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Abstract

Community detection is a critical task for complex network analysis. It helps
us to understand the properties of the system that a complex network rep-
resents and has significance to a wide range of applications. Though a large
number of algorithms have been developed, the detection of overlapping com-
munities from large scale and (or) dynamic networks still remains challenging.
In this paper, a Parallel Self-organizing Overlapping Community Detection
(PSOCD) algorithm ground on the idea of swarm intelligence is proposed.
The PSOCD is designed based on the concept of swarm intelligence system
where an analyzed network is treated as a decentralized, self-organized, and
self-evolving systems, in which each vertex acts iteratively to join to or leave
from communities based on a set of predefined simple vertex action rules.
The algorithm is implemented on a distributed graph processing platform
named Giraph++; therefore it is capable of analyzing large scale networks.

∗Corresponding author
Email addresses: sunhanlin@xupt.edu.cn (Hanlin Sun), wei.jie@uwl.ac.uk (Wei

Jie), Jonathan.Loo@uwl.ac.uk (Jonathan Loo), lizhe.wang@gmail.com (Lizhe Wang ),
msg@xupt.edu.cn (Sugang Ma), hangang668866@163.com (Gang Han),
zmwang@xupt.edu.cn (Zhongmin Wang), xingwei@xupt.edu.cn (Wei Xing)



The algorithm is also able to handle overlapping community detection well
because a vertex can naturally joins to multiple communities simultaneously.
Moreover, if some vertexes and edges are added to or deleted from the an-
alyzed network, the algorithm only needs to adjust community assignments
of affected vertexes in the same way as its finding joining communities for a
vertex, i.e., it inherently supports dynamic network analysis. The proposed
PSOCD is evaluated using a number of variety large scale synthesized and
real world networks. Experimental results indicate that the proposed algo-
rithm can effectively discover overlapping communities on large-scale network
and the quality of its detected overlapping community structures is superior
to two state-of-the-art algorithms, namely Speaker Listener Label Propa-
gation Algorithm (SLPA) and Order Statistics Local Optimization Method
(OSLOM), especially on high overlapping density networks and (or) high
overlapping diversity networks.

Keywords: overlapping community detection, community structure
analysis, complex network analysis, swarm intelligence, parallel network
analysis

1. Introduction

A lot of complex systems, such as the World Wide Web, mobile commu-
nication networks, online social networks, power grids, traffic road networks
and so on, are often modeled as complex networks to investigate. A complex
network usually shows some interesting properties such as high network tran-
sitivity, power-law degree distribution, small world, scale free, the existence
of community structures, and much more. The study of community struc-
tures can help us to understand those systems at a mesoscopic level, just
between the macroscopic level in which the whole system is considered and
the microscopic level in which each node is analyzed individually. In addition,
the analysis of community structures has significance to many applications.
For example, community structure analysis can be used in social networks
(e.g. Facebook) which presents relationships between members. The analysis
of such networks will help to design reliable friend recommendation systems.
As another example, community structure analysis can be used in detecting
communities of customers with similar purchasing interest in e-business net-
works. This can lead to setting up efficient product recommendation systems
and thus improving business opportunities for product retailers.
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An exact definition of a community depends on the underlying problem
and its application, thus there is no a unanimous definition. For example, the
definition could be based on degrees of vertexes [1], k-cliques[2], k-clans[2],
k-clubs [2], etc. Filippo et. al. [1] gave out the definition of strong sense com-
munity and weak sense community according to member connection strength.
Michele et. al. [3] proposed a number of meta definitions. Intuitively, a com-
munity is a group of vertexes in a network that has more edges (connections)
among its members but comparatively has less edges between its members
and the rest of the network vertexes. This simple concept is the core of nearly
all community definitions.

The properties of very complex networks induce three staple challenges
for a community detection algorithm: (1) overlapping community structure
detection, especially from a high overlapping density network of which a large
percent of vertexes are overlapping vertexes, and (or) from a high overlapping
diversity network of which an overlapping vertex belongs to a great number
of communities; (2) large scale network analysis, e.g., the number of vertexes
and edges could reach the scale of several millions and even more; and (3)
dynamic changing of the analyzed networks topology, i.e., a number of ver-
texes and edges could appear or disappear frequently. The problem about
large scale and dynamic networks is how to find community structures within
them quickly with as less effort as possible. Designing efficient algorithms to
meet these problems remains challenging.

In this paper, we develop the Parallel Self-Organizing Community De-
tection (PSOCD) algorithm based on the idea of swarm intelligence (SI) to
further near to a final solution. Swarm intelligence is the collective behavior
of decentralized and self-organized systems, either natural or artificial. An SI
system generally consists of a large number of simple individuals who can only
perform simple actions and interact with nearby neighbors as well as with
the system existing environment. Intelligence will emerge as a consequence
of the sum of these simple actions and interactions. The main innovations
and contributions of this paper are:

(1) We proposed the PSOCD algorithm applying concepts of SI. In PSOCD,
an analyzed network is modeled as a SI system in which each vertex as an
individual decides its own actions, i.e. leaving its original communities or
joining into new communities, depending on a set of predefined simple ac-
tion rules. Eventually an optimal community structure will emerge whilst
each vertex acts iteratively. A vertex is naturally allowed to join to multiple
communities, thus it is able to find overlapping community structures. The
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algorithm inherently supports dynamic network analysis very well; in that,
if new vertexes and edges are added to the analyzed network, or existing
vertexes and edges are deleted, it only needs to adjust community associa-
tions of affected vertexes in the same way as finding their previous joining
communities.

(2) We implemented the PSOCD in a distributed manner on the par-
allel graph processing platform Giraph++[4], leveraging the properties of
SI, namely distributed, self-organizing, and self-evolving. As a result, it is
capable of handling large scale network analysis.

(3) We found that the extended modularity or modularity density [5] for
evaluating overlapping community structure quality should not be used as
a metric for performance comparison of different algorithms. The reason
is that the incorporation of overlapping properties in the metrics has great
impact on its values, thus may lead to a quite opposite conclusion.

(4) We applied the PSOCD to analyze structural communities of three
large scale real world networks and got reasonable results, which are closer to
the functional communities reported in previous studies than those discovered
by the two compared state-of-art algorithms.

The remainder of this paper is structured as follows: In section 2, some
most related overlapping community detection algorithms are briefly re-
viewed. In section 3, the design of the PSOCD algorithm is outlined. A
current implementation of the proposed algorithm on the platform Giraph++
and its computational complexity are described in section 4. In section 5, the
evaluation results of the algorithm for a number of synthesized and real large
complex networks are presented, and the limits of the current implementation
are discussed. Finally, section 6 concludes the paper.

2. Related works

Community structure analysis of complex networks has attracted much
interest, and a number of algorithms originating from different fields, such as
physics, statistics, data mining, evolution computation and many more have
been proposed. There are many different strategies behind these community
detection algorithms, such as divisive hierarchy, agglomerative hierarchy, ran-
dom walking, information diffusion, spectrum analysis, statistical inference
and so on. Several comprehensive reviews of these methods have been con-
ducted, for example, a survey of community discovery methods was provided
with a special focus on techniques designed by statistical physicists [6]. Meta
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definitions of a community in complex network were given and majority com-
munity discovery methods were summed up based on their own definitions
[3]. Overlapping community structure analysis algorithms were reviewed in
[7] and [8], while those for social network analysis were reviewed in [9]. The
performance of a number of algorithms were compared in [8] and [10]. In
this section, we briefly review some algorithms most related to our work.

2.1. LPA

The label propagation algorithm (LPA) is currently the fastest algorithm
for community structure analysis, with a near-linear computational com-
plexity. The idea is that, as information propagates on a network with a
community structure, it will have a high probability flowing within a com-
munity. At first, each vertex is assigned a label, indicating the community to
which it belongs, then each vertex sends its label to its neighbors and selects
a label received from neighbors, e.g., the label observed most frequently, as
its new label. By iteratively propagating labels among neighboring vertexes,
the community structure will gradually emerge. Assuming that a vertex
is able to hold more than one label, LPA can be extended for overlapping
community detection. There are a number of improved algorithms based
on the LPA approach for overlapping community detection, such as CO-
PRA(Community Overlap PRopagation Algorithm)[11], MLPA(Multi-Label
Propagation Algorithm)[12], BMLPA(Balanced MLPA)[13], SLPA(Speaker-
Listener LPA)[14], LPAcw(LPA with consensus weight)[15], DLPA(Dominant
LPA)[16], etc. They are differentiated by the way of label propagating strate-
gies and new label selections.

We take the SLPA as a comparison algorithm, which is said having good
performance as detecting overlapping communities[8]. The algorithm mim-
ics human communication behavior as propagating labels, i.e. preferring
to spread most frequently discussed opinions. Specifically, each vertex has
a memory and spreads randomly one of its current labels to its neighbors
with a probability proportional to the occurrence frequency of the label in
memory, and takes the most popular label observed as a new label. Those
labels with probabilities exceeding a given threshold are kept by a vertex and
transformed to communities finally.

There are parallel extensions of LPA [17, 18] to further speeding up their
execution. However, the problem of LPA algorithms is that its result is
unstable due to the inner randomness of the algorithm.
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2.2. Game Theory

The algorithms based on game theory try to simulate a procedure through
which the community structure of a network evolved to the current state. In
such an algorithm, a vertex is viewed as a rational or selfish individual, and
decides its own community associations according to a defined utility func-
tion, that consists of two parts, a gain function and a loss function. While
a Nash equilibrium is reached, at which state no individual can increase its
utility by changing its strategy (community associations) unilaterally, a com-
munity structure could be deduced. If an individual is allowed to join into
multiple communities, the algorithm could be used for overlapping commu-
nity detection. A Nash equilibrium is guaranteed to exist if the gain and loss
functions are locally linear. However, finding a Nash equilibrium under such
restricts is NP-hard. In practice, a local equilibrium is used instead, in which
each individual plays its local optimal strategy. The algorithms in [19] and
[20], PSGMAE(Pearson correlation GAME) [21], NGGAME(Neighborhood
similarity GAME)[21], and SID(Social Information Diffusion) [22] are just
some examples based on game theory. Their differences lie within the design
of the utility functions they employ. Specifically, the COFOGA in [23] defines
a utility function for a coalition (community) and uses the game theory as an
approach for coalition merging, i.e. an individual in the formation game is a
coalition. Since a utility function should be local linear to assure the game
being potential, the community properties contained in the utility function
should be able to be expressed as local linear functions.

2.3. Swarm Intelligence

Extensively, the LPA algorithms and those based on game theory are sim-
ilar as the one ground on swarm intelligence as we have described previously,
in the way that each vertex decides its community associations by itself, but
the ideas behind are different: the LPA relays on the fact that a label is prop-
agating within a community with high probability; the game theory aims to
find a Nash equilibrium state by each selfish agent selecting proper strategies
iteratively; while the swarm intelligence assumes an emergence of optimal re-
sult from collective simple actions of a large number individuals. Therefore,
the final best community structures found may have different qualities.

Actually, a swarm intelligence algorithm is more referred to an algorithm
inspired by natural bio-systems, and ranges over a number of types, including
the Genetic Algorithm (GA) and the Ant Colony Optimization (ACO) algo-
rithm. Both of the two algorithms were used for community analysis. The
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GA-NET+[24] is GA based and used for overlapping community detection
by working on a link network translated from a normal vertex network, in
which a vertex and an edge represent an edge and a vertex of the original
network, respectively. Due to the limitation of the representation method for
evolutionary individuals, however,the GA based algorithm can not be used
for large scale network analysis. In [25], the AntCBO algorithm was proposed
for overlapping community detection. Intrinsically, this algorithm is a type
of LPA but the label propagation among neighboring vertexes is achieved by
’ants’ in the ACO algorithm framework.

In [26] the authors proposed an overlapping community detection algo-
rithm named COGS (Community Optimization Graph Swarm), that is ex-
plicitly said using swarm intelligence. In COGS, an analyzed network is
treated as a swarm intelligence system and a vertex interacts with its neigh-
bors to find the so called Friendship-Group (a type of partial community).
Then the algorithm finds Friendship-Groups that should be merged based
on the LPA idea through propagating community labels among such groups.
Our algorithm is different from COGS in that the COGS uses SI to find
Friend-Groups, only a partial step in community detection, while the PSOCD
uses SI as a framework to imitate a procedure through which the commu-
nity structure of a network evolves to its current state. The authors also
implemented a multi-thread parallel version COGS[27].

2.4. Local Expansion

In local expansion algorithms, a seed vertex or vertex-set is given firstly
as an initial community, and then neighboring vertexes of member vertexes
join to the seed community if their joinings can improve the community
quality. As there is no such a vertex left, a complete community is found.
A new seed (vertex or vertex-set) is then selected from those vertexes not
joined to any community yet and a new community is discovered in the
same way as previously described. Given a seed community, if all other
vertexes can try to join to it, but not only those not joined to any com-
munity yet, this strategy can be used for the detection of overlapping com-
munities. The algorithms IS(Iterative Scan)[28], RaRe(Rank Removal)[28],
IS2(Improved IS)[29], LFM[30], fast LFM[31], DOCS(Detecting Overlapping
Community Structures)[32], MOSES(Model-based Overlapping Seed Expan-
Sion) [33], and OSLOM(Order Statistics Local Optimization Method)[34]
are just some examples. However, the results of such an algorithm heavily
depends on the quality of the selected seeds.
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The OSLOM is another comparison algorithm we used in this paper, that
is reported having good performance for overlapping community detection as
well[8]. It should be also mentioned that the OSLOM is capable of detecting
communities in networks accounting for edge directions, edge weights, over-
lapping communities, hierarchies and community dynamics. The algorithm
uses a fitness function that expresses the statistical significance of a clus-
ter (community) with respect to random fluctuations to evaluate the cluster
quality. The statistical significance of a cluster is defined as the probability
of finding the cluster in a random null model, i.e. in a class of networks
without community structure. To reduce the impact of stochasticity of ini-
tial seed selections, the algorithm is usually repeated several times to obtain
several community structures, and then the final best outputs are selected
from all detected clusters. One major drawback of OSLOM is its heavy
computational cost as calculating significance for each cluster.

To the best of our knowledge, the problem of overlapping community
structure analysis remains a challenge, though there are a large number of
algorithms have been proposed. We should continue to further explore and
develop algorithms that can handle large scale and dynamic networks and be
able to detect overlapping community structure accurately and effectively.

3. The proposed PSOCD algorithm

The conception structure of the proposed algorithm is shown in Fig. 1.
It mainly consists of four phases, namely, partitioning, initializing, evolving
and collecting. In the partitioning phase, the algorithm divides an analyzed
large scale network into a number of smaller sized sub-networks, which will
be loaded into different worker nodes and be processed in parallel in sub-
sequent phases. In the following initializing phase, PSOCD finds an initial
community for each vertex within its located sub-network. These initial com-
munities provide a foundation for the evolving phase. In the third phase, the
algorithm evolves communities of each sub-network by changing community
associations of each local vertex iteratively. Note that during parallel pro-
cessing, messages are passed among these sub-networks to keep states of the
evolving system be in consistent. An optimal community structure of the
network will gradually emerge after a number of evolutions. Finally, in col-
lecting phase, the community structure of the analyzed network is collected
from the evolved sub-networks.
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Figure 1: The conception structure of PSOCD.

3.1. Partitioning Phase

The first phase of analyzing a large scale network is to divide it into a
number of smaller sub-networks with approximately the same size. More-
over, the connections among the identified different sub-networks should be
minimal. The target of equally sized sub-networks roughly equalizes the pro-
cessing time for each sub-network. Minimal connections among the identi-
fied sub-networks is aimed for because the connections between sub-networks
have a significant influence on the performance of the subsequent evolving
phase. For example, during its evolution, a vertex should notify its neighbors
changes of its communities. It is easy to notify local neighbors located in the
same sub-network, but if a neighbor is hosted by another sub-network, the
vertex must send community- change messages across a communication net-
work. Therefore, a vertex is preferred to be assigned to a sub-network with
as less connections with other sub-networks (i.e., less external neighbors) as
possible. Currently, the ’Metis’ algorithm[35] is used as the partition method,
which could produce a partition structure with minimum edges across parti-
tions.

3.2. Initializing Phase

As mentioned earlier, member vertexes of a community have denser con-
nections among them, but comparatively less connections with members of
other communities. There is no more denser connected part in a network
than a k-clique, of which each member is connected to all the rest members
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1:

2: ALGORITHM 1: InitializeCommunities(sub-network)
3:

4: for (each vertex v in the sub-network) do
5: if (v has been initialized) then
6: continue
7: end if
8: if (v and its two uninitialized neighbors n1 and n2 form a 3-clique) then
9: create a new community nc containing v, n2 and n2;

10: else
11: create a singleton new community nc containing v;
12: end if
13: save nc in the local community structure lcs and associate it with its mem-

bers;
14: tag members of nc as being initialized;
15: end for
16:

Figure 2: Finding an initial community for each vertex within a sub-network.

of the k-clique. In other words, a maximum k-clique represents the strongest
sense of community. The PSOCD takes a smallest k-clique, 3-clique, as the
initial core community for the three member vertexes. For simplicity, the
algorithm finds a 3-clique for an uninitialized vertex of a sub-network with
its two uninitialized local neighbors as their initial community. If such a
3-clique does not exist for a vertex, then the vertex forms a community with
only itself as a member, i.e. a singleton community. The initializing algo-
rithm for a sub-network is shown in Fig. 2. Please keep in mind that the
algorithm is executed in parallel by different worker nodes that are respon-
sible for processing different sub-networks. We will explain in section 4.1
how communities are saved in our implementation to reduce communication
cost thus get performance gain. Here, we simply consider that each ver-
tex keeps its own state, namely its neighbors, neighbors’ neighbors, joining
communities, neighbors’ joining communities, and so on.

To find if a 3-clique with two neighbors exists, a vertex must be able to
check if its two neighbors are connected mutually to each other. Hence a
vertex must know its neighbors’ neighbors while executing the initializing
algorithm. This is achieved by each vertex sending each of its neighbors its
all neighbors firstly. The sending procedure is shown in Fig. 3. The sent
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1:

2: ALGORITHM 2: NotifyVertexNeighbors(sub-network)
3:

4: for (each vertex v in the sub-network) do
5: for (each neighbor ng of v) do
6: send ng a message containing v’s neighbors;
7: end for
8: end for
9:

Figure 3: Notifying neighbors of a vertex its all neighbors.

1:

2: ALGORITHM 3: NotifyNewCommunities(sub-network)
3:

4: for (each community c in lcs of the sub-network) do
5: for (each newly joining vertex jv of c) do
6: for (each neighbor ng of jv) do
7: if (ng is not a member of c) then
8: send ng a message containing community c;
9: end if

10: end for
11: end for
12: end for
13:

Figure 4: Notifying neighbors of newly joining members the community.

neighbor notification messages (and other messages) will be handled by the
receiving vertexes.

In the subsequent evolving phase, a vertex will check each of its neighbors
if it should join to the neighbor’s communities. From the viewpoint of a
community, neighbors of members (but not members yet) of a community
should know the existence of the community to make them have a chance
to join to. For the sake of such existence knowledge, the PSOCD sends
neighbors of newly joining members of a community messages containing
the community. The community notification algorithm is shown in Fig. 4.
Especially, notifications to external neighbors make the community expand
freely across sub-networks.
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3.3. Evolving Phase

The evolving phase plays a key role in finding an optimal community
structure for a network. The main question in evolving phase is whether a
vertex should join to a community, i.e., under which condition a vertex will
join to a community? To address this, we define a new type of connection
strength of a vertex with a community, the connection score.

3.3.1. Connection Score

Tanmoy et. al. [36] claimed that the connection strength of a vertex with
a community is determined by two factors: 1) the number of connections
between the vertex and each other community, but not the total number
of connections between the vertex and all other communities, and 2) the
strength with which this vertex connects to the candidate community, but
not only the number of connections between the vertex and the candidate
community. The strength is measured as the clustering coefficient of the
vertex’s neighbors belonging to the candidate community. The larger the co-
efficient, the stronger the strength, and vice versa. Tanmoy et. al. proposed
a connection strength, the vertex permanence, defining as follows:

Perm(v) =

[
I(v)

Emax(v)
× 1

D(v)

]
− [1− cin(v)] (1)

where I(v) is the connection number between vertex v and a candidate join-
ing community, Emax(v) is the maximum number of connections between v
and candidate communities, D(v) indicates the degree of vertex v, and cin(v)
represents the clustering coefficient of v’s neighbors belonging to the candi-
date community. The first term in eq. 1 considers the first factor described
previously, while the second term takes into account the second. The range
of the permanence of a vertex is between [−1, 1]. The authors advocated
that the averaged permanence of all community members could be used as
an index for the quality of the community.

However, it is not straightforward to depict a connection strength as a
negative number. Intuitively, a negative number indicates the extent to which
a vertex is not belonging to a community. Moreover, the two factors are mea-
sured independently in the permanence computation, while they should be
related to each other in some way to get subtle distinction between connec-
tion strengths. At this point we propose a new type of connection strength,

12



the connection score (CS), following the two mentioned factors:

CS(v) =

[
I(v)

D(v)

](1−cin(v))

(2)

where I(v), D(v) and cin(v) are the same as in eq. 1. The D(v) could be
replaced with Emax(v) as well. In CS, a connection strength is first mea-
sured by the connection number, and then magnified by the corresponding
clustering coefficient. Therefore, the CS may get a subtle distinction be-
tween connection strengths. The range of CS lies within [0, 1] representing
absolutely not belonging to (0) and definitely belonging to (1) a community,
respectively. It is easy to extend CS to weighted networks, by replacing the
degree with sum of corresponding edge weights and defining the clustering
coefficient in a way taking edge weights into consideration.

3.3.2. Vertex Community Evolving

A vertex either joins to communities to which some of its neighbors be-
long or stays as a singleton community. Therefore, in each evolution round,
the algorithm updates a vertex’s communities as follows: first, get currently
joining communities of all neighbors of the vertex as candidate communities,
to which the vertex will try to join. Note that two neighbors may join into
the same community, thus the duplicated ones should be removed from the
candidates for efficiency. Second, compute the connection score for the vertex
with each candidate community. Finally, add the vertex into the candidate
communities with ’stronger’ strength, and remove the vertex from originally
joining communities which are not joined to in this iteration of evolution.
The connection strength of which the ratio between it and the maximum
connection score exceeds a given threshold is considered as stronger. Ac-
tually, the connection strength ratio threshold defines what a community is
found by the algorithm: a set of vertexes more densely connected compared
to other vertexes in neighborhood. The threshold value controls the size
of found communities. A large threshold leads to small size communities,
while a small threshold incurs large size communities. Moreover, it must be
noticed that only if the connection number of a vertex with a community
is greater than or equal to 3, could the connection strength be computed,
because the clustering coefficient is meaningful only if this condition is hold.
If the connection number equals 2, a vertex will join to such a candidate
community only if its maximum connection is not more than 3. Otherwise a
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vertex will not join to a candidate community. The vertex community evolv-
ing algorithm is described as in Fig. 5. A vertex who does not change its
joining communities is considered as ’inactive’, and does not need to execute
the evolving algorithm. An inactive vertex becomes active again if it receives
any message from another vertex.

The evolving algorithm is executed iteratively for each sub-network, and
optimal communities will emerge gradually. Theoretically, the evolving will
terminate if there is no vertex left that is changing its communities. However,
such a graceful termination may not be achieved due to a few vertexes who,
in a cyclic way, repeat the same actions within several sequential evolving
generations, i.e. leaving from a community and later joining to it again, be-
cause of mutual influence of actions of different vertexes. We set a maximum
evolving generations to ensure it will terminate eventually.

At the end, in collecting phase, the whole community structure of the
analyzed network could be collected from these evolved sub-networks.

3.3.3. Keeping Consistence

To keep community state being consistent, the changes of a community,
i.e. some vertexes joining and some leaving, should be notified to its replicas,
if applicable during evolution. Given that the PSOCD runs in a distributed
manner, one way of notifying these changes could be sending associate mes-
sages after all vertexes of a sub-network finishing their eovlutions. One com-
munity change notification algorithm is shown in Fig. 6. Notifying neighbors
of newly joining vertexes is for computing clustering coefficient in connection
score calculation.

3.3.4. Community Merging

It could happen that a community is contained in another one completely
during evolution. These contained communities should be merged (deleted)
to eliminate unnecessary vertex actions and thereby speed up the algorithm’
execution. Our algorithm merges communities from a vertex viewpoint, i.e.,
it checks each community a vertex joining to if it is contained by another com-
munity the vertex joining to. The reason is that if a community is contained
by another one, the common members of the two communities must join into
both, and thus the merging could be found easily by searching within a com-
mon member’s joining communities. This search strategy greatly reduces the
effort needed to find a containing community in local community structure
for a given community.
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1:

2: ALGORITHM 4: EvolveCommunities(sub-network)
3:

4: for (each vertex v in the sub-network) do
5: if (v is inactive) then
6: continue;
7: end if
8: get joining communities of v’s neighbors as candidates;
9: compute connection score cs for v with each candidate;

10: for (each candidate community cc) do
11: if (connection number cn of v with cc ≥ 3) then
12: if (((cs with cc) / csmax) ≥ threshold) then
13: v joins to cc;
14: end if
15: else if (((cn with cc) == 2) and (cnmax ≤ 3)) then
16: v joins to cc;
17: end if
18: end for
19: for (each community c that v joins to originally) do
20: if (v does not join to c now) then
21: v leaves from c;
22: end if
23: end for
24: if (v does not change its joining communities) then
25: set v as inactive;
26: end if
27: end for
28:

Figure 5: Evolving communities of vertexes in a sub-network.
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1:

2: ALGORITHM 5: NotifyVertexActions(sub-network)
3:

4: for (each community c in lcs of the sub-network) do
5: for (each current member cm of c) do
6: send cm a message containing newly joining vertexes (and their neigh-

bors) and leaving vertexes of c;
7: end for
8: end for
9:

Figure 6: Notifying vertex actions.

While deleting a community, the deletion could be notified to members
of the community to make the deleting only occur once and thus get per-
formance gain. By notifying other members after the first deleting on one
member, no more deletion is needed any more. To reduce notification cost,
if a merging occurs, only local members of the community need to be no-
tified, but external members located in other sub-networks need not. It is
because that if a deleted community exists in a sub-network, the containing
community must exist too. Therefore, the same merging will occur there as
well. However, there is a special case needed to be carefully dealt with to
make sure the same merging occur in different sub-networks. The case is the
situation that the contained and containing communities contain completely
same members but with different IDs. It should be guaranteed that in such a
situation the deleted community must be the same one. The PSOCD fulfills
this requirement by always deleting the community with a small ID. The
merging algorithm is shown in Fig. 7.

3.4. Post Process

Due to the possible ungraceful termination of the algorithm, there may
exist some vertexes joining to wrong communities. As an extreme example,
a vertex may join to a community, but has no connection with any member
of the community. We finally apply a post-process procedure (shown in Fig.
8) to the collected community structure for rectification. The post algorithm
repeatedly removes vertexes from wrongly joining communities. The leaving
criteria include: 1) the connection number of a vertex to a community is
0; 2) the connection number is 1 but its maximum connection number is
greater than or equal to 2; 3) the connection number is 2 but the maximum
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1:

2: ALGORITHM 6: MergeCommunities(sub-network)
3:

4: for (each vertex v in the sub-network) do
5: get v’s joining communities;
6: sort communities firstly by their sizes, then by community IDs;
7: for (each small community sc) do
8: if (sc is same as another community) then
9: delete the community with small ID from lcs;

10: notify local members of the deleted community the deletion;
11: else if (sc is contained by a big community bc) then
12: delete sc from lcs;
13: notify local members of sc the deletion;
14: end if
15: end for
16: end for
17:

Figure 7: Merging communities from a vertex viewpoint.

connection number is greater than or equal to 4; and 4) the connection
number is greater than or equal to 3, while the connection score could be
computed, but the ratio of the connection score to the maximum score is less
than a given threshold, which is set the same as the joining threshold during
PSOCD evolving. These leaving criteria are approximate the opposites of
these joining rules in vertex community evolving algorithm (algorithm 4).

4. Implementation of PSOCD

A number of distributed graph processing systems have been developed
to meet the challenge of rapidly processing growing graph data. Almost all
these systems divide an input large scale graph into a number of small sub-
networks and take the ’think like a vertex’ programming model to achieve
iterative graph computation. The Apache Giraph is such a system that
adopts the BSP (Bulk Synchronous Parallel) computation model. In BSP,
a computation consists of numbers of super-steps, in each of which each
vertex of a sub-network does its own computation and sends its results to
other related vertexes by messages through the system scheduler, no matter
if the destination vertex is located in the same local sub-network or other
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1:

2: ALGORITHM 7: PostProcess(community structure)
3:

4: repeat
5: for (each vertex v in network) do
6: compute connection number cn and connection score cs of v to each

joining community;
7: for (each community c v joins to) do
8: if (c is singleton) then
9: continue;

10: end if
11: if (cn == 0) then
12: v leaves from c;
13: else if (cn == 1 and cnmax ≥ 2) then
14: v leaves from c;
15: else if (cn == 2 and cnmax ≥ 4) then
16: v leaves from c;
17: else if (cn ≥ 3 and cs / csmax < threshold) then
18: v leaves from c;
19: end if
20: end for
21: if (v joins to none community) then
22: v forms a singleton community;
23: end if
24: end for
25: until (no vertex leaves from a community)
26:

Figure 8: Post Process algorithm.
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sub-networks. The system will guarantee to deliver these messages to their
correct destination vertexes at the end of the current super-step, i.e., after
all vertexes finishing their computation of the current super-step. Tian et.
al. [4] improved the Giraph and proposed the Giraph++ which provides
a ’think like a graph’ programming model. In Giraph++, the sub-network
structure is opened up to all local vertexes and thus vertex communica-
tion within a sub-network can bypass the heavy message passing or system
scheduling support and messages can be sent to local destination vertexes di-
rectly. Therefore, the communication mechanism of Giraph++ can be viewed
as semi-asynchronous, within local sub-network asynchronous and between
subnetworks synchronous. This optimized local asynchronous communica-
tion will make the swarm intelligence system evolution be more efficient. We
implemented our PSOCD on the Giraph++ platform.

4.1. Considerations

In a swarm intelligence system, each individual keeps its state and inter-
acts with its neighbors and the system environment to make its own decisions
independently. For the community detection problem the state of a vertex
includes its neighbors, neighbors’ neighbors, joining communities, external
neighbors’ communities, and more. Clearly, the communities saved by ver-
texes of a sub-network have a lot of replicas. To keep these replicas being
consistent, messages must be sent to each vertex who holds a replica. Note
that in Giraph++, a sub-graph programming model is supported, such that
all local vertexes of a sub-network could share some variables among them.
Therefore, in our implementation, communities used locally are held by a
sub-network and identified by unique identifiers across the whole system.
We call them the local community structure. A vertex then only saves IDs
of communities to which itself joins or its external neighbors join. There
are two advantages in following this approach: 1) the consumed memory is
reduced; 2) the messages needed to keep community replicas being consistent
are decreased greatly. The reason for that is if one vertex updates the state
of a community, all local vertexes referencing this community will be aware
of the changes immediately as well. Consequently, those messages related to
community state update (community notification messages and vertex action
notification messages) do not need to be sent to local vertexes. Moreover,
those messages do not need to be sent to each of relevant external vertexes:
select a representative vertex from message heading vertexes located in a
same sub-network and send only one such a message to the selected vertex,
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then the representative vertex is capable of being responsible for updating
its local community replica. Therefore, such a message needs to be sent for
the times of at most the number of sub-networks. In addition, when a vertex
notifies an external neighbor of its joining communities, it only sends the
IDs of these communities, which is much smaller in size than the sending of
whole structures of these communities. The implementations of aforemen-
tioned notification algorithms could be improved by using the advantages of
the community storage approach.

As the evolving phase progresses, some communities may no longer be
referenced by any vertex. To remove these unnecessarily saved communities
from the local community structure of a sub-network, at the beginning of each
evolving round, the algorithm should examine all communities and delete
those null referenced ones.

4.2. Alogrithm Framework

The framework of PSOCD on Giraph++ is shown in Fig. 9. The func-
tions starting with ’Process’ deal with messages received from last super-step
for vertexes in a sub-network and thus update states of local communities
and vertexes. The ’Notify’ functions here are improved ones by taking into
considerations of local shared community storage approach. The first two
super-steps, step 0 and 1, achieve the initializing phase. Note that the two
functions in super-step 1, ’NotifyNewCommunities’ and ’NotifyVertexCom-
munities’ (described in Fig. 11), spread information of the initialized commu-
nities across subnetworks and prepare for subsequent community evolving.
The remained super-steps compute the community evolution. In the even
super-steps, the algorithm processes received notification messages and up-
dates states of local communities and vertexes and then evolves communities
of each local vertex. At the end it sends messages of community evolution
(vertex actions) to related subnetworks aiming to keep changed communities
be in consistent. Similarly, in the odd super-steps, the algorithm first handles
notification messages of community evolution and renew local communities,
and then merges contained communities if possible. Finally, it diffuses cur-
rent states of local vertex joining communities and prepares for the next
round evolving. The corresponding flow diagram is shown in Fig. 10.

4.3. Computational Complexity Analysis

It is difficult to analyze the computational complexity of a parallel al-
gorithm in distributed running. In this section, we focus on the algorithm
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1:

2: ALGORITHM 8: Compute(sub-network)
3:

4: if (super-step == 0) then
5: //initializing.
6: NotifyVertexNeighbors(sub-network);
7: else if (super-step == 1) then
8: //initializing.
9: ProcessNeighborMessages(sub-network);

10: InitializeCommunities(sub-network);
11: NotifyNewCommunities(sub-network);
12: NotifyVertexCommunities(sub-network);
13: else if ((super-step % 2) == 0) and (super-step ≤ MAXSTEP)) then
14: //evolving, even step.
15: ProcessNewCommunityMessages(sub-network);
16: ProcessVertexCommunityMessages(sub-network);
17: EvolveCommunities(sub-network);
18: NotifyVertexActions(sub-network);
19: else if ((super-step % 2) == 1) and (super-step ≤ MAXSTEP)) then
20: //evolving, odd step.
21: ProcessActionMessages(sub-network);
22: MergeCommunities(sub-network);
23: NotifyNewCommunities(sub-network);
24: NotifyVertexCommunities(sub-network);
25: else
26: ProcessActionMessages(sub-network);
27: set all local vertexes to be halt;
28: end if
29:

Figure 9: The framework of PSOCD on Giraph++.
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Figure 10: The flow diagram of PSOCD on Giraph++.

execution on one sub-network and analyze the computational complexity of
the two major operations of PSOCD, i.e., the initializing phase and evolving
phase. The used labels are listed in Table 1. We assume that all vertexes
are divided into approximately equal sized sub-networks and that network
communication time is not taken into consideration.

The initializing phase consists of two super-steps. In the first (super-
step 0), each vertex notifies its neighbors all its neighbors. In the second
(super-step 1), a sub-network processes firstly the received neighbor notifi-
cation messages and then finds a 3-clique initial community for each local
vertex. Finally, it spreads initialized local communities to other sub-networks
if necessary. The computational complexity of notifying neighbor informa-
tion is O(N̄V · N̄N), while that of processing neighbor notification messages
is O(N̄V · N̄EN). Local neighbor notifications can be done at the same time
as notifying in super-step 0 due to the opening of sub-network structure in
Giraph++ and none message is actually sent, thus no processing. A vertex
is an external neighbor of its external neighbors, too. The worst compu-
tational complexity of finding initial communities for all local vertexes is
O(N̄V · N̄2

LN). If a community contains members having neighbors located
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1:

2: ALGORITHM 9: NotifyVertexCommunities(sub-network)
3:

4: for (each vertex v in the sub-network) do
5: for (each neighbor ng of v) do
6: if (ng is a local vertex) then
7: notify ng v’s joining community IDs directly;
8: else
9: send ng a message containing v’s joining community IDs;

10: end if
11: end for
12: end for
13:

Figure 11: Notifying joining communities of vertexes.

in other sub-networks, then it should be spread to these external neighbors.
In consideration of the storage approach of communities in a sub-network,
the community spreading could be achieved by the two functions shown in
algorithm 8 (Fig. 9), NotifyNewCommunities and NotifyVertexCommunities
(algorithm 9, in Fig. 11). The former sends a local community, if necessary,
to the selected representative vertexes located in other sub-networks, and the
later sends the joining community IDs of each local vertex to all its neigh-
bors. The worst computational complexity of the community notification
is O(N̄C · (NP − 1)), and the computational complexity of vertex commu-
nity ID notification is the same as its neighbor notification, O(N̄V · N̄N).
As a result, the worst computational complexity of the initializing phase is
O(2N̄V · N̄N + N̄V · N̄EN + N̄V · N̄2

LN + N̄C · (NP − 1)). Usually, the N̄N ,
N̄LN and N̄EN are much smaller comparing with N̄V , and NP is smaller than
N̄C . In addition, within a sub-network having good community structure,
finding a 3-clique with two local neighbors for most vertexes does not need
NvLN(NvLN−1)/2 times searches, especially for vertexes with a large number
of local neighbors. Therefore, the computational complexity of initializing
could be simplied as O(K1 ·N̄V +K2 ·N̄C) where K1 and K2 are two constants.

The evolving phase is executed a number of iterations and each iteration
consists of two super-steps as well. In the first (even super-step), a sub-
network firstly processes received notification messages of new communities
and vertex community IDs from last super-step and updates states of local
communities and vertexes, and then evolves community associations for each
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local vertex. Finally, the sub-network sends updates of each local community
(vertex joining and leaving) to selected representative vertexes located in
other sub-networks if a replica of the community exists there for the purpose
of keeping them being consistent. The worst computational complexity of
processing new community messages is O(N̄C ·(NP−1)), while the complexity
of processing vertex community ID messages is O(N̄V · N̄EN). The worst
complexity of vertex community evolving is O(N̄V · N̄N · N̄V C) because the
algorithm checks all candidate communities for each vertex if it joins, and
that of the vertex action notification is O(N̄C · (NP − 1)) as messages are
only sent to selected representative vertexes.

In the second step (odd super-step), a sub-network processes firstly re-
ceived vertex action notification messages and updates states of local com-
munities, and then merges communities from a vertex viewpoint if possible.
Finally, it prepares for the next round evolving by sending new community
notification and vertex joining community ID notification messages, as in the
end of initializing phase. The worst computational complexity of processing
vertex action messages is O(N̄C · (NP − 1)), the same as their sending, and
that of the merging is O(N̄V · N̄2

V C) for checking each community if it is
contained in another one.

Therefore, the worst computational complexity of one evolving iteration is
O(N̄V ·(NP−1)+N̄V ·N̄EN+N̄V ·N̄N ·N̄V C+3N̄C ·(NP−1)+N̄V ·N̄2

V C+N̄V ·N̄N).
It could be simplied as O(K3 · N̄V + K4 · N̄C) where K3 and K4 are two
constants due to the similar reasons explained in initializing phase analysis.
It should also be noted that the N̄C gradually becomes small as evolving
forwarding.

When the overall cluster is considered, the complexity of the initializing or
one evolving iteration depends on the worst one of the sub-networks processed
by a number of worker machines, plus the worst network communication cost.
Generally, it is a sensible assumption that the network bandwidth is sufficient
and thus network communication will not be the bottleneck of the algorithm’s
execution.

5. Performance Evaluation

In this section the performance of our proposed algorithm will be evalu-
ated and compared against two algorithms, the SLPA[14] and the OSLOM[34],
that are reported having good performance for overlapping community detection[8]
and of which the source codes are easily to get.
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Table 1: Used labels in computational complexity analysis
Variable Description
NP sub-network number
N̄V average number of vertexes in a sub-network
N̄C average number of local communities in a sub-network
N̄N average number of neighbors of a vertex
N̄LN average number of local neighbors of a vertex
NvLN the number of local neighbors of vertex v
N̄EN average number of external neighbors of a vertex
N̄V C average number of joined communities of a vertex

Table 2: Computational complexity of algorithms in PSOCD
Algorithm Worst computational complexity
NotifyVertexNeighbors O(N̄V · N̄N )
ProessNeighborMessages O(N̄V · N̄EN )
InitializeCommunities O(N̄V · N̄2

LN )
NotifyNewCommunities O(N̄C · (NP − 1))
NotifyVertexCommunities O(N̄V · N̄N )
ProcessNewCommunityMessages O(N̄C · (NP − 1))
ProcessVertexCommunityMessages O(N̄V · N̄EN )
EvolveCommunities O(N̄V · N̄N · N̄V C)
NotifyVertexActions O(N̄C · (NP − 1))
ProcessActionMessages O(N̄C · (NP − 1))
MergeCommunities O(N̄V · N̄2

V C)

5.1. Experiment Setup

We implemented the PSOCD algorithm on the Giraph++ model and
deployed it on a cluster with 20 virtual machines, one virtual machine as the
master of the system and the other 19 as slavers (worker nodes). Each virtual
machine has 4 core CPUs and 16G memory. The operating system used is
Ubuntu 14.04, and the version of Hadoop deploying Giraph++ is 0.20.203.

The maximum computation super-steps in experiments is set as 30. Within
the first half number of evolution iterations, the threshold of connection
strength ratio of vertex joining is set as 0.8, in order to get a high quality core
community structure, and then in the second half, the threshold is reduced
to 0.5 or even less, for the purpose of getting more complete communities.

In the run of the SLPA algorithm, its parameter r takes all possible values
and we picked out the best result as the compared one. The three algorithms
are run 30 times on each test network.
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Table 3: LFR parameter setting
Parameter Description Experiment Setting

N number of vertexes from 50,000 to 350,000,
increased by 50,000.

k average degree of vertexes 40
maxk maximum degree 100
µ mixing parameter from 0.1 to 0.7,increased by 0.1.
t1 minus exponent for −2

degree distribution
t2 minus exponent for −1

community size distribution
minc minimum community size 20
maxc maximum community size 100

on number of overlapping vertexes from 10% to 80% of N,
increased by 10%.

om number of community memberships from 1 to 10,increased by 1.
of overlapping vertexes

5.2. Synthesized Networks

5.2.1. Network Data

First we use synthesized large complex networks as evaluation data set,
since the exact real community structure could be used as the ground truth.
The LFR model [37] is widely employed in performance evaluation of com-
munity detection algorithms and could generate a large scale network and
its community structure. The model is characterized by parameters listed
in Table 3. The mixing parameter µ = zout/(zin + zout) that gives the ratio
between external degree of a node and its total degree . The zin and zout
are the internal and external degree of a node with respect to its belonging
community, respectively. As µ < 0.5, the community structure of a network
is well defined.

We generated four types of networks with different parameter combina-
tions. In the first type, we changed the scale of networks by setting N from
50,000 to 350,000, increased by 50,000, and fixed other parameters. The mix-
ing parameter µ is 0.3. The number of overlapping vertexes (on) is set as 10%
of the total number of vertexes and the number of community memberships
of overlapping vertexes (om) is set as 3. In the second type, we modified the
µ from 0.1 to 0.7, increased by 0.1, and set N as 100,000, on as 10%, and om
as 3. In the third type, we varied the on from 10% to 80% of total vertexes,
increased by 10%, and set N as 100,000, µ as 0.3 and om as 3. Finally, in
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the fourth type, we raised the om from 1 to 10, increased by 1, and set N as
100,000, µ as 0.3, and on as 10%. Other parameter-settings can be found in
Table 3. There are 32 networks generated in total. Each network is divided
to approximately equal-sized sub-networks, with size about from 20,000 to
30,000, using the Metis algorithm.

5.2.2. Community Structure Quality Measurement

To evaluate the quality of the detected community structure, we adopt
the Overlapping Normalized Mutual Information (ONMI) to measure the
similarity between the detected community structure and the real ground-
truth one. Moreover, for overlapping community structure, the quality of
detected overlapping vertexes should also be assessed. For this purpose, the
recall, the precision, and the F-score metrics are employed.

• ONMI

The Normalized Mutual Information (NMI)[38] is a well-known entropy
measure in information theory and is widely used for disjoint community
structure evaluation. McDaid et. al. [39] developed a new version, which is
defined as follows, for overlapping community structure evaluation:

ONMI =
I(X : Y )

max(H(X), H(Y ))
(3)

where X and Y are the detected community structure and the real one, H(X)
and H(Y ) are the entropies of the two community structures, respectively.
The I(X : Y ) is the mutual information of X and Y , defined as:

I(X : Y ) =
1

2
[H(X)−H(X|Y ) +H(Y )−H(Y |X)] (4)

where H(X|Y ) and H(Y |X) are the conditional entropies of X and Y , re-
spectively. More details could be found in [39].

The ONMI measures the quality of the whole community structure sta-
tistically. The larger the value, the more similar the two structures are. If
the two compared structures are same, the ONMI equals 1. On the other
hand, if they are totally different, the ONMI becomes 0.

It is worthy to mention that we applied the proposed post-process algo-
rithm to all community structures detected by the three used algorithms for
fairness. Moreover, we even applied the post-process to generated community
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structures by LFR used as ground-truth. We found that in the generated
structures, there are a number of wrong assignments where vertexes join to
communities that they should not, and missing assignments where vertexes
do not join to communities that they should, especially for networks with
large µ, om, or on. However, the post-process could only correct the majority
of wrong assignments, but has no effect on missing assignments. Fortunately,
the missing assignments are much less than the wrong assignments in gen-
erated community structures. In addition, from the principle of PSOCD, it
is a way to correct missing assignments, namely, missing assignments rarely
exist in results by PSOCD.

• Quality of Overlapping Vertexes

The quality of detected overlapping vertexes should be measured from
three aspects: 1) how many detected overlapping vertexes are true? 2) how
many true overlapping vertexes are detected? and 3) are the numbers of com-
munity memberships of overlapping vertexes correct? We use the precision
(denoted as P ) to evaluate the first aspect and the recall (denoted as R) to
assess the second. The third aspect is depicted statistically by distributions
of community memberships of all overlappign vertexes.

The precision is defined as:

P =
NumberOfCorrectlyDetectedOverlappingV ertexes

NumberOfTotalDetectedOverlappingV ertexes
, (5)

and the recall is:

R =
NumberOfCorrectlyDetectedOverlappingV ertexes

NumberOfTrueOverlappingV ertexes
. (6)

Usually, the F-score (denoted as F ), which is the harmonic mean of P
and R, is used as an overall index of P and R. The F is defined as:

F =
2R · P
R + P

(7)

5.2.3. Results Analysis

For each used algorithm, we computed the average quality metrics and
their corresponding 95% confidence intervals over the results of 30 runs for
each test network. Fig.12 shows the ONMI results for test networks. As can
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Figure 12: ONMIs of test synthesized networks.

be seen from the figure: 1) the ONMIs of PSOCD are the best for nearly all
test networks, and those of OSLOM are the second best except for networks
with very large om. 2) as N or µ increases, the ONMIs of all three algorithms
are quite stable. 3) as on raises from 10% to 80% of total vertex number,
the ONMIs of all three algorithms are decreasing greatly, except as the ratio
reaching 70% and 80% for OSLOM where the ONMI is slightly increasing.
However, the ONMIs of PSOCD are much better than those of the two others,
particularly for large on networks, i.e. high overlapping density networks. 4)
while the overlapping memberships om grows from 1 to 10, the ONMIs of
SLPA and OSLOM are decreasing greatly, but those of PSOCD are much
stable. It suggests that the PSOCD is more suitable for high overlapping
diversity network (network with large om) analysis.

As for the quality of discovered overlapping vertexes, the precisions, re-
calls, and corresponding F-scores are shown in Fig. 13, 14 and 15, respec-
tively. From Fig.13, it can be noticed that generally the precisions of SLPA
and OSLOM are better than those of PSOCD. In fact, the precisions of SLPA
are 100% for most test networks. However, the margins between the PSOCD
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Figure 13: Precisions of test synthesized networks.

and the better one of the two others are very small, and the precisions of
PSOCD are fairly good. Fig.14 demonstrates that for all test networks, the
PSOCD could find out the overwhelming majority of true overlapping ver-
texes, and the recalls of PSOCD are much better than those of OSLOM and
SLPA. Particularly, the recalls of SLPA could not be acceptable for networks
with very large on. Fig.15 shows the F-scores for test networks, and it con-
firms that the performance of PSOCD is better than that of OSLOM and
SLPA as a whole.

The distributions of detected community memberships of overlapping ver-
texes (excluding om = 1) from results of once run for networks with om
varying are shown in Fig.16. The ’REAL’ distributions are the results of
the post-processed LFR generated community structures. It is clear that
the PSOCD is capable of correctly identifying the majority of overlapping
memberships. As a contrast, the SLPA and the OSLOM can only rightly rec-
ognize a small portion of overlapping memberships except for om = 2, and as
om increases further, the detected overlapping memberships by them are dis-
persed in a wide range and thus the majority real overlapping memberships
cannot be discerned.
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Figure 14: Recalls of test synthesized networks.

As a result, it is safe to conclude that the performance of the proposed
PSOCD is better than that of the SLPA and the OSLOM, and the PSOCD
is an appropriate choice for high overlapping density or high overlapping
diversity network analysis.

5.3. Real Networks

5.3.1. Network Data

The advantage of using synthesized networks in evaluation is that the
ground-truth community structures are known priorly. In result, the assess-
ment of algorithm performance is easily conducted. However, the properties
of real world networks could be more complicated than those of synthesized
networks. We also tested our algorithm on three real, undirected and un-
weighted networks. They are the Condense Matter Physics collaboration net-
work (CondMat), the Computer science bibliography network (DBLP) and
the Amazon co-purchased products network (Amazon). All the three networks
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Figure 15: F-scores of test synthesized networks.

are downloaded from the Stanford Network Analysis Project (SNAP)1. The
properties of the three real networks could be found in Table 4.

The CondMat network [40] is from the e-print Arxiv and covers scientific
collaborations between authors of whom papers are submitted to Condense
Matter category. A vertex in the network represents an author, and if author
i co-authored a paper with author j, the network contains an undirected edge
between i and j. The network covers papers in the period from January 1993
to April 2003 (124 months).

The DBLP (Digital Bibliography and Library Project) data [41] provides
a comprehensive list of research papers in computer science. The SNAP
constructs a co-authorship network where two authors are connected if they
publish at least one paper together.

The Amazon network was collected by crawling Amazon website [42]. A
vertex of the network is a product, and if product i is frequently co-purchased
by customers with product j, the network then contains an undirected edge

1http://snap.stanford.edu/data/index.html
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Figure 16: Distributions of overlapping memberships of synthesized networks.

Table 4: Properties of Real World Networks
Network Vertex Edge Max Max Remained Removed

Number (V#) Number (E#) Component V# Component E# V# Ratio(%)
CondMat 23133 186878 21363 182572 19606 8.22
DBLP 317080 2099732 317080 2099732 271646 14.33
Amazon 334863 1851744 334863 1851744 305892 8.65

between vertex i and vertex j. It is reasonable to expect that the connections
of the Amazon network is sparse, while those of the CondMat and DBLP
network are dense, i.e. their topology structures are more complex.

We do not run community detection algorithms directly on these real
world networks. Instead, first we find the maximum connected component
of each network, for each such a component could be processed separately.
The Amazon and the DBLP themselves are connected components. Then
we trim these found maximum component networks by removing single con-
nection vertexes iteratively until there is no such a vertex. The degree of a
single connection vertex is one, thus if such a vertex joins to communities, it
can only joins to communities to which its sole neighbor belongs. Therefore,
it’s not necessary to include these vertexes while processing a network. Be-
sides, after removing these vertexes, the performance of analyzing could be
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accelerated. The properties of trimmed maximum component networks are
listed in Table 4, as well.

5.3.2. Quality of Community Structure

Generally, it is hard to assess the quality of a community structure of a
real network, since a true community structure is difficult to define and is
most usually unknown, especially for a large network. Though a ’ground-
truth’ community structure of the Amazon (and the DBLP) is provided by
SNAP, it is a so-called functional community structure of which a community
is a set of vertexes having a common function or role. For example, a ’true’
community of the Amazon is a product category, and a ’true’ community of
the DBLP is a publication venue (a journal or a conference), namely, authors
who publish papers in the same journal or conference belong to a community.
However, a community discovered by almost all current algorithms, including
PSOCD, is a so-called structural community which is defined on the connec-
tivity pattern of a network. Whether a functional community structure could
be effectively found by a structural community detection algorithm depends
on if the functional communities exhibit a distinct connectivity pattern. In
this paper, we focus on a structural community detection algorithm to ex-
tract high quality structural communities. We do not use the ONMI to
evaluate detected structural community structures of real networks to avoid
the impacts of ground-truth functional community structure constructions.

Another way to evaluate the quality of a community structure is map-
ping the structure to a score. The most famous one is the Newman’s mod-
ularity, which is widely used to measure the quality of disjoint community
structures. There are a number of metrics extended from the Newman’s
modularity for assessment of overlapping community structures. Chen et.
al. [5] compared the most of extended modularities and other six metrics
systematically. Moreover, they proposed a general extension modularity for
overlapping community structure and extended the modularity density met-
ric to enable its usage for overlapping community structure as well.

• General Extension Modularity for Overlapping Community Structure

After studying several versions of extended modularities, Chen et. al. [5]
proposed a general extension modularity which is defined as follows:

Qov =
∑
c∈C

[
|Ein

c |
|E|

−
(

2|Ein
c |+ |Eout

c |
2|E|

)2
]

(8)
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while c is a community from a community structure C, |Ein
c | = 1

2

∑
i,j∈c f(ai,c, aj,c)Aij,

|Eout
c | =

∑
i∈c
∑

c′∈C,c6=c′,j∈c′ Aij , and |E| = 1
2

∑
ij Aij. The ai,c (aj,c) is the

belonging coefficient of vertex i (j) to community c, and the f(ai,c, aj,c) is
the belonging function which can be the product or average of ai,c and aj,c.
Based on the results of a number of experiments, the authors recommended
to use the reciprocal of the community membership number as the belong-
ing coefficient and the product of two belonging coefficients as the belonging
function because of their effectiveness and simplicity. The Aij is the ith row
and jth column element of the adjacent matrix representing the processed
network. If vertex i connects to vertex j, then Aij = 1, otherwise Aij = 0.

• Extension Modularity Density for Overlapping Community Structure

However, the Newman’s modularity incurs two opposite yet coexisting
problems, thus the extended ones: in some cases it tends to prefer small
communities over large ones, while in others favor large communities over
small ones. In literature, the later tendency is referred as the resolution limit
problem. To address these two problems, the Modularity Density was pro-
posed by integrating two additional components, the split penalty and the
community density, into the modularity calculation. Chen et. al. [5] pro-
posed an extension modularity density for overlapping community structure
assessment as well. The extension modularity density is described as:

Qov
ds =

∑
c∈C

[
|Ein

c |
|E|

dc −
(

2|Ein
c |+ |Eout

c |
2|E|

dc

)2

−
∑

c′∈C,c′ 6=c

|Ec,c′|
2|E|

dc,c′

]
(9)

while |Ec,c′ | =
∑

i∈c,j∈c′,c 6=c′ f(ai,c, aj,c′)Aij, dc = 2|Ein
c |/

∑
i,j∈c,i 6=j f(ai,c, aj,c)

and dc,c′ = |Ec, c′|/
∑

i∈c,j∈c′ f(ai,c, aj,c′). The suggested belonging coefficient
and belonging function were same as in the extension of modularity, i.e. the
reciprocal of the community membership number and the product of two
belonging coefficients, respectively.

Though the two mentioned metrics, especially the modularity density,
give two reasonable gauges for the quality of an overlapping community
structure, we found that they are not appropriate metrics for performance
comparison between two overlapping community detection algorithms. The
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reason behind is that the two metrics take overlapping membership number
into consideration, and in the case if the overlapping community structures
discovered by the two algorithms are quite different, for example, the over-
lapping memberships and overlapping vertexes detected by one algorithm
are small and less, while those detected by the other one are high and mass,
the conclusion deduced could be misleading. As an example, we generated
a 100,000 vertex LRF synthesized network of which fifty percent vertexes
are overlapping vertexes. The overlapping membership number om is set as
10, the µ is 0.3, and other parameters are same as listed in Table 3. The
average ONMI (30 runs) of the community structures detected by PSOCD
with respect to the post-processed ground-truth community structure is as
high as 0.7672, while the average ONMI of SLPA is only 0.5064. There is
no doubt that the quality of the community structures detected by PSOCD
is much better than those by SLPA. However, the averaged extended mod-
ularity of the community strructures by PSOCD and SLPA are 0.1694 and
0.1865, respectively. As a result, a wrong conclusion that SLPA outperforms
PSOCD could be deduced. The averaged extended modularity density of the
results by PSOCD and SLPA are 0.06920 and 0.06148, respectively. Though
a consistent conclusion as the ONMI values suggest could be inferred for
this generated network, a false conclusion may be derived for some networks,
just as the prior example in the extended modularity case, due to the same
reason. Therefore, we suggest that the two metrics (and similar metrics)
should not be used as indexes for performance comparison between different
overlapping community detection algorithms.

• Community Structure Property Distribution

To reveal features of an overlapping community structure, Gergely et.
al. [43] suggested to use four statistical distributions. They are: 1) the
cumulative distribution of overlapping membership number; 2) the cumula-
tive distribution of overlap size, that is the shared vertex number between
two communities; 3) the cumulative distribution of community degree, that
is the vertex degree of the corresponding community network formed as a
vertex representing a community and an edge representing two communi-
ties are overlapping; and 4) the cumulative distribution of community size,
i.e. the number of vertexes a community containing. The authors ana-
lyzed the k-clique community structures of three real networks. They found
that the community degree cumulative distribution starts exponentially and
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then crossovers to power-law, while the other three distributions obey power-
law. These distributions uncover the modular structure of complex networks,
however, they could not be used to rank community structures detected by
different algorithms. We employ these distributions to describe features of
discovered community structures in our experiments.

• Network Average Connection Strength

We define the average connection strength of a network based on the
vertex connection score in equation 2 as a quality metric for overlapping
community structure, that is:

CSG =
1

|C|
∑

c∈C,|c|≥3

1

|c|
∑
v∈c

CS(v) (10)

while C denotes a community structure, |C| represents the number of com-
munities in C, c is a community belonging to C, and |c| indicates the size of
community c. Given that a community with only one or two members has
no internal structure, we do not include such communities as computing the
network average connection strength. We refer these communities with at
least three members as a core community structure of a network. Generally, a
community has more internal connections within its members, but less exter-
nal connections with other communities. As for an overlapping community
structure, the measurement of external connections in quality evaluation is
meaningless, even harmful, because overlapping vertexes may have a large
number of out connections. The CSG presents a type of internal connection
strength measurement and reflects the quality of a core community structure
to some extent. The larger the value, the better the quality. It could be used
as a metric for ranking different community structures.

5.3.3. Results Analysis

Table 5 lists some statistical properties of the detected community struc-
tures of the three real world networks by different algorithms. The SLPAomod

and SLPAomds stand for the best results of SLPA algorithm selected from dif-
ferent r parameters according to the extended modularity and the extended
modularity density, respectively. For an algorithm, the results from runs with
different parameter settings are possibly not massively different because of
same running principle, and thus it is reasonable to rank obtained results
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Table 5: Properties (averages and 95% confidence intervals) of detected community struc-
tures of real world networks, averaged over 30 runs. ¯|C|>2 is the averaged number of com-

munities with size>2; ¯|C|=2 is the averaged number of communities with size=2; ¯|C|=1

is the averaged number of communities with size=1; OV R is the averaged overlapping
vertex ratio; and CSG is the network averaged connection strength.

Network Algorithm ¯|C|>2
¯|C|=2

¯|C|=1 OV R (%) CSG

SLPAomod 1375.9 ± 31.4 95.0 ± 24.7 138.0 ± 32.9 1.87 ± 2.31 0.8430 ± 0.0073
SLPAomds 1375.4 ± 32.3 100.9 ± 19.8 144.5 ± 21.4 0.64 ± 0.92 0.8415 ± 0.0078

CondMat OSLOM 1529.8 ± 29.8 5.4 ± 5.1 354.9 ± 43.5 11.15 ± 0.49 0.8760 ± 0.0035
PSOCD 1263.6 ± 21.2 26.7 ± 7.1 4728.8 ± 64.1 30.23 ± 0.76 0.9208 ± 0.0031
SLPAomod 20137.7 ± 130.5 1632.9 ± 99.0 2060.0 ± 144.1 2.16 ± 0.69 0.8512 ± 0.0016
SLPAomds 20100.5 ± 126.6 1737.5 ± 70.3 2207.47 ± 107.8 0.52 ± 0.02 0.8503 ± 0.0016

DBLP OSLOM 17384.3 ± 131.7 83.8 ± 16.7 5324.7 ± 121.1 7.47 ± 0.18 0.8709 ± 0.0012
PSOCD 10406.6 ± 56.8 188.5 ± 17.6 114420.8 ± 324.0 17.60 ± 0.37 0.9179 ± 0.0010
SLPAomod 21342.7 ± 120.7 1224 ± 100.0 2968.8 ± 152.9 1.45 ± 1.02 0.8155 ± 0.0020
SLPAomds 21317.5 ± 112.5 1292.5 ± 61.7 3064.3 ± 118.8 0.44 ± 0.04 0.8141 ± 0.0012

Amazon OSLOM 17075.0 ± 84.3 5.3 ± 4.9 1316.2 ± 113.1 4.12 ± 0.12 0.8488 ± 0.0008
PSOCD 7942.6 ± 28.8 15.7 ± 4.7 109297.9 ± 453.2 4.08 ± 0.22 0.9016 ± 0.0006

according to the extended modularity or the extended modularity density
and select the best one. All values in Table 5 are averaged over results of 30
runs. The associate 95% confidence intervals are given as well.

From the table, it could be seen that: 1) As for the number of com-
munities, the PSOCD found the least core communities (community with
size > 2) and the most one-size communities, while the two SLPA discov-
ered the most two-size communities. The differences of detected community
numbers between PSOCD and other algorithms are huge. Therefore, the de-
tected community structures by different algorithms are quite different. We
carefully checked the one-size communities and found that the sole member
of such a community has at most one connection with other communities.
In consequence, the existence of these vast one-size communities is reason-
able. 2) From the aspect of overlapping vertexes, the variances of the results
are great as well, and particularly those found by the two SLPA algorithms
have large gaps. The SLPAomds found the least overlapping vertexes, while
the PSOCD found the most ones except for the Amazon network. For the
Amazon network, the results of OSLOM and PSOCD roughly agree to each
other. 3) From the viewpoint of network average connection strength, the
results of SLPAomod are slightly better than those of SLPAomds, which can
be attributed to the former found more overlapping vertexes. The results of
OSLOM are better than those of the two SLPA algorithms, and the results
of PSOCD are the best. Remind that we excluded the two-size and one-size
communities as computing CSG, therefore the gains of PSOCD are mainly
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from the fact that it found a huge number of one-size communities. In other
words, the PSOCD discovered better core community structures for these
real networks.

We also present the four statistical distributions proposed in [43] to de-
scribe features of detected community structures by different algorithms.
The results are also averaged over 30 runs. Fig. 17 depicts the cumulative
distributions of overlapping memberships. As can be seen, the overlapping
memberships found by PSOCD are quite different from those by OSLOM and
SLPA. The PSOCD detects more overlapping vertexes and their overlapping
memberships are distributed within a much wider range, which has a high
upper bound, while the OSLOM and the SLPA can only find less overlap-
ping vertexes and their associate overlapping memberships are much smaller.
Though the PSOCD may overestimate at the end part of large overlapping
memberships, just as shown in the synthesized network experiments, those
overestimated take up only a small portion as shown in the figure. Specif-
ically, the overlapping memberships detected by PSOCD for the Amazon
network are similar to those by OSLOM, with the slight difference that for
each large om the PSOCD finds more overlapping vertexes. It should also be
noted that the trends of detected overlapping membership distributions of
the CondMat by each algorithm are similar to those of the DBLP. However,
the trends of the Amazon are much different from those of the two collabo-
ration networks. This reflects the fact that the structure of the Amazon is
quite different from the structures of the CondMat and the DBLP, just as
what expected.

Fig. 18 displays the double log plots of the overlapping membership cu-
mulative distributions by PSOCD, as they have more data points. From the
figure, we can see that the cumulative overlapping membership distributions
of the CondMat and the DBLP follow a two-phase power-law function. The
power-law exponents are shown in the figure. The distribution of the Ama-
zon network is not fit because there is only a small number of data points.
In [44], Jebabli et. al. analyzed the functional community structure of the
same DBLP network, and they reported that the distribution of cumulative
overlapping memberships is power-law, too. Moreover, the range of detected
overlapping memberships by PSOCD is comparable to the reported one in
[44]. Thereby, we believe the quality of overlapping memberships discov-
ered by our PSOCD for the three real networks is superior to those of other
compared algorithms.

Fig. 19 depicts the log-log plots of community size cumulative distribu-
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Figure 17: Overlapping membership cumulative distributions of real world networks.

tions of the three real networks. Since there are a huge number of one-size
communities found by PSOCD, we omit the one-size community numbers to
eliminate their effects on plot trends in cumulativeness depiction. It could be
seen that the SLPA and the PSOCD could discover larger size communities
comparing with the OSLOM, especially for the two collaboration networks.
However, by carefully checking the values of large community sizes, we found
that these values varied greatly, even in different runs of the same algorithm.
Moreover, note that the end part of community size distributions, except the
one of the CondMat network by PSOCD, are much flat, indicating that there
are only a small number of large size communities. In fact, the numbers of the
majority large size communities are just one. Therefore, we think the found
large size communities are suspicious and need further processing, such as
combining results of different runs or algorithms and then finding uncontro-
versial parts. As for the first part of community size cumulative distributions,
it is clearly that they could be described by pow-law functions.Because the
numbers of detected communities by different algorithms changes greatly, it
is unfair to compare the frequency numbers of community sizes directly. We
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Figure 18: Double log of overlapping membership cumulative distributions of real world
networks, detected by PSOCD.

focus only on the trends of cumulative distributions here.
The double log plots of community degree cumulative distributions of real

networks are shown in Fig. 20. In the plots we omit the degree one as well,
due to the similar reason as we do in community size cumulative distribu-
tions. It could be derived that the PSOCD could detect larger community
degrees comparing with other algorithms. This suggests that the overlap-
ping structures detected by PSOCD are more complex, namely, averagely a
community is overlapping with more others. Once again, it can be seen that
the first part of most distributions could be described by a pow-law function.
We could also find a flat tail at most plots, and that indicates there are only
a small number of large community degrees. For the distributions of the two
collaboration networks by PSOCD, though they have increasing tails, their
frequency numbers are comparably small as well. What is interesting is that
the community degrees of the three networks discovered by the two SLPA
algorithms are much different, though the numbers of detected communities
by them are approximately equal. Generally, the SLPAomod could find larger
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Figure 19: Double log of community size cumulative distributions of real world networks.

community degrees and more overlapped communities, i.e. more complex
community structures.

Finally, Fig. 21 demonstrates overlap size cumulative distributions of the
three real networks. At the first glance, it is clear that the PSOCD could find
much larger overlap sizes, i.e. more complex overlapping structures. Again,
the first part of most distributions could be fitted by a pow-law function.
Similarly as community degree cumulative distributions, the overlap size cu-
mulative distributions by the two SLPA algorithms are quite different. The
plots suggest that the community structures found by SLPAomod are more
complex than those by SLPAmods.

Though there are several related researches, the difference lies in that we
analyze the overall structural overlapping community structures of very large
real networks, while they mainly focus on functional community structures.
In [44], the authors analyzed the properties of functional community struc-
ture of the same DBLP network and its corresponding community network,
and in [42], the same authors analyzed the properties of the community net-
work of the Amazon functional community structures. Yang and Leskovec
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Figure 20: Double log of community degree cumulative distributions of real world net-
works.

[45] studied the functional community structures of a number of very large
real networks. They proposed a seed based algorithm that finds all structural
communities the seed vertex belongs to, and compared the detected commu-
nities with the functional ground-truth ones. Palla et. al. [43] explored the
structural K-clique community structures of three real networks, but the max
network size is only 30739. The K-clique overlapping community detection
algorithm can hardly be used on very large networks due to its computational
complexity.

The properties of structural community structures of the DBLP detected
by PSOCD, such as the ranges of overlap memberships, community degrees
and overlap sizes, are much closer to those of the functional community struc-
tures reported in [44]. In addition with the fact that the internal connection
strengths by PSOCD are the best (shown in Table 5), we expect the quality
of structural communities by PSOCD is superior.

To sum up, based 8on the experiment results of synthesized and real
networks, we can safely state that our PSOCD outperforms the SLPA and
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Figure 21: Double log of overlap size cumulative distributions of real world networks.

the OSLOM.

5.4. Discussion

The PSOCD is implemented in a distributed manner to be capable of
processing large scale networks. One may wonder that the maximum network
used in experiments has only 350,000 vertexes, though this size is much larger
than the majority used in previous researches. However, if we increase vertex
number further, say 400,000, the system will crash. The reason is that the
current Giraph++ is developed on an old version Giraph, version 0.2, which
has no message flow control mechanism and could crash if messages come too
fast, but not the principle of PSOCD. The lack of message flow control has
been fixed in new version Giraph, which could run on new version Hadoop
to gain performance further. We believe the supported network size would
be increased greatly if the PSOCD is implemented on a Giraph++ migrated
to a new version Giraph.

Usually, a real network evolves, namely some vertexes and edges are
added, and (or) some deleted. As a consequence, the corresponding com-
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munity structure evolves, too. The classic community evolution includes
emergence of a new one, death of an old one, expansion and contraction.
The basic idea of PSOCD inherently has a good support for such a dynamic
network analysis. The initializing phase could be executed properly on added
vertexes and their direct neighbors to find newly created communities. The
joining and leaving actions will lead to expansion and contraction of com-
munities, respectively. If all members leave from a community, then this
community is dead. Therefore, by proper implementation of the algorithm
on a platform that supports network evolution, it could be used to analyze
evolving community structures of dynamic networks.

Another main property of community structure is hierarchy, i.e., there
exists a community structure in the community network recursively. Since
the size of a community network is usually much smaller than the size of
the associate original network, it is easy to construct a hierarchy structure
if lowest level communities are given. What the PSOCD found is just a
fine-grained and lowest level community structure. As a result, a hierarchy
structure could be constructed easily by running PSOCD or other algorithms
having good performance but with difficulty processing large scale networks
recursively.

6. Conclusion

In this paper, we proposed a parallel self-organizing overlapping commu-
nity detection algorithm named PSOCD that is based on the idea of swarm
intelligence. The algorithm first divides an analyzed large scale network into
a number of small size sub-networks and then treats each sub-network as a
swarm intelligence subsystem. Each vertex of a sub-network, acting as an
individual, can make its own decisions to join to or leave from communities
mainly according to a predefined rule: if the ratio of its connection score to a
candidate community to its maximum connection score exceeds a designated
threshold, it joins to the candidate if it is not a member yet, otherwise it
leaves from the candidate if it is a member already. The algorithm is im-
plemented using the Giraph++ platform in a distributed environment, and
the evolution of each sub-network is processed by a separate computation
unit. Since vertexes of a sub-network may connect to vertexes of other sub-
networks, it is important to keep joining community views of these vertexes
and their external neighbors be consistent. The algorithm achieves this by
passing messages of new communities and vertex actions among sub-networks
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if necessary. By having all vertexes iteratively making their own joining or
leaving decisions over a number of generations, an optimal community struc-
ture of the whole large network will be emerging gradually.

We tested our algorithm on a number of variety large scale synthesized
networks and real world networks. The results of synthesized network anal-
ysis indicate that the PSOCD outperforms two state-of-art algorithms, the
SLPA and the OSLOM, as finding overlapping community structures, espe-
cially on networks with high overlapping density and (or) high overlapping
diversity. The results of real world network analysis show that the properties
of the found structural communities by PSOCD are closer to those of the
associate functional communities reported in previous literatures. In sum-
mary, we believe that our PSOCD is a superior approach for overlapping
community structure analysis.
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