figure 15a) the combined effect
exceeds the single effects. This graph clearly
demonstrates that the interaction effects can be
more important than single effects, and therefore
key parameters cannot be analysed individually.
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Figure 14: Deviation plots of the peak acceleration at the
sleeper level

While this is true for the lower reference veloc-
ity for the higher reference velocity the load ve-
locity overpasses this interaction. Fourteen com-
binations are significant in both cases (only the
first six are designated in the graph for the sake
of clarity).

Both results exhibit a significant interaction. In
such cases the two-way interaction tables can pro-
vide better insight to these results, see Figure 17a.

It is seen that none of the effects has unequiv-
ocal influence in the lower reference velocity, but
for the higher reference velocity, Figure 17b, the
load speed (factor D) always increases the deck
peak velocity.
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Figure 15: Half normal plot of the peak velocity at the
deck level

It can be concluded, that in both results there
is an effect of the ballast mass (B), the loads speed
(D) and their interaction. It is also seen that the
graphs for both reference velocities are very sim-
ilar, i.e. they are not affected by the reference
velocity.

In summary, results revealed that the factors
A (the ballast stiffness) and D (the loads speed),
and the interaction BD (the interaction of ballast
mass and loads speed) are the most important
single and combined effects, supporting previous
conclusions from [13] and justifying that further
research should be conducted in this direction.
The objective (ii) from the Introduction is sup-
ported by the peak velocity at the deck level at
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Figure 16: Half normal plot of the peak displacement at
the soil level

the lower reference velocity (Figure 15a); in this
case the interaction BD, i.e. the ballast mass with
the loads speed is the most relevant effect. All
factors selected for the analysis in this paper can
be found at some relevant positions in the figures
presented, justifying that none one them could be
omitted in the factorial screening.

4.2.3. Polynomial response function
For the determination of the response func-

tion it is necessary to separate the significant and
insignificant effects in a more accurate way.

Significant effects and interactions are defined
as the ones that overpass in absolute value the
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Figure 17: Interaction tables, deck peak velocity

“simultaneous margin of error (SME)”, defined as
the horizontal coordinate (measured from the zero
mean) of the t-student distribution that encom-
passes the probability of φ = (1 + 0.95(1/n))/2,
where n is the number of effects, i.e. 2φ − 1
confidence interval. In our case of 63 effects
and 22 degrees of freedom φ = 99.96 % and
SME = tφ,dof σ = 3.8769 σ.

The general equation of the response function
is

y∗ =λ+
k∑
i=1

ηxixi/2 (6)

+
k∑

i,j=1 i>j

ηxixjxixj/2 + · · ·

where η are the effects, k is the number of factors
and x represent the scaled factors with the value
variation from low to high level −1 ≤ x ≤ 1.
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Only the significant effects should be used in the
equation above. The response function can be
used for calculation of the expected response. The
most easily interpretable response functions are
the ones where only two effects and their inter-
action are significant, because then they can be
graphically visualised.

From Equation (6) it is seen, that when there
are no significant interactions, then the response
is linear, i.e. the response at the mean value of
a factor should approximately equal the average
of the responses at the low and high level of this
particular factor. When interactions are present,
then quadratic, cubic and even higher order terms
appear. Nevertheless, the response function can
be considered valid, if the assumption for the full
factorial analysis stated in Section 4.2 is verified.

The response functions of the results are shown
next; a, v and u stand for the acceleration, veloc-
ity and the displacement, acceleration is presented
in m/s2, but velocity and displacement in mm/s
and mm, respectively. Superscript (a), (b), (c),
(d) and (e) represent the points of the results ex-
traction (see Figure 10) and subscript 185 or 195
stand for the reference velocity. The functions
are presented in the same order as in the previous
subsections.

The peak acceleration of the free-rail is given
by:

a
(e)
185∗ =80.83− 15.28xD (7)

a
(e)
195∗ =127.60 + 37.88xD

which are linear functions of the variable xD rep-
resenting the load velocity factor. Similarly the
rail peak acceleration is given by

a
(a)
195∗ =72.42− 4.58xF (8)

that is valid for the higher reference velocity. For
the lower reference velocity the function cannot be
presented because there are no significant effects.

The free-rail peak velocity, involving all five

significant effects is given by the functions

v
(e)
185∗ =39.00− 5.00xA + 0.61xC − 0.35xD (9)

−0.24xAxD + 0.16xE

v
(e)
195∗ =39.00− 5.10xA + 2.70xD + 0.69xC (10)

+0.39xBxD − 0.37xB

xAxD
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Figure 18: v0 = 185 km/h

Further, the sleeper peak acceleration has three
and five significant effects and interactions for the
reference velocity of 185 km/h and 195 km/h, re-
spectively, as can be verified in Figure 14. The
respective response functions are given by:

a
(b)
185∗ =4.27− 0.79xA − 0.34xD (11)

+0.19xAxD

a
(b)
195∗ =5.80− 1.50xD − 0.97xA+ (12)

+0.59xBxD − 0.58xB + 0.18xDxE

For the first reference velocity this function can be
fully represented graphically since only two effects
and their combination appear as significant, see
Figure 18.

For the deck velocity response function only
the first six and seven effects (from the total of
14) are presented for the lower and higher refer-
ence velocity. The remaining significant effects
have relative contribution less than 0.1 % and are
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Figure 19: Response surface from peak velocity at the deck
level

therefore omitted.

v
(c)
185∗ =7.40− 0.42xBxD + 0.28xD (13)

+0.14xB + 0.04xAxD + 0.04xA

−0.03xAxB

v
(c)
195∗ =7.90 + 0.25xD + 0.17xBxD (14)

−0.14xB − 0.04xAxD + 0.04xA

+0.02xAxBxD − 0.01xAxB

For the same reason only five and six effects
(from the total of 14) are shown in the response
functions of the soil displacement for higher and

lower reference speed, respectively:

u
(d)
185∗ =(3.00 + 0.190xB + 0.180xD (15)

−0.120xBxD + 0.006xAxB

−0.006xAxD)× 10−3

u
(d)
195∗ =(3.10− 0.140xD − 0.079xBxD (16)

+0.010xAxD − 0.008xAxBxD

+0.008xA − 0.008xB)× 10−3

xBxD
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Figure 20: Response surface of peak displacement at the
soil level

Graphical representation of Equations (13)-(16)
is not possible. However, if the influence of bal-
last stiffness (A) and its interactions are removed,
then the functions with the remaining terms can
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be visualised and are shown in Figures 19 and 20.
This graphical approach is naturally more accu-
rate when only significant effects are considered.
Then Figure 18 is more accurate than Figures 19
and 20 because there are no significant effects ne-
glected. On the other hand, for instance, velocity
at the deck level for the lower reference velocity
has 14 significant effects and interactions. This
is not very clear from Figure 15a, but they are:
BD, D, B, AD, A, AB, ABD, BC, CD, C, BE,
ABE, ABC and AC. In Figure 19a only the first
three significant effects are included. Neverthe-
less, looking at Equation (13), one can see that
the effects represented are much higher than the
ones neglected and therefore Figures 19 and 20
also stand for a useful representation of the ex-
pected results.

4.2.4. Residuals plots
The response function is estimated from the

significant single effects and interactions. Then
the difference between the estimated and calcu-
lated values (or residuals) should be validated.
Residual plots are shown in Figures 21-26. All
points representing the residuals should obey nor-
mal distribution and thus closely fit the dashed
(error) line in Figures 21-26 and not exhibit high
concentrations in specific locations away from the
mean. This check is an important step in the val-
idation of the response function. The residuals
are calculated using all significant effects, even
if some of them are not included in the equations
for the response function for the sake of simplicity,
or in the response surface plots, where including
more effects is impossible.

In some cases it is seen that there are some
values that the response function cannot recover
perfectly well (Figures 22 and 24b), but, with con-
sideration of the next significant effect, residuals
would fit closely to the reference line.

The residual check is valuable provided that the
number of significant effects is small compared
with the total number of combinations. In our
case the highest number of significant effects is
14 (results of the peak velocity at the deck level
and the peak displacement at the soil level) and
the total number of combinations is 64, giving
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Figure 21: Residuals plots of the peak acceleration at the
free rail level

an acceptable ratio of 22 %. In summary, it was
demonstrated that the residuals are well-behaved
and therefore the conclusions taken in this paper
are meaningful.

For the sake of comparison, residuals related to
the graphical representation in Figures 19 and 20,
i.e. calculated as if only three or two significant
effects were included in the response function, are
plotted over the original residuals in Figures 25
and 26. It is seen that with reduced number of
factors the slope is much lower, i.e. the standard
deviation of residuals, is much higher. But the
residuals are still quite close to the error line with
no noticeable concentrations away from the mean
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Figure 22: v0 = 195 km/h
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Figure 23: Residuals plots of the peak velocity at the free
rail level
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Figure 24: Residuals plots of the peak acceleration at the
sleeper level

region, justifying the usage of simplified response
functions as well.

The conclusions taken are valid only on the in-
tervals considered. In the present case, the in-
tervals represent the uncertainties, and therefore
are fixed. The load velocity is the factor that is
more flexible and thus it was useful to see how
the conclusions are altered for higher and lower
velocities, which was the topic discussed in detail
in previous sections.

4.2.5. Probability of exceedance of a certain result
The statistical analysis shown in previous sec-

tions makes no assumption on the distribution of
a certain input value (factor) within the interval
specified. Randomly selected input data within
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Figure 25: Residuals plots of the peak velocity at the deck
level

these intervals would exhibit uniform probability
over the interval. It is assumed that the variation
of the factors represents the input data uncertain-
ties, and therefore the real value obeys the nor-
mal distribution, encompassing the interval con-
sidered. Then the response functions can be used
for calculation of a probability of exceedance of
a certain value. The method of calculation of
this probability can be explained in a simple case.
Consider that only two factors, x1 and x2 are in-
volved and the value of interest is y0. Moreover
assume that by solving

y∗(x1, x2) ≥ y0 (17)
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Figure 26: Residuals plots of the peak displacement at the
soil level

an explicit function can be obtained and the con-
dition above is verified for

x2 ≥ f(x1) (18)

Let also the function f(x1) intersect the axis x1
within the interval [-1,1] in at most two values,
x1d < x1u. Then the probability that the value y0
will be exceeded can be calculated by

p =

∫ min(1,x1u)

max(−1,x1d)

F (x1)

(∫ 1

max(−1,f(x1))

F (x2)dx2

)
dx1 (19)

where F (xi) is the normal distribution function
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that is attributed to the uncertainty and i = 1, 2.
Values -1 and 1 are preferentially used in Equa-
tion (19) because the response function may not
be valid outside these limits. The standard devi-
ation is defined in the way that the accuracy is
acceptable.

As an example, the probability that the deck
peak velocity exceeds 7.4 mm/s and 8 mm/s for
the lower and the higher reference velocity, re-
spectively, is calculated. The deck peak velocity is
given by Equations (13) and (14). With all effects
neglected, except for B (ballast mass), D (load
velocity), and BD this dependence was shown in
Figures 17 and 19. In order to implement Equa-
tion (19), it is necessary to assume that the train
velocity complies with the reference value and the
deviations obey the normal distribution. It is as-
sumed that the representative distribution within
the interval -1 and 1 has the standard deviation of
1/3, i.e. the encompassing probability within the
interval is 99.73 %. Using Equations (13) and (14)
it is possible to solve the inequality from Equation
(18) and calculate the probability as 56.5 % and
14.2 %, respectively.

Equation (19) can be extended to more factors.

5. Conclusions

A complete statistical analysis, based on a two-
level factorial design of experiments was presented
and several analysis tools were applied to a real
case study. The statistical theory proved to be
relevant, meaningful and easy to implement.

The main conclusions are listed as: (i) Al-
though the ballast constitutive law appeared as
a significant effect only in one result, this is
sufficient to conclude that this factor should not
be overlooked. (ii) Interaction effects can be more
important than single effects, and therefore key
parameters cannot be analysed individually. This
is supported by the peak velocity at the deck level
at the lower reference velocity (Figure 15a); in this
case the interaction BD, i.e. the ballast mass with
the load speed is the most relevant effect. (iii)
Response functions can be easily constructed and
used for results representation and estimation, as
well as for determination of the probability that

a certain result of interest will exceed a specified
value. In the latter case is must be assumed that
the factors variation corresponds to a range of
uncertainties and obeys the normal distribution
within the interval specified.

In this paper the importance was given to
the superstructure modelling parameters. It was
shown that several significant effects and inter-
actions exists, and therefore, as a conclusion, it
must be stressed that the railway viaduct super-
structure has to be modelled with sufficient accu-
racy. All factors selected can be found at some
relevant positions in the figures of the previous
sections, justifying that none one them could be
omitted in the factorial screening. Thus none of
the superstructure construction details should be
neglected or highly simplified. Attention must
be paid to the estimate of dynamically activated
ballast mass and correct, non-linear, ballast be-
haviour.

In summary, it has been shown how useful the
statistical analysis can be, and how it can be im-
plemented on existing structures. It is known that
the method is not able to explore fully a wide re-
gion in the factor space, but it can indicate trends
and directions for further exploration. For exam-
ple, the implementation of this analysis with a
response surface algorithm, capable of analysing
a given model and output the dynamic response
surface would add accuracy on the bridge design
analysis and to prospective in-situ measurements.
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Appendix A. Geological data

The following Table A.3 summarises all the rel-
evant geological information of the viaduct sur-
rounding soil.

Geo-technical
unit

µ
[kN/m3]

G[MPa]
ν

E[MPa]
γ = 10−610−410−3 10−4 10−3

“A1” 16 19.8 19.8 10.9 0.49 59 32.5
“A2” and “A3” 18 36 28.8 14.4 0.35 77.7 38:9
Pleistocene
and Miocene 20 66.1 59.5 36.4 0.48 176.1 107.7

Miocene 21.5 350 298 157 0.25 745 392.5

Table A.3: Geological data (estimated)

µ, G, ν, γ and E stand for the specific weight,
distortion modulus, Poisson’s coefficient, distor-
tion and Young’s modulus, respectively. Depen-
dency on distortion was neglected and an average
value was used instead.

Appendix B. Geometrical data

In this section geometrical data of the railway
and viaduct deck are presented.
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Figure B.27: Railway geometrical information[m]
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Figure B.28: Viaduct deck section geometry [m]

Appendix C. Material data

The relevant material data are presented in the
following Tables C.4 - C.6. They refer to the rail
properties (Table C.4), concrete parts properties
(Table C.5) and spring and damper parameters of
the superstructure arrangement (Table C.6).

Property (UIC60)
Young’s modulus E (GPa) 210

Poisson’s ratio ν 0.3
Density ρ (kg/m3) 7800

Cross-section area A (m2) 76.84·10−4

Moment of inertia I (m4) 3055·10−8

Table C.4: UIC60 rail data

Material E (GPa) ν ρ (ton/m3) model
part

C3037 33 0.3 2.5 pillars

C4555 36 0.3 2.5 piles, deck,
foundation

PSC 30 0.2 2.054 sleepers

Table C.5: Material data for concrete parts

C3037 and C4555 designate the concrete class
and PSC stands for the prestressed concrete.

Spring and damper parameters of the super-
structure arrangement referred in Figure 4 are
summarised in the Table C.6 bellow. The ballast
mass was calculated using the given density of
1.8 ton/m3. The concentrated mass in Table C.6
corresponds to the cone represented in Figure 10,
i.e. to the part of ballast that is dynamically ac-
tivated by the moving load under each sleeper,
estimated according to [28]. The remaining mass
of the ballast is distributed uniformly as an addi-
tional mass of the viaduct deck.

Springs and dampers that represent the soil
removed from the model were estimated as de-
scribed in [13]. The variation in depth of the
spring constants followed the results of the con-
solidation analysis, represented in Figure C.29.
Their values range from 2014.33 to 6453.84 kN/m.
These values were also used on the bottom face;
in place of part of the piles a stronger spring
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Parameter Value
mb 0.3225 ton

ky - ballast 120000 kN/m
cy - ballast 70 kNs/m
kx - ballast 40000 kN/m
cx - ballast 52 kNs/m
kz - ballast 40000 kN/m
cz - ballast 52 kNs/m
kα - ballast 676 kNm
cα - ballast 394 kNs
kβ - ballast 676 kNm
cβ - ballast 394 kNs
ky – rail pad 280000 kN/m
cy – rail pad 50 kNs/m
kx – rail pad 50000 kN/m
cx – rail pad 10 kNs/m
kz – rail pad 50000 kN/m
cz – rail pad 10 kNs/m
kα - rail pad 597 kNm
cα - rail pad 0.107 kNs
kβ - rail pad 597 kNm
cβ - rail pad 0.107 kNs

Table C.6: Ballast and Rail pad parameters

was used. Damping coefficients of the viscous
dampers were calculated according to [29]
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Figure C.29: Cubic trend-line approximation of the dis-
placement originated by uniform unit pressure with re-
spect to depth

23


	Introduction
	General
	Bridge and train models
	Design of experiments

	The Santana do Cartaxo viaduct
	Finite element model
	General considerations
	Modal analysis
	Experimental validation
	Nonlinear ballast behaviour

	Results
	Resonance parametric analysis
	Statistical analysis
	Deviation plots
	Half normal plots and interaction tables
	Polynomial response function
	Residuals plots
	Probability of exceedance of a certain result


	Conclusions
	Acknowledgements
	Geological data
	Geometrical data
	Material data

