UNIVERSITY OF
WEST LONDON

The &Yﬁﬂ’ University

i

UWL REPOSITORY

repository.uwl.ac.uk

gprMax: open source software to simulate electromagnetic wave propagation
for ground penetrating radar

Warren, Craig, Giannopoulos, Antonios and Giannakis, Iraklis (2016) gprMax: open source software
to simulate electromagnetic wave propagation for ground penetrating radar. Computer Physics
Communications, 209. pp. 163-170. ISSN 0010-4655

http://dx.doi.org/10.1016/j.cpc.2016.08.020
This is the Published Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/5367/

Alternative formats: If you require this document in an alternative format, please contact:
open.research@uwl.ac.uk

Copyright: Creative Commons: Attribution 4.0

Copyright and moral rights for the publications made accessible in the public portal are
retained by the authors and/or other copyright owners and it is a condition of accessing
publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy: If you believe that this document breaches copyright, please contact us at
open.research@uwl.ac.uk providing details, and we will remove access to the work
immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

Computer Physics Communications 209 (2016) 163-170

Computer Physics Communications

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cpc

gprMax: Open source software to simulate electromagnetic wave
propagation for Ground Penetrating Radar”

@ CrossMark

Craig Warren *, Antonios Giannopoulos, Iraklis Giannakis
Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh, Edinburgh, Scotland, United Kingdom

ARTICLE INFO

ABSTRACT

Article history:

Received 10 December 2015
Received in revised form

13 July 2016

Accepted 19 August 2016
Available online 8 September 2016

Keywords:

Computational electromagnetism
Ground Penetrating Radar
Finite-Difference Time-Domain
Open source

Python

gprMax is open source software that simulates electromagnetic wave propagation, using the Finite-
Difference Time-Domain (FDTD) method, for the numerical modelling of Ground Penetrating Radar (GPR).
gprMax was originally developed in 1996 when numerical modelling using the FDTD method and, in
general, the numerical modelling of GPR were in their infancy. Current computing resources offer the
opportunity to build detailed and complex FDTD models of GPR to an extent that was not previously
possible. To enable these types of simulations to be more easily realised, and also to facilitate the addition
of more advanced features, gprMax has been redeveloped and significantly modernised. The original
C-based code has been completely rewritten using a combination of Python and Cython programming
languages. Standard and robust file formats have been chosen for geometry and field output files. New
advanced modelling features have been added including: an unsplit implementation of higher order
Perfectly Matched Layers (PMLs) using a recursive integration approach; diagonally anisotropic materials;
dispersive media using multi-pole Debye, Drude or Lorenz expressions; soil modelling using a semi-
empirical formulation for dielectric properties and fractals for geometric characteristics; rough surface
generation; and the ability to embed complex transducers and targets.

Program summary

Program title: gprMax

Catalogue identifier: AFBG_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFBG_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU GPL v3

No. of lines in distributed program, including test data, etc.: 627180

No. of bytes in distributed program, including test data, etc.: 26762280
Distribution format: tar.gz

Programming language: Python.

Computer: Any computer with a Python interpreter and a C compiler.
Operating system: Microsoft Windows, Mac OS X, and Linux.

RAM: Problem dependent

Classification: 10.

External routines: Cython[1], h5py[2], matplotlib[3], NumPy[4], mpi4py[5]
Nature of problem: Classical electrodynamics

Solution method: Finite-Difference Time-Domain (FDTD)

Running time: Problem dependent

* This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/

science/journal/00104655).
* Corresponding author.

E-mail addresses: Craig.Warren@ed.ac.uk (C. Warren), A.Giannopoulos@ed.ac.uk (A. Giannopoulos), .Giannakis@ed.ac.uk (I. Giannakis).

http://dx.doi.org/10.1016/j.cpc.2016.08.020

0010-4655/© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cpc.2016.08.020
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.08.020&domain=pdf
http://cpc.cs.qub.ac.uk/summaries/AFBG_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:Craig.Warren@ed.ac.uk
mailto:A.Giannopoulos@ed.ac.uk
mailto:I.Giannakis@ed.ac.uk
http://dx.doi.org/10.1016/j.cpc.2016.08.020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

164 C. Warren et al. / Computer Physics Communications 209 (2016) 163-170

References:

[1] Cython, http://www.cython.org

[2] h5py, http://www.h5py.org

[3] matplotlib, http://www.matplotlib.org
[4] NumPy, http://www.numpy.org

[5] mpidpy, http://mpidpy.scipy.org

© 2016 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Ground Penetrating Radar (GPR) is a powerful non-destructive
tool that is used for many diverse applications in fields such as
engineering, geophysics and even medicine. Examples include:
infrastructure assessment of bridges, roads, and railways; locat-
ing buried utilities; ice profiling and glaciology; groundwater and
soil contaminant mapping; landmine and unexploded ordnance
(UXO0) recognition; and detection of breast cancer tumours. Under-
standing how electromagnetic waves propagate through naturally
occurring or man-made heterogeneous environments is a chal-
lenging problem. Consequently the interpretation of data ac-
quired using GPR is often difficult due to the complex interactions
between the GPR system, the target(s) of interest, and the environ-
ment. This is especially evident when trying to interpret quantita-
tive information from GPR data. Successful interpretation of GPR
data usually relies on considerable experience gained through ex-
tensive experimentation, and even then is often limited to iden-
tifying areas of interest or anomalies in the data. To advance our
understanding of GPR as well as provide a means for testing new
data processing techniques and interpretation algorithms it is im-
portant to have accurate and robust simulation software.

gprMax is open source software that simulates electromag-
netic wave propagation for the numerical modelling of GPR, and
is available from http://www.gprmax.com. It uses Yee’s [1] algo-
rithm (with second order accurate derivatives in space and time)
to solve Maxwell’s equations in 3D using the Finite-Difference
Time-Domain (FDTD) method. The FDTD method is a differential-
equation-based solver that has been described in many publica-
tions, such as [2], so will not be repeated here. In summary, the
strengths of the FDTD method are that it is a simple, fully explicit,
general, and robust technique. The main weakness is due to the fact
that the entire computational domain must be discretised which
can require extensive computational resources. The time-domain
nature of the FDTD method means in a single simulation a wide
range of frequencies can be modelled. This is particularly well-
suited for simulating GPR systems which are usually ultra wide-
band (UWB). However, the computational domain must still be
discretised in relation to the highest frequency of interest.

gprMax was originally developed in 1996 [3] when numerical
modelling using the FDTD method and, in general, the numerical
modelling of GPR were in their infancy. Since then a number
of commercial [4,5] and other freely-available [6,7] FDTD-based
solvers have become available, but gprMax has remained one of
the most widely used simulation tools in the GPR community. It
has been successfully used for a diverse range of applications in
academia and industry [8-13], and has been cited more than 200
times since 2005 [14].

Computing power has increased dramatically since gprMax
was initially developed—multi-core CPUs and gigabytes of RAM
are now standard features on desktop and laptop machines, and
many research institutions now have their own high-performance
computing (HPC) systems. These computational advances have

particularly benefited numerical techniques, such as FDTD, that
discretise the entire computational domain, and thus larger and
more complex scenarios can be investigated. To enable these
types of problems to be simulated using gprMax, we have made
significant modernisations to the code and also added of new
advanced features to the software.

The paper is organised as follows: Section 2 provides an
overview of the design of the software, the tools that were used,
and the principles behind some of the design choices; Section 3
describes the key advanced features that have been developed
for modelling GPR; and finally Section 4 gives examples of GPR
simulations that take advantage of many of these new features.

2. Software overview
2.1. Design principles and general features

gprMax was developed as cross-platform software for Linux,
Microsoft Windows, and later Mac OS X. It was originally written
using the C programming language, with the computationally
intensive parts - the FDTD solver loops - parallelised using
OpenMP [15]. The original design principal was to create a general
computational electromagnetic solver, and then build features
specifically for modelling GPR onto that core. We continued to use
this philosophy for the redesign of gprMax whilst also considering
how to facilitate the implementation of new advanced features,
and how to lay better foundations for future developments.

We decided that the code should be rewritten in Python
[16]—a modern, interpreted language that is intended to be
highly readable and extensible. There are advantageous features of
Python such as dynamic typing, automatic memory management,
and object orientation. However some of these attributes come
at a performance cost compared with statically typed languages
such as C. For a typical FDTD solver, most of the computational
time is spent solving the electromagnetic field update equations.
Therefore we focused object orientation and abstraction on the
parts of the code that construct the model (prior to the solving),
and then used Cython [17] - a superset of Python that generates
efficient C source code that can be compiled into extension
modules - to write simple methods with minimal decision-making
for the FDTD solver. Additionally, Cython supports OpenMP which
allowed the FDTD solver to be multi-threaded on machines with
multiple CPUs/cores. As an example of this design philosophy,
materials have their own class and methods but prior to the solving
phase, the update coefficients for the electric and magnetic field
equations for each material are stored in simple floating-point
NumPy arrays. A NumPy array of integers is used to represent
materials and their locations in the computational domain, i.e. the
geometry of the model. The integers provide a lookup (index) into
the array of the actual material properties/coefficients. Therefore a
significant memory saving is made by not having to store material
properties/coefficients at every location in the computational
domain.

http://www.cython.org
http://www.h5py.org
http://www.matplotlib.org
http://www.numpy.org
http://mpi4py.scipy.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.gprmax.com

C. Warren et al. / Computer Physics Communications 209 (2016) 163-170 165

(i,j+1,k-1) E. (i+1,j+1,k-1)
”
E. H, A E,
g, R
(i,j+1 k) —>
A A
E' H;ﬁ' AEy
P S 5 ~
n—p n—p
E A H, H. i A 7 H
y 2 & E,
1 [y 1
P (i+1,j,k-1)
H ? A Ey y
E. N E,
(i,j,k) E (i+1,j,k)
x z

Fig. 1. FDTD Yee cell.

We used MPI for Python (mpi4py) [18] to implement a simple
MPI task farm to distribute series of models as independent tasks.
This is especially useful in many GPR simulations where a B-scan’
is required. Each A-scan® can be task-farmed as an independent
model. The option to combine OpenMP for threading within an
individual model and use MPI to distribute a series of models, can
be extremely beneficial in HPC environments.

gprMax originally consisted of two simulators—GprMax2D,
which solved the transverse-magnetic mode with respect to the
z-direction (TMz) in 2D, and GprMax3D which solved the full FDTD
algorithm in 3D. Although there were a lot of similarities between
the two simulators, two separate codebases had to be maintained
which was not efficient. Ever increasing computational power
has meant 3D simulations are more accessible and common, but
despite this there is still often a need to run simple 2D simulations,
especially for educational purposes. Therefore we designed a single
codebase that can run 2D or 3D simulations. A 2D simulation is
achieved by specifying a computational domain that has only a
single cell dimension in one direction (that direction is considered
the infinite direction). For example, referring to Fig. 1 which shows
a 3D Yee cell, if we assume that the infinite direction is the
z-direction, the software will set the values of the electric field
components on the z-faces of the cell to zero, i.e. the E and E,
components. This has the effect of setting the H, component to zero
and therefore making Perfect Electric Conductor (PEC) boundaries
in the z-direction. The field components that remain are E,, Hy,
and H,, giving a 2D TMz mode. It is possible to relax the time step
from the (default) equality with the Courant Friedrichs Lewy (CFL)
condition in 3D to the 2D equivalent.

2.2. User interface, scripting and file formats

gprMax uses a text-based input file in which users specify all
of the parameters for a simulation, e.g., model size, discretisation,
time window, geometry, materials, and excitation, via pre-defined
commands. We considered developing a CAD-based graphical
user interface (GUI) or creating a pure programming interface for
gprMax but decided against both of these options. There were three
guiding principles behind this design decision (two are similar to
those given in [7]): firstly, users most often perform a series of
related simulations with varying parameters to solve or optimise
a particular problem; secondly, we wanted users to be able to
easily create models with minimal knowledge or experience of

1 A B-scan is a GPR image composed of multiple A-scans recorded at different
locations.

2 AnA-scanisa single time-domain trace/signal from a GPR.

o
N
[S)

Transmitter

0.15

Receiver

Domain boundary

PML region

0.05

Half space

8 Metal cylinder
(=}
0

.00 0.05 0.10 0.15 0.20
X

Fig. 2. FDTD mesh of metal cylinder buried in a lossless dielectric half-space.

programming; and thirdly we decided the limited resources we
had were best concentrated on developing advanced modelling
features for GPR within software that could easily interface with
other tools. Although a CAD-based GUI is useful for creating single
simulations it becomes increasingly cumbersome for a series of
simulations or where simulations contain heterogeneities, e.g. a
model of a soil with stochastically varying electrical properties.

Listing 1 provides an example of an input file for a simple 2D
GPR simulation of a metal cylinder buried in a lossless dielectric
half-space. Fig. 2 shows the geometry of the model.
#domain: 0.240 0.210 0.002
#dx_dy_dz: 0.002 0.002 0.002
#time_window: 3e-9
#material: 6 0 1 O half_space
#waveform: ricker 1 1.5e9 my_ricker
#hertzian_dipole: z 0.100 0.170 O

— my_ricker
#rx: 0.140 0.170 O
8 #box: 0 0 0 0.240 0.170 0.002
— half_space
9 #cylinder: 0.120 0.080 0 0.120 0.080
— 0.002 0.010 pec

D O W N

N1

Listing 1: Input file for a simple 2D GPR simulation of a
metal cylinder buried in a lossless dielectric half-space.

All commands begin with a hash symbol followed by the name
of the command, and then a list of associated parameters.® In lines
1-2 the size of the computational domain and discretisation of
the model are given in x, y, z directions. The model is 2D as the
z dimension of the domain is only a single cell. Line 3 specifies the
duration of time to simulate, with the time step being calculated
automatically at the CFL limit. In line 4 a material is defined which
is used to build the half-space. The material has the identifier name
half_space, a relative permittivity of six, electric conductivity
of zero (S/m), relative permeability of one, and zero magnetic loss
(€2/m). A Hertzian dipole fed with a Ricker waveform with a centre
frequency of 1.5 GHz is used as a source (lines 5-6). A receiver is
used to record the time histories of the electric and magnetic fields
at a specific location for the duration of the simulation. Finally, a
box object (used to represent the half-space) and a cylinder object
are created. The identifiers half_space and pec” refer to the
materials that the objects are built from. The order of the objects
is important as a layered canvas approach is used, i.e. subsequent

3 All units are in the International System of Units (SI).

4 pec is a built-in material.

166 C. Warren et al. / Computer Physics Communications 209 (2016) 163-170

Fig. 3. A model of a high-frequency antenna like a MALA 1.2 GHz antenna. The geometry mesh is a combination of per-cell geometry information for volumetric objects,

and per-cell-edge geometry information for finer geometric details.

objects overwrite the properties of previous objects if they specify
the same location. The full syntax of every command can be found
in the User Guide (http://docs.gprmax.com).

We have made it easier to create more complex simulations
in gprMax by allowing scripting in the input file. This is achieved
because blocks of Python code can be written in the input file
and are then executed when the file is read. Listing 2 shows a
simple example of how a repetitive geometry command can be
scripted directly in the input file using a for loop in Python. A
PEC cylinder extending from O to 100 mm in the z-direction, with
y-coordinate 50 mm, and radius 5 mm, is repeated every 20 mm in
the x-direction from 20 mm to 160 mm.

1 #python:
2 for x in range(8)
3 print('#cylinder: z 0 0.1 {}

— 0.05 0.005
— pec'.format(0.02 + x *
— 0.02))

4 #end_python:

Listing 2: Python scripting in an input file

Alongside improvements to the input file we have introduced
new file formats for field outputs and geometry information. We
wanted to design gprMax to be as flexible as possible and based
around robust and standardised formats which would allow users
a choice of tools for creating input, and viewing and processing
output. We have used HDF5 [19] as the output file format to handle
the larger and more complex data sets that are being generated.
HDFS5 is a robust, portable and extensible format with a number of
free readers available. The Visualization Toolkit (VTK) [20] is used
for improved handling and viewing of the FDTD geometry meshes.
The VTK is an open source system for 3D computer graphics, image
processing and visualisation. It also has a number of free readers
available such as Paraview (http://www.paraview.org). gprMax
allows the user to view geometry information for the entire model
domain or any specified sub-volume within the model domain. The
geometry information can be requested on a per-cell basis, useful
for viewing volumetric objects, or a per-cell-edge basis, which is
useful for viewing fine or more complex geometrical features.

3. Advanced features for modelling GPR
gprMax contains many powerful and customisable features for

modelling GPR. This section focuses on a selection of the new and
advanced capabilities that have been developed.

3.1. Library of antenna models

Models of antennas have been included in numerical simu-
lations of GPR intermittently over the past 20 years with vary-
ing degrees of realism. Those that have included models of the
actual antenna have been mainly of antennas used in academia
or for research purposes [21-30]. There has been very limited
published work of GPR simulations with models of commercial
antennas [31-34]. In fact, many simulations have used a theoreti-
cal Hertzian dipole source to represent a real GPR antenna where
only far-field behaviour or travel-time information was of inter-
est, or where computational resources were limited. However,
advances in computational power, coupled with the desire to in-
vestigate quantitative amplitude information from GPR, means
there is a need to develop and use detailed 3D FDTD models of re-
alistic GPR antennas in simulations.

gprMax now includes a library with pre-defined models of an-
tennas that behave similarly to commercial antennas. Currently,
models of antennas similar to Geophysical Survey Systems, Inc.
(GSSI) (http://www.geophysical.com) 1.5 GHz (Model 5100) an-
tenna, and MALA Geoscience (http://www.malags.com/) 1.2 GHz
antenna are included. This simplifies the process of adding such in-
tricate structures into a model. Listing 3 demonstrates how a model
of a high-frequency GPR antenna, shown in Fig. 3, can be inserted
into a simulation without having to be built step-by-step by the
user. The antenna model is imported from a library and inserted at
a specific location in the computational domain.

1 #python:

2 import from user_libs.antennas import
— antenna_like_MALA_1200

3 antenna_like_MALA_1200(0.05, 0.05,
— 0.05)

4 #end_python:

Listing 3: Inserting a complex antenna model into an
input file

3.2. Absorbing boundary conditions

With increased research into quantitative amplitude informa-
tion from GPR, it has become necessary for simulations to have
more efficient and better-performing Perfectly Matched Layer
(PML) absorbing boundary conditions (ABC). Since 2005 gprMax
has featured PML ABCs based on the uniaxial PML (UPML) [35]

http://docs.gprmax.com
http://www.paraview.org
http://www.geophysical.com
http://www.malags.com/

C. Warren et al. / Computer Physics Communications 209 (2016) 163-170 167

formulation. A PML based on a recursive integration (RI) approach
to the complex frequency shifted (CFS) PML [36] has now been de-
veloped for gprMax. The implementation is such that a standard
UPML, first order CFS-PML, or second order mixed RIPML can now
be configured. Additionally, for advanced usage, the parameters
of the PML can be customised, which allows the performance of
the PML to be better optimised for specific applications. One of
the attractions of the RIPML is that it is easily applied as a correc-
tion to the electric and magnetic field values after the complete
FDTD grid has been updated using the standard FDTD update equa-
tions. Moreover, the RIPML is media agnostic so it can be used,
without change, to problems involving dispersive and anisotropic
materials.

3.3. Materials

Many of the environments where GPR is used are complex,
heterogeneous, and contain materials with dispersive properties.
Therefore we have focused on developing new features and making
improvements to how materials are created and simulated in the
software.

3.3.1. Anisotropic materials

gprMax allows anisotropic objects to be modelled in a simu-
lation. Materials such as wood and fibre-reinforced composites,
which are often imaged with GPR, can now be more accurately
described. This has been achieved by enabling every volumetric
geometry object to specify up to three material identifiers. It is
therefore possible for every object to have diagonal anisotropy.
Listing 4 demonstrates the uniaxial anisotropy of a carbon-fibre-
reinforced polymer (CFRP) composite material.

1 #material: 40 5.41 1 O cfrpX

2 #material: 7.5 0.016 1 O cfrpYZ

3 #box: 0 0 0 0.1 0.1 0.05 cfrpX cfrpYZ
— cfrpYZ

Listing 4: Uniaxial anisotropy of a carbon-fibre-
reinforced polymer (CFRP) composite material

The material cfrpX is used to define the material properties of
the CFRP in the x direction, and the material cfrpYZ for they and z
directions. A box of CFRP is created on line 3, with the object using
three identifiers to associate it with its materials properties in the
X, Y, z directions.

3.3.2. Dispersive materials

gprMax has always included the ability to represent dispersive
materials using a single-pole Debye model. Many materials can
be adequately represented using this approach for the typical
frequency ranges associated with GPR. However, multi-pole
Debye, Drude and Lorenz functions are often used to simulate
the electric susceptibility of materials such as: water [37], human
tissue [38], cold plasma [39], gold [40], and soils [41,42,29]. Electric
susceptibility relates the polarisation density to the electric field,
and includes both the real and imaginary parts of the complex
electric permittivity variation. gprMax now uses a recursive
convolution based method to express dispersive properties as
apparent current density sources [43]. A major advantage of
this implementation is that it creates an inclusive susceptibility
function that holds, as special cases, Debye, Drude and Lorenz
materials. Listing 5 gives an example of the command to add a
2-pole Debye material that simulates human fatty tissue [38].

1 #material: 3 0.026 1 O fat_tissue
2 #add_dispersion_debye: 2 1.42 13e-12
— 1.87 0.651e-9 fatty_tissue

Listing 5: A 2-pole Debye material that simulates hu-
man fatty tissue

Line 1 defines the basic material properties® and in line 2 the
#add_dispersion_debye command adds dispersive behaviour
to the material based on the Debye formulation. The parameters for
the #add_dispersion_debye command define the number of
poles, the difference between the DC (static) relative permittivity
and the relative permittivity at infinite frequency for the first
Debye pole, the relaxation time (seconds) for the first Debye pole,
the difference between the DC (static) relative permittivity and
the relative permittivity at infinite frequency for the second Debye
pole, and the relaxation time (seconds) for the second Debye
pole.

3.3.3. Soil models and topography

The inclusion of improved models of soils is important for many
GPR simulations. gprMax can now be used to create soils with
more realistic dielectric and geometrical properties [44]. A semi-
empirical model, initially suggested by [45], is used to describe
the dielectric properties of the soil. The model relates relative the
permittivity of the soil to its bulk density, sand particle density,
sand fraction, clay fraction and volumetric water fraction. Using
this approach, a more realistic soil with a stochastic distribution
of the aforementioned parameters can be modelled. The real and
imaginary parts of this semi-empirical model can be approximated
using a multi-pole Debye function plus a conductive term. This
can now be achieved in gprMax using the new dispersive material
functionality described in Section 3.3.2. For example, to create
a soil with bulk density, p, = 2 g/cm?, sand particle density,
ps = 2.66 g/cm3, sand fraction, S = 0.5, clay fraction, C =
0.5, and a volumetric water fraction in the range 0.001-0.25, the
command #s0il_peplinski: 0.5 0.5 2 2.66 0.001 0.25
soil_properties would be used.

Fractals are scale invariant functions and can be used to
express the topography of soils for a wide range of scales with
sufficient detail [46]. Fractals can be generated by the convolution
of Gaussian noise with the inverse Fourier transform of 1/k?, where
k is the wavenumber and b is a constant related to the fractal
dimension [47].

The combination of the Peplinski soil models and the fractal
functions can be used to generate a soil model in gprMax with
more realistic dielectric and geometrical properties. Listing 6 gives
an example of the commands required to generate the soil model
shown in Fig. 4. The soil is composed of ten different dispersive
materials and features a rough surface.

1 #soil_peplinski: 0.5 0.5 2 2.66 0.001
— 0.25 soil_properties

2 #fractal_box: 0 0 0 0.1 0.1 0.07 1.5 1
— 1 1 10 soil_properties soil

3 #add_surface_roughness: 0 0 0.07 0.1
— 0.10.07 1.5 11 0.065 0.075 soil

Listing 6: Simulated soil using a Peplinski model, with
a rough surface

5 When a material has a dispersive modifier, the relative permittivity should be
specified as the relative permittivity at infinite frequency.

168 C. Warren et al. / Computer Physics Communications 209 (2016) 163-170

Fig. 4. Stochastic distribution of an arbitrarily chosen property of the soil and a
rough surface created using fractal correlated noise.

le-9

0.0
1000
0.5 750
500
1.0
250
15 0
-250
2.0
-500 o
w
2.5 =750
—1000
3.0
0

10 20 30 40 50 60
Trace number

Time [s]
Id strength [V/m]

Fig. 5. B-scan of a metal cylinder buried in a homogeneous dielectric half-space.
4. Example GPR simulations

The following three examples demonstrate how simple and
more advanced simulations of GPR that can be carried out using
gprMax.

4.1. B-scan of a buried cylindrical object

This is an example of a B-scan from a simple 2D GPR simulation
of a metal cylinder buried in a lossless dielectric half-space.
Listing 7 is the input file required to generate this model.

#domain: 0.240 0.210 0.002
#dx_dy_dz: 0.002 0.002 0.002
#time_window: 3e-9
#material: 6 O 1 O half_space
#waveform: ricker 1 1.5e9 my_ricker
#hertzian_dipole: z 0.040 0.170 O
— my_ricker
#rx: 0.080 0.170 O
g8 #src_steps: 0.002 0 O
9 #rx_steps: 0.002 0 O
10 #box: 0 0 0 0.240 0.170 0.002

— half_space
11 #cylinder: 0.120 0.080 0 0.120 0.080
— 0.002 0.010 pec

o L A

~

Listing 7: Input file to generate a B-scan of a buried
cylindrical object

Listing 7 is identical to Listing 1 except that to create the B-scan
the source and receiver are moved in steps to a new position every
time the simulation is run, i.e. for each A-scan. The resulting B-scan
is shown in Fig. 5 and is composed of 60 A-scans, i.e. 60 model runs.

4.2. Antenna patterns in a heterogeneous soil

This example shows how to simulate the field patterns of a GPR
antenna over a heterogeneous soil.

1 #dx_dy_dz: 0.001 0.001 0.001
2 #python:
3 import numpy as np
4 from user_libs.antennas import
— antenna_like_GSSI_1500
radii = np.arange(0.1, 0.6, 0.02)
theta = np.arange(3, 359, 6)
fs = np.array([0.040, 0.040, 0.040])
domain = np.array([2 * fs[0] + 2 *
— radii[-1], 2 * fs[1] + 0.107, 2 *
— fs[2] + 2 * radii[-1]1)
9 antennaposition = np.array([fs[0] +
— radiil[-1], domain[1] / 2, fs[2] +
— radii[-1]1])
10 antenna_like_GSSI_1500(antennaposition[0],
— antennaposition[1],
— antennaposition[2])
11 print('#domain: {:.3f} {:.3f}
— {:.3f}'.format(domain[0],
<. domain[1], domain[2]))
12 print('#time_window: 14e-9')
13 print('#soil_peplinski: 0.5 0.5 2.0
— 2.66 0.001 0.25 mySoil')
14 print('#fractal_box: 0 0 0 {} {} {3 1.5
— 11 1 50 mySoil mySoilBox
— 1'.format(domain[0], domain[1],
— fs[2] + radiil-11))
15 np.savetxt(input_directory +
— 'rxsorigin_H.txt',
— antennaposition, fmt="\}f")
16 for radius in range(len(radii)):

® N o v

17 ## H-plane circle (xz plane, y=0,
— phi=0,pi)
18 x = radiil[radius] * np.sin(theta *

— np.pi /180) * np.cos(180 *
— mnp.pi / 180)
19 y = radiil[radius] * np.sin(theta *
— mnp.pi /180) * np.sin(180 *
— mnp.pi / 180)

20 z = radiilradius] * np.cos(theta *
— mnp.pi /180)
21 for rxpt in range(len(theta)):
22 print('#rx: {:.3f} {:.3f}
— {:.3f}'.format (x[rxpt] +
— antennaposition[0],
— ylrxpt] +
— antennaposition[1],
— z[rxpt] +

— antennaposition[2]))
23 #end_python:

Listing 8: Input file to generate field patterns of a GPR
antenna over a heterogeneous soil

Listing 8 demonstrates using Python scripting within an input
file to generate the model. Fig. 6 shows a series of the resulting
H-plane field patterns at different observation distances from the
antenna. Further research into the characteristics of GPR antennas
in lossless and lossy environments can be found in [31,34,48].

C. Warren et al. / Computer Physics Communications 209 (2016) 163-170 169

270°

180°
Inf. dipole, 0.1m -~ Inf. dipole, 0.58m

~— 0.10m — 0.58m

Fig. 6. H-plane field pattern from GSSI 1.5 GHz antenna model over a lossy,
heterogeneous soil.

4.3. Complex environment

The geometry of the final example model is shown in Fig. 7.
The simulation is of a complex environment that can be often
be encountered in GPR surveys. It includes a heterogeneous soil
with a rough surface and pools of surface water. Grass and roots
are simulated, and a model of GPR antenna is included. Listing 9
shows that all of this complexity is achieved using relatively few
commands which demonstrates the power and ease of use of the
software.

#domain: 1 0.208 0.7

#dx_dy_dz: 0.001 0.001 0.001

#time_window: 10e-9

#so0il_peplinski: 0.5 0.5 2.0 2.66 0.001

— 0.25 soil_properties

#fractal_box: 0 0 0 1 0.208 0.5 1.5 1 1

— 1 10 soil_properties soil

6 #add_surface_roughness: 0 0 0.5 1 0.208
— 0.51110.45 0.55 soil

7 #add_surface_water: 0 0 0.5 1 0.208 0.5
— 0.52 soil

8 #add_grass: 0 0 0.5 1 0.208 0.5 1 0.4
— 0.6 300 soil

9 #python:

10 from user_libs.antennas import
— antenna_like_GSSI_1500

11 antenna_like_GSSI_1500(0.5, 0.104, 0.6)

12 #end_python:

13 #geometry_view: 0 0 0 1 0.208 0.7 0.001

— 0.001 0.001 complex_environment n

W oo

S

Listing 9: Input file for a complex environment for GPR

5. Conclusion

Current computing resources offer the possibility to build ever
larger and more complex simulations of GPR that have not been
possible before. A new version of gprMax has been developed that
is open source and written using Python and Cython programming
languages. Improvements have been made to existing features of
gprMax as well as the addition of new advanced modelling features
including: an unsplit implementation of higher order perfectly

Fig. 7. Model of a GPR in a complex environment.

matched layers (PMLs) using a recursive integration approach;
diagonally anisotropic materials; dispersive media using multi-
pole Debye, Drude or Lorenz expressions; soil modelling using a
semi-empirical formulation for dielectric properties and fractals
for geometric characteristics; rough surface generation; and the
ability to embed complex transducers and targets. A series of
example simulations demonstrate some of these features and the
ease with which they can be used. The open source principle of
the software provides a platform for developers to contribute new
ideas and algorithms which will be of future benefit to the GPR
research community.

Acknowledgements

This work was supported by The Defence Science and Tech-
nology Laboratory (Dstl), UK, and the Engineering and Physical
Sciences Research Council (EPSRC), UK (grant no. EP/]501943/1),
and benefited from networking activities carried out within the
EU funded COST Action TU1208 “Civil Engineering Applications of
Ground Penetrating Radar”.

References

[1] K.S. Yee, IEEE Trans. Antennas and Propagation 14 (3) (1966) 302-307.
[2] A.Taflove, S.C. Hagness, Computational Electrodynamics, Artech House, 2005.
[3] A. Giannopoulos, Constr. Build. Mater. 19 (10) (2005) 755-762.
[4] Lumerical Solutions, Inc. Fdtd solutions [online, cited 2015].
[5] Remcom. Xfdtd em simulation software [online, cited 2015].
[6] Gwangju Institute of Science and Technology. Gmes - gist maxwell’s equations
solver [online, cited 2015].
[7] Massachusetts Institute of Technology. Meep - mit electromagnetic equation
propagation [online, cited 2015].
[8] NJ. Cassidy, T.M. Millington, J. Appl. Geophys. 67 (4) (2009) 296-308.
[9] P. Shangguan, LL. Al-Qadi, IEEE Trans. Geosci. Remote Sens. 53 (3) (2015)
1538-1548.
[10] E. Slob, M. Sato, G. Olhoeft, Geophysics 75 (5) (2010) 75A103-75A120.
[11] F. Soldovieri, J. Hugenschmidt, R. Persico, G. Leone, Near Surf. Geophys. 5 (1)
(2007) 29-42.
[12] M. Solla, H. Lorenzo, F. Rial, A. Novo, Constr. Build. Mater. 29 (2012) 458-465.
[13] A.P. Tran, F. Andre, S. Lambot, [EEE Trans. Geosci. Remote Sens. 52 (9) (2014)

5483-5497. o]
[14] Elsevier. Scopus, the largest abstract and citation database of peer-reviewed

literature [online, cited 2015].

[15] OpenMP Architecture Review Board. Openmp [online, cited 2015].

[16] Python Software Foundation. Python [online, cited 2015].

[17] Cython. Cython [online, cited 2015].

[18] L. Dalcin, Mpi for python [online, cited 2015].

[19] The HDF Group. Hdf5 technology suite [online, cited 2015].

[20] Kitware Inc. The visualization toolkit [online, cited 2015].

[21] L. Gurel, U. Oguz, IEEE Trans. Geosci. Remote Sens. 38 (4) (2000) 1513-1521.

[22] G. Klysz, X. Ferrieres, J. Balayssac, S. Laurens, NDT & E Int. 39 (4) (2006)
338-347.

http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref1
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref2
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref3
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref8
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref9
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref10
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref11
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref12
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref13
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref21
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref22

170 C. Warren et al. / Computer Physics Communications 209 (2016) 163-170

[23] S. Lambot, E.C. Slob, L. van den Bosch, B. Stockbroeckx, M. Vanclooster, IEEE
Trans. Geosci. Remote Sens. 42 (11) (2004) 2555-2568.

[24] B. Lampe, K. Holliger, International Symposium on Optical Science and
Technology, International Society for Optics and Photonics, 2001, pp. 99-110.

[25] K.-H. Lee, C.-C. Chen, F.L. Teixeira, K-H. Lee, IEEE Trans. Antennas and
Propagation 52 (8) (2004) 1983-1991.

[26] Y. Nishioka, O. Maeshima, T. Uno, S. Adachi, IEEE Trans. Antennas and
Propagation 47 (6) (1999) 970-977.

[27] V. Pérez-Gracia, D. Di Capua, R. Gonzalez-Drigo, L. Pujades, NDT & E Int. 42 (4)
(2009) 336-344.

[28] R.L. Roberts, J.J. Daniels, Geophysics 62 (4) (1997) 1114-1126.

[29] F.L Teixeira, W.C. Chew, M. Straka, M. Oristaglio, T. Wang, IEEE Trans. Geosci.
Remote Sens. 36 (6) (1998) 1928-1937.

[30] D. Uduwawala, M. Norgren, P. Fuks, A.W. Gunawardena, IEEE Trans. Geosci.
Remote Sens. 42 (4) (2004) 732-742.

[31] N. Diamanti, A.P. Annan, J. Appl. Geophys. 99 (2013) 83-90.

[32] N. Diamanti, P. Annan, D. Redman, Advanced Ground Penetrating Radar,
IWAGPR, 2013 7th International Workshop on, IEEE, 2013, pp. 1-7.

[33] C. Warren, A. Giannopoulos, Geophysics 76 (37).

[34] C. Warren, A. Giannopoulos, IEEE]. Sel. Top. Appl. Earth Obs. Remote Sens.

[35] S.D. Gedney, Advances in Computational Electrodynamics: The Finite-
Difference Time-Domain Method, 1998, pp. 263-344.

[36] A. Giannopoulos, IEEE Trans. Antennas and Propagation 60 (3) (2012)
1479-1485.

[37] M. Pieraccini, A. Bicci, D. Mecatti, G. Macaluso, C. Atzeni, IEEE Trans. Antennas
and Propagation 57 (11) (2009) 3612-3618.

[38] D. Ireland, A. Abbosh, IEEE Trans. Antennas and Propagation 61 (4) (2013)
2352-2355.

[39] J.Li, L-X. Guo, Y.-C. Jiao, R. Wang, IEEE Geosci. Remote Sens. Lett. 10 (1) (2013)

4-8.

[40] A.Vial, A.-S. Grimault, D. Macias, D. Barchiesi, M.L. de La Chapelle, Phys. Rev. B
71(8)(2005) 085416.

[41] T. Bergmann, J.O. Robertsson, K. Holliger, Geophysics 63 (3) (1998) 856-867.

[42] 1. Giannakis, A. Giannopoulos, N. Davidson, Ground Penetrating Radar (GPR),
in: 2012 14th International Conference on, IEEE, 2012, pp. 232-236.

[43] I Giannakis, A. Giannopoulos, IEEE Trans. Antennas and Propagation.

[44] L. Giannakis, A. Giannopoulos, C. Warren, IEEE]. Sel. Top. Appl. Earth Obs.
Remote Sens.

[45] M.C. Dobson, F.T. Ulaby, M.T. Hallikainen, M.A. El-Rayes, IEEE Trans. Geosci.
Remote Sens. GE-23 (1) (1985) 35-46.

[46] D.L. Turcotte,]. Geophys. Res.: Solid Earth (1978-2012) 92 (B4) (1987)
E597-E601.

[47] D.L. Turcotte, Fractals and Chaos in Geology and Geophysics, Cambridge
University Press, 1997.

[48] C.Warren, A. Giannopoulos, Signal Process.

http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref23
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref25
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref26
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref27
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref28
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref29
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref30
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref31
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref32
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref35
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref36
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref37
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref38
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref39
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref40
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref41
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref42
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref45
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref46
http://refhub.elsevier.com/S0010-4655(16)30253-3/sbref47

	gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar
	Introduction
	Software overview
	Design principles and general features
	User interface, scripting and file formats

	Advanced features for modelling GPR
	Library of antenna models
	Absorbing boundary conditions
	Materials
	Anisotropic materials
	Dispersive materials
	Soil models and topography

	Example GPR simulations
	B-scan of a buried cylindrical object
	Antenna patterns in a heterogeneous soil
	Complex environment

	Conclusion
	Acknowledgements
	References

