
UWL REPOSITORY

repository.uwl.ac.uk

Continuous authentication of smartphone users based on activity pattern

recognition using passive mobile sensing

Ehatisham-ul-Haq, Muhammad, Awais Azam, Muhammad, Naeem, Usman, Amin, Yasar and Loo, 

Jonathan ORCID: https://orcid.org/0000-0002-2197-8126 (2018) Continuous authentication of 

smartphone users based on activity pattern recognition using passive mobile sensing. Journal of 

Network and Computer Applications, 109. pp. 24-35. 

http://dx.doi.org/10.1016/j.jnca.2018.02.020

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/4854/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


  1 of 21 

Research Paper 1 

Continuous Authentication of Smartphone Users Based on 2 

Activity Pattern Recognition Using Passive Mobile Sensing  3 

Muhammad Ehatisham-ul-Haq 
a,
*, Muhammad Awais Azam 

a
, Usman Naeem 

b
, Yasar Amin 

a
, 4 

Jonathan Loo 
c 

5 

a Faculty of Telecom and Information Engineering, University of Engineering and Technology, Taxila, Punjab, Pakistan.  6 

b School of Architecture, Computing and Engineering, University of East London, UK.  7 

c School of Computing and Engineering, University of West London, London, UK.  8 

* Corresponding author: ehatishamuet@gmail.com 9 

Abstract: Smartphones are inescapable devices, which are becoming more and more intelligent and 10 

context-aware with emerging sensing, networking and computing capabilities. They offer a captivating 11 

platform to the users for performing a wide variety of tasks including socializing, communication, sending or 12 

receiving emails, storing and accessing personal data etc. at anytime and anywhere. Nowadays, loads of people 13 

tend to store different types of private and sensitive data in their smartphones including bank account details, 14 

personal identifiers, accounts credentials, and credit card details. A lot of people keep their personal e-accounts 15 

logged in all the time in their mobile devices. Hence these mobile devices are prone to different security and 16 

privacy threats and attacks from the attackers. Commonly used approaches for securing mobile devices such as 17 

passcode, PINs, pattern lock, face recognition, and fingerprint scan are vulnerable and exposed to several 18 

attacks including smudge attacks, side-channel attacks, and shoulder-surfing attacks. To address these 19 

challenges, a novel continuous authentication scheme is presented in this study, which recognizes smartphone 20 

users on the basis of their physical activity patterns using accelerometer, gyroscope, and magnetometer sensors 21 

of smartphone. A series of experiments are performed for user recognition using different machine learning 22 

classifiers, where six different activities are analyzed for the multiple locations of smartphone on the user’s 23 

body. SVM classifier achieved the best results for user recognition with an overall average accuracy of 97.95%. 24 

A comprehensive analysis of the user recognition results validates the efficiency of the proposed scheme. 25 

Keywords: Activity Pattern Recognition, Behavioral Biometrics, Continuous Authentication, Mobile Sensing, 26 

Smartphone User Recognition, Ubiquitous Computing 27 

1. Introduction 28 

Smartphone and mobile technologies have become much popular in a very short span of time. We have 29 

moved from larger phones to very slim yet powerful smartphones. These devices have aided people with 30 

internet connectivity and enabled them to do their routine tasks at anytime and anywhere. At the moment, 68% 31 

of the entire world’s inhabitants possesses a mobile phone and this number is anticipated to reach up to 72% by 32 

2019 (“The Statistic Portal”, 2017). Smartphones have started to replace personal computers and laptops. A 33 

market research has shown that mobile phone shipments worldwide are projected to add up to 1.93 billion in 34 

2019 (Gartner, 2017). Due to the increased use of smartphones, more and more data is being produced, stored, 35 

accessed, and analyzed on these devices at homes, offices, and workplaces on daily basis. This data also 36 

includes sensitive and confidential information including personal identifiers, bank account details, and credit 37 

card information etc. As much as these mobile devices have become popular and improved worker’s output, the 38 

security and privacy of sensitive data stored on these devices is still a key problem to be resolved (Krupp et al., 39 

2017). The ever growing popularity of smartphones and mobile devices has resulted in several incentives for the 40 

attackers. The attackers are shifting their focus on mobile and hand-held devices as these devices can be stolen 41 

easily and victims’ confidential data can be compromised. By stealing mobile devices, the attackers can easily 42 

reach and contaminate more machines and earn more money by misusing individuals’ private details or by 43 
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selling their details via the black market (“Data Breaches 101: How They Happen, What Gets Stolen, and 44 

Where It All Goes”, 2018). Therefore, ensuring the privacy of sensitive information being stored on these 45 

portable devices has now become critical. Unluckily, most extensively used validation methods for 46 

smartphones and mobile devices including password, PIN (Personal Identification Number), and pattern locks 47 

provide weak authentication and have certain limitations. These schemes are subjected to several attacks, which 48 

include side-channel attacks (Spreitzer et al., 2016), smudge attacks (Meng et al., 2016), and shoulder-surfing 49 

attacks (Wakabayashi et al., 2017). Passwords and PINs need to be remembered all the time and the length of 50 

time required for their input is also frustrating (Mayron, 2015). Pattern locks may be drawn by others because of 51 

the distinctive traces of fingertip left on the phone screen after drawing a pattern. Biometric authentication 52 

schemes for mobile devices, such as face recognition and iris recognition, are influenced by the environmental 53 

conditions such as light and shelter. Fingerprint scans are subjected to spoofing and require additional hardware 54 

for their operation. Furthermore, these frequently used authentication schemes only provide entry point 55 

authentication and fail to detect and recognize a challenger after the point of entry. Hence, these methods are 56 

ineffective to apply for authenticating and recognizing a smartphone user in a continuous way. 57 

To enhance the security of mobile devices and provide potential solutions to existing challenges in 58 

smartphone authentication, researchers have come up with numerous schemes, which perform authentication 59 

on the basis of behavioral biometrics (Alzubaidi and Kalita, 2016). These authentication schemes offer a way to 60 

continuously and passively authenticate different smartphone users by identifying their behavioral traits while 61 

interacting with smartphone. (Wu et al., 2016) utilized keystrokes and gestures as behavioral biometrics for 62 

continuous authentication of smartphone users. (Meng et al., 2016) proposed a touch movement based method 63 

for improving the security of pattern locks. The authors identified the users on the basis of touch movements 64 

while unlocking patterns. (Yang et al., 2015) utilized handwaving as a behavioral biometric for user 65 

authentication. (Shen et al., 2016) proposed a method to authenticate users through the action of passcode input 66 

by utilizing orientation sensors and accelerometers. (Zhang et al., 2015) identified gait pattern by using five 67 

body-worn accelerometers on different locations and utilized gait pattern as a behavioral biometric for 68 

identifying users. (Zeng, 2016) proposed the possibility of utilizing dynamic behavior based on simple activities 69 

such as walking, running, climbing, and jumping for identifying users using wearable sensors. (Cola et al., 70 

2016) used motion data of the walking activity collected from a wrist-mounted device for user authentication. 71 

These wearable sensors and devices become a cause of interference for the users in performing their activities. 72 

Therefore, a few researchers have made use of smartphone motion sensors to develop efficient schemes for user 73 

authentication based on behavioral biometrics (Sitova et al., 2016; Neverova et al., 2016). However, the 74 

performance of these schemes is compromised by the position and orientation sensitivity of smartphone motion 75 

sensors. Moreover, the research on continuous user authentication is still very challenging due to the difficulty 76 

in collecting real time data in open and dynamic environments (Neverova et al., 2016). Therefore, it is the need 77 

of the hour to develop more efficient and reliable solutions for continuous and non-intrusive user authentication 78 

to ensure the security of mobile device. 79 

In this research work, an intelligent scheme is proposed for the unobtrusive authentication and validation 80 

of smartphone users to address existing challenges in continuous authentication. The proposed scheme is based 81 

on recognition of physical activity patterns of different smartphone users for their identification. Once a user is 82 

identified, he/she can easily be validated and authorized. Our idea is to learn the activity patterns of a 83 

smartphone user to differentiate him/her from other users on the basis of his/her behavioral traits. As the 84 

authentication needs to be done in real time, therefore we have selected six real life activities of daily living for 85 

user recognition purpose. These activities include walking, sitting, standing, running, walking upstairs, and 86 

walking downstairs. These activities are likely to be performed by every normal human being for multiple times 87 

in their routine life. Moreover, people usually perform these activities in a different way from each other owing 88 

to their behavioral traits. Three smartphone embedded sensors i.e., accelerometer, gyroscope, and 89 

magnetometer, are selected to provide data corresponding to six selected activities performed by the users. 90 

These inertial sensors provide a way to recognize smartphone users based on their activity patterns as shown in 91 

Fig. 1. As in real time, the placement of smartphone on the human body is not always fixed; therefore user 92 

recognition is analyzed for five different smartphone positions on the user’s body. These positions include left 93 

thigh (left jeans pocket), right thigh (right jeans pocket), waist, upper arm, and wrist position. A smartphone 94 

needs to be in one of these positions on the user’s body for his/her recognition based on the proposed scheme. 95 

An existing dataset for physical activity recognition (Shoaib et al., 2014, 2013) is utilized for this study, which 96 

fulfills all necessary experimentation requirements. A number of time domain features are extracted from the 97 
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data after its preprocessing. These features are then further utilized for recognizing ten different users on the 98 

basis of six individual activities selected in this study. For the purpose of experimentation, three different 99 

classifiers i.e., Support Vector Machine (SVM), Decision Tree (DT), and K-Nearest Neighbors (K-NN), are 100 

used for user recognition.  101 

 

 

Fig. 1. Smartphone inertial sensors track the physical activity pattern of a user and provide a way to identify that 102 

user based on activity pattern recognition 103 

 The significant achievements of this research work are as follow: 104 

1. An innovative scheme is presented for continuously authenticating smartphone users, which is 105 

based on the recognition of physical activity patterns of individual users for their identification.  106 

2. The issue of position sensitivity of smartphone motion sensors is addressed in this study to reduce 107 

false positives for user authentication. For this purpose, five different smartphone positions on the 108 

user’s body are analyzed for user recognition.  109 

3. The experiments for user recognition are performed using three prevalent machine learning 110 

classifiers and a detailed comparison is presented amongst these classifiers performance for 111 

recognizing users. The best one provides efficient results for user identification based on activity 112 

patter recognition. 113 

4. As the proposed scheme is based on activity pattern recognition, a detailed analysis is presented 114 

for six different activities, which shows the best activities and the phone positions that can be 115 

utilized for efficient user recognition. 116 

The remaining part of the paper is structured as follows: Section 2 provides a brief description of the 117 

background and related work. Section 3 explains the methodology of research in details. Section 4 presents and 118 

discusses the results of user recognition comprehensively and analyzes the performance of selected machine 119 

learning algorithms for user recognition. Section 5 determines the findings of this research study and gives 120 

recommendations for further future work. 121 

2. Background and Related Work  122 

 With the dominant increase in computing, networking, and sensing capabilities of smartphones, 123 

researchers have started to make use of the sensory data available from these devices to model human behavior 124 

(Cho and Lee, 2017; Kwapisz et al., 2011; Miluzzo et al., 2010; van Deursen et al., 2015; Zhitomirsky-Geffet 125 

and Blau, 2016) and infer certain contexts. Context-awareness has become increasingly significant as being 126 

aware of people surroundings is very beneficial for a wide variety of pervasive applications. Human-centric 127 

contexts, such as indoor or outdoor, at home or in office etc., have been studied extensively by the researchers 128 

(Hoseini-Tabatabaei et al., 2013; Khan et al., 2013; Miluzzo et al., 2008; Otebolaku and Andrade, 2016). A few 129 
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efforts have been made on context-awareness from phones’ perspective also. Sherlock framework (Yang et al., 130 

2014) collects data from smartphone sensors and recognizes the near surroundings of the smartphone. Table 1 131 

shows a set of smartphone sensors that have been utilized in different research studies. The data acquired from 132 

these sensors have been utilized for activity recognition (Su et al., 2014; Wannenburg and Malekian, 2016) and 133 

many other aspects related to health monitoring (Lee et al., 2012; Mun et al., 2009; Pludwinski et al., 2016), 134 

social activities monitoring (Gesell et al., 2013; Harari et al., 2016; Min et al., 2013), and crowdsourcing 135 

(Chatzimilioudis et al., 2012; Consolvo et al., 2008). On-body wearable sensors have also been utilized to learn 136 

human movements and actions (Bulling et al., 2014; Ellis et al., 2013; Shoaib et al., 2016). But these wearable 137 

on-body sensors create inconvenience for the users in performing their activities. Moreover, it is hard and takes 138 

a lot of time to adjust these wearable sensors on right positions. As a result, mobile sensing has been employed 139 

for human activity recognition (Avci et al., 2010; Lockhart et al., 2012; Incel et al., 2013; Lara and Labrador, 140 

2013), which has a diversified range of significant application areas. In (Shoaib et al., 2015a), the authors 141 

provided a comprehensive survey of online activity recognition using mobile sensing. (Albert et al., 2012) 142 

utilized mobile sensing for activity recognition of Parkinson’s patients. The CenceMe system (Miluzzo et al., 143 

2008) recognizes simple physical activities like idle, walking, and running with the help of an accelerometer. 144 

Activity recognition has been further used for different applications, such as human behavior modeling 145 

(Miluzzo et al., 2010; Pei et al., 2013) and health monitoring (Mun et al., 2009). (Shoaib et al., 2015b) utilized 146 

activity recognition for the detection of bad and unusual habits of different persons. Our study aims to utilize 147 

activity pattern recognition for validating smartphone users.  148 

 The research on smartphone authentication is progressing and researchers have come up with some 149 

dominant work in recent years. In literature, there exist different approaches for reliable and efficient 150 

recognition of smartphone users using physiological and behavioral biometrics. (Song et al., 2016) presented a 151 

novel framework for smartphone user authentication called EyeVeri, which is based on tracking human eye 152 

movement using front camera of smartphone. The authors explored different gaze patterns i.e., volitional and 153 

non-volitional, using pattern matching algorithms to provide access authentication. An in-depth analysis of the 154 

evaluation results showed that the proposed scheme works effectively. (Alzubaidi and Kalita, 2016) provided a 155 

detailed review of seven different types of behavioral biometrics, including walking style, touchscreen 156 

interaction, signature, handwaving, keystroke dynamic, voice, and behavior sketching. (Yang et al., 2015) 157 

proposed OpenSesame, a scheme to authenticate users on the basis of handwaving patterns. SVM classifier was 158 

used for classifying a user as authorized or unauthorized. (Shrestha et al., 2013) proposed a scheme called 159 

Wave-to-Access, which is based on recognition of handwaving gestures. An embedded smartphone sensor i.e., 160 

ambient light sensor, was used to examine phone dialing behavior for authentication purposes. Using 161 

handwaving scheme for authentication purposes has certain limitations, for example, it cannot authenticate a 162 

user continuously and passively all the time. (Papadopoulos et al., 2017) addressed the challenges of 163 

shoulder-surfing attacks in their study. The authors proposed IllusionPin (IPIN) for user authentication, which 164 

utilized hybrid images for blending two keypads for keypad illusion. (Sitova et al., 2016) introduced a 165 

behavioral authentication scheme based on Hand Movement, Orientation, and Grasp (HMOG) features for 166 

continuous and unobtrusive user authentication. HMOG features keep track of how a user grasps, holds, and 167 

taps on the smartphone. The authors achieved an EER (Equal Error rate) as minimum as 7.16%, which shows 168 

the effectiveness of their proposed scheme. (Draffin et al., 2014) presented KeySens, in which the behavior of 169 

the user was learnt by utilizing the pattern of user’s interaction with the keyboard. The authors examined 170 

touchscreen interactions of the smartphone users based on the movement of fingers, touch force, and the area 171 

enclosed by the fingers. (Feng et al., 2013) came up with Typing Authentication and Protection (TAP) scheme 172 

for user authentication. TAP included login and post log-in phases to validate a user by exploiting the password 173 

and biometric information. The experimental results were validated using three different classifiers out of which 174 

Random Forest gave lowest False Acceptance Rate (FAR) of 8.93%. (Frank et al., 2013) also validated the use 175 

of touchscreen interactions as a behavior biometric for user verification. (Trojahn and Ortmeier, 2013) used a 176 

combination of keystroke and handwriting analysis for authentication purpose. (Zheng et al., 2014) utilized a 177 

combination of smartphone inertial and touchscreen sensors for validating a smartphone user. (Shahzad et al., 178 

2013) proposed a gesture based user authentication approach to provide safe unlocking facility for touchscreen 179 

devices. Different features including finger velocity, device acceleration, and stroke time were used to learn 180 

how a user input data. The authentication schemes based on keystrokes and touchscreen interactions take a lot 181 

of time for training and learning the keystroke and touchscreen interaction patterns for a user. Moreover, 182 

keystrokes or touchscreen patterns of a user change with the passage of time as the behavior of the user changes.  183 
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Table 1. A set of smartphone embedded sensors 184 

Sensor Description 

Accelerometer Measures the acceleration force applied to the device including the force of gravity 

Linear Accelerometer Measures the acceleration force applied to the device excluding the force of gravity 

Gyroscope  
Measures the device rotation by using the roll, pitch, and yaw motions of the 

smartphone along three axes (x, y, z) 

Magnetometer  Measures the ambient geomagnetic field in three axes (x, y, z) 

Light Sensor  Measures the ambient light level i.e., illumination 

Humidity Sensor Measures the humidity of ambient environment 

Proximity Sensor  Measures the closeness of an object relative to device screen 

Barometer  Measures the ambient air pressure 

A few researchers have worked on utilizing physiological sensors for identity authentication. (Camara et 185 

al., 2015) formulated a scheme that identifies a user by utilizing Electrocardiogram (ECG) signals. Different 186 

features were extracted from ECG signals and K-NN classifier was applied for the purpose of user 187 

identification. The experiments reported that their proposed scheme achieved a mean accuracy of 97%. Another 188 

identity authentication approach was proposed by (Hejazi et al., 2016), where the authors used a multi-class 189 

SVM for user identification after applying Discrete Wavelet Transform (DWT) on ECG signals. The 190 

experiments reported 3.97% false match rate. (Kang et al., 2016) utilized smartwatch sensors for recording the 191 

ECG signals of different participants. The participants were kept in an exact motion state, which restricted the 192 

practical application of the proposed scheme. The experimental results presented an FAR of around 5%. These 193 

research studies proved that the ECG signals provide an impending solution of user authentication problem. 194 

However, the placement of ECG sensors and equipment on the user’s body, such as at chest or hand, creates 195 

inconvenience for the user. 196 

Another approach for validating smartphone users is the use of smartphone inertial sensors for obtaining 197 

data related to behavioral traits of different users. (Zhu et al., 2017) proposed a novel user authentication 198 

scheme called ShakeIn, which learns how a smartphone user shakes the phone to lock/unlock it. The biometric 199 

features of the users’ shaking behavior were captured with the help of embedded motion sensors of the 200 

smartphone. The experiments were performed on 20 participants with 530,555 shaking samples in total. The 201 

results described an Equal Error Rate (EER) of 1.2% on average. (Buriro et al., 2017) made use of user’s hand 202 

movement patterns for authentication purpose. The data was collected using smartphone embedded sensors and 203 

Random Forest (RF) classifier was used for evaluating the results. An EER rate of 96% was achieved by the 204 

system. Gait recognition with motion sensors provides a gateway for user authentication. It tends to identify and 205 

recognize the walking pattern of a person, e.g. walking style of a user under different conditions. (Damaševičius 206 

et al., 2016; Fernandez-Lopez et al., 2016) utilized smartphone internal motion sensors for validating users 207 

based on gait characteristics. (San-Segundo et al., 2016) used smartphone inertial sensors to develop a 208 

Gait-based Person Identification (GPI) scheme based on a Gaussian Mixture Model-Universal Background 209 

Model (GMM-UBM). The results showed a User Recognition Error Rate (URER) of 34%. (Derawi et al., 2010) 210 

exploited smartphone motion sensors for extracting information about walking cycles. They achieved an EER 211 

of 20.1%. (Mäntyjärvi et al., 2005) recognized users by utilizing their walking style using data from 212 

accelerometer. The research work on gait recognition and walking pattern detection is extended to recognize 213 

more physical activities for user identification. A number of studies focused on recognizing activities and 214 

gestures using motion sensors, including approaches based on deep learning. (Neverova et al., 2016) proposed a 215 

scheme for learning human identity based on their motion patterns using deep neural networks. This scheme 216 

achieved and EER of 20%.   217 

In our study, we analyzed the existing challenges in smartphone user authentication and presented a 218 

reliable and applicable solution for continuous user authentication. We used smartphone inertial sensors for 219 

learning and recognizing the physical activity patterns of individual users for six different activities of daily 220 

living. Hence, the users are identified on the basis of their behavioral traits.  221 
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3. Methodology of Research 222 

This research study primarily focuses on learning, identifying, and recognizing behavioral patterns of 223 

different users whilst they are using their smartphones. In this work, six different daily living activities i.e., 224 

walking, running, standing, sitting, walking upstairs, and walking downstairs, are used for the purpose of user 225 

validation. Numerous researches have been carried out on identifying and recognizing these activities from each 226 

other (Su et al., 2014; Anguita et al., 2013; Avci et al., 2010; Lockhart et al., 2012; Incel et al., 2013), where the 227 

motivation is to learn and differentiate between these individual activities. This research work focuses on 228 

recognizing the pattern of these activities for individual users. The aim is to recognize the differences among the 229 

behavioral patterns of different users for the same activity. For this purpose, we trained the system to learn the 230 

behavioral patterns of individual users for six different activities. Smartphone users are then identified by the 231 

system on the basis of the way they perform a certain activity. To avoid false positives occurring because of the 232 

changing location of smartphone on the user’s body, we trained the system to identify users for five different 233 

and commonly used smartphone positions. These positions are shown in Fig. 2. As behavioral authentication 234 

involves continuous collection of a user’s motion data from the device, therefore, the proposed system 235 

continuously collects and processes small portion of sensors data in a passive way in order to authenticate a user 236 

in real time scenarios. The proposed system recognizes the user from the collected portion of data on the basis of 237 

his/her activity pattern. The proposed research methodology is shown in Fig.3, which consists of following 238 

steps: raw data collection, preprocessing (data-denoising and segmentation), feature extraction, and user 239 

recognition.  240 

       

Fig. 2. Possible positions for the placement of smartphone on the user’s body. A smartphone user is required to 241 

place his/her phone in one of these body positions to get identified according to the proposed scheme.  242 
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Fig. 3. Proposed scheme for smartphone user recognition 243 

Table 2. Details of the dataset selected in this study for experimentation 244 

Property Details 

Activities 

Total Activity names 

 06 Walking Sitting Standing Running 
Walking 

upstairs 

Walking 

downstairs 

Actors 

Total Gender Age 

 10 Male 25-30 

Activity duration 03 minutes per actor for a single position of smartphone on actor’s body 

Smartphone 

positions 

Total Position names 

 05 Left pocket Right pocket Waist Upper arm Wrist 

Data collection 

device 
Samsung Galaxy S-II (i9100) smartphones  

Sampling rate 50 Hz 

sensors Accelerometer, Gyroscope, and Magnetometer 

3.1. Raw Data Collection : Dataset 245 

To validate the proposed scheme, an existing dataset for physical activity recognition (Shoaib et al., 2013, 246 

2014) was used. This dataset was selected because it was consistent to the pipeline of the proposed scheme. 247 

Table 2 describes the properties of this dataset. Three sensors were used for the purpose of data collection as 248 

shown in Table 2. The accelerometer was used to measure acceleration in meter per second square (   ⁄ ), the 249 

magnetometer was employed to report magnetic field in micro tesla (µT), and the gyroscope was used to 250 

measure the angular rotation in radians per second (     ) along each axis. The data collected from smartphone 251 

sensors had the form {                          }   
 , where ‘a’ and ‘g’ represent the acceleration, and 252 

rotation respectively whereas, ‘b’ represents the strength of the magnetic field along x, y and z axes. 253 

3.2. Preprocessing : Data De-noising and Segmentation 254 

Inertial sensors of the smartphone are sensitive to interferences such as noise. The signals acquired from 255 

these sensors are subjected to undesirable noise produced by unanticipated and vibrant movements of the 256 

participants. This noise corrupts useful information contained in the signal. Therefore, the removal of unwanted 257 

noise from the signal is necessary before further processing. In our case, the noisy data obtained from 258 

smartphone inertial sensors was de-noised using an average smoothing filter of size    . Noise was removed 259 

from whole sample data by applying the averaging filter separately along all three dimensions of accelerometer, 260 

gyroscope, and magnetometer. As smartphone inertial sensors are orientation sensitive, therefore the magnitude 261 
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of the sensor that is independent of the sensor orientation was also concatenated with the existing three 262 

dimensions of each sensor. After adding fourth dimension, each sensor data was of the form (         ). For 263 

each sensor, magnitude is simply calculated as:     √        . 264 

Before feature extraction from the preprocessed data, the sensors data was divided into smaller segments 265 

using a fixed-size sliding window. The selection of the length of sliding window is crucial as the final accuracy 266 

of recognition is affected by the length of the sliding window. Different researchers (Shoaib et al., 2013; Anjum 267 

and Ilyas, 2013) have shown that simple physical activity patterns can be recognized within 5 seconds duration. 268 

This led us to use a fixed-size slicing window having a length of 5 seconds in time with 250 samples at the rate 269 

50 Hz. A 50% overlap was selected between the samples during the segmentation and the whole sensors data 270 

along each dimension was divided into small chunks of 5 seconds for feature extraction.  271 

Table 3. A set of time domain features for user recognition 272 

Features Formula 

Maximum Amplitude         { ( )} 

Minimum Amplitude         { ( )} 

Mean   
 

 
∑ ( ) 

Variance    
 

 
∑( ( )   )  

Kurtosis 
  (    

 )⁄  ,  

where    and    are the 2nd and 4th moment about the mean 

Skewness   (  ) (  

 

 )⁄  , where    is the 3rd moment about the mean 

Energy    ∑| ( )|  

Entropy  ( ( ))    ∑  ( ( ))        ( ( ))

 

   

 

Mean of Absolute Value of First Difference    
 

 
∑| ( )   (   )| 

Mean of Absolute Value of Second Difference    
 

 
∑| (   )    ( )   (   )| 

Peak-to-Peak Signal Value                

Maximum Latency         { | ( )      } 

Minimum Latency         { | ( )      } 

Peak-to-Peak Time                  

Peak-to-Peak Slope      
    

    
 

Absolute Latency to Amplitude Ratio      |
     
    

| 
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3.3. Feature Extraction 273 

Once the data was preprocessed, next step was to extract suitable features that can discriminate between the 274 

activity patterns of different users so that the users can be identified accurately. For this purpose, we selected 275 

sixteen different features from the time domain. Most of these features have been utilized by the earlier studies 276 

for physical activity recognition (Anjum and Ilyas, 2013; Incel et al., 2013; Shoaib et al., 2014, 2013; Su et al., 277 

2014). These studies have demonstrated the excellent performance of these features for recognizing the activity 278 

patterns. First and second difference of the signal highlights the varying information in the signal and provides 279 

the edges and sharp changes in the signal. Similarly, maximum and minimum latency, peak-to-peak time, 280 

peak-to-peak slope, and latency to amplitude ratio also gives us useful information about the signal. Hence these 281 

features are useful descriptors of the signal and helpful in recognizing different activity patterns. Table 3 282 

provides the details of the features selected in this study. All of these features were extracted for each 283 

partitioned data segment i.e., s[n], along all four channels of three sensors.  284 

3.4. User Recognition 285 

After feature extraction, next step was to choose a suitable classifier for the purpose of user recognition 286 

based on extracted features. In this work, different supervised machine learning approaches were used. As there 287 

were ten participants in the experiment, therefore the recognition of each individual participant was a 288 

multi-class classification problem. Three prevalent classifiers i.e., Support Vector Machine (SVM), Decision 289 

Tree and K-Nearest Neighbors (K-NN) were used to recognize individual users from their activity patterns. 290 

These classifiers were trained separately for different activity patterns of all the participants. The main reason 291 

for the selection of these classifiers was their efficient performance in existing studies pertinent to physical 292 

activity recognition (Anjum and Ilyas, 2013; Incel et al., 2013; Shoaib et al., 2014, 2013; Su et al., 2014). 293 

Moreover, we intended to provide a performance comparison of these classifiers for recognizing users from 294 

their activity patterns, which is given in Section 4. These classifiers are described in the following sections.  295 

3.4.1. Decision Tree 296 

Decision Tree (Kohavi, 1996) is a non-parametric supervised machine learning approach used 297 

for classification and regression. This approach aims to build up a model that envisages the value of a target 298 

variable by learning simple rules for decisions. These rules are deduced from the features extracted from the 299 

input data. Decision tree uses an if-then-else structure for making decisions about classification. It is 300 

computationally cheap with excellent interpretation, therefore it is considered as one of the key classifiers in 301 

numerous activity recognition studies (Su et al., 2014; Shoaib et al., 2013). The problem in using Decision Tree 302 

as a classifier lies in updating the already built model to accommodate new training samples as it might be very 303 

expensive (Su et al., 2014).  304 

3.4.2. K-Nearest Neighbors  305 

K-Nearest Neighbors (Guo et al., 2003) is an instance-based classifier, which is based on the majority 306 

voting of its neighbors (Peterson, 2009). It is one of the most commonly used algorithms for recognizing 307 

patterns. It works by assigning a feature vector extracted from the input data to a class according to its nearest 308 

neighbor(s). The neighbor can be a class prototype or a feature vector from the training set. The nearest 309 

neighbor is determined by calculating the distance between the feature vectors. It is a discriminative non-linear 310 

classifier. A number of distance measures can be used in K-NN classification like Chebyshev, Manhattan or 311 

Minkowski but Euclidean distance is usually the default measure used. 312 

3.4.3. Support Vector Machine 313 

Support Vector Machine (Cortes and Vapnik, 1995) is a non-probabilistic classifier that has successful 314 

applications in classification and regression. Support Vector Machine utilizes decision planes for outlining 315 

decision boundaries. A decision plane is capable of separating a set of objects with different class associations. 316 

Given a set of labeled training examples for the two classes, the training algorithm of SVM formulates a model 317 

that allocates new samples to one of the two classes. An SVM model denotes different examples as points in 318 

space, which are dispersed such that the examples pertaining to different classes are separated by a clear gap 319 

using support vectors. New examples are then mapped into the same space and assigned to a class depending 320 

upon which side of the gap they fall. SVM resists the overtraining problem and ultimately achieves a high 321 

generalization performance. 322 

http://scikit-learn.org/stable/modules/tree.html#tree-classification
http://scikit-learn.org/stable/modules/tree.html#tree-regression
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4. Experimental Results  323 

In order to perform continuous authentication of smartphone users, the proposed scheme performed the 324 

recognition of activity patterns for individual users. Hence, the users were identified based on their activity 325 

patterns. The performance of the proposed scheme was evaluated using three different classifiers: SVM, DT, 326 

and KNN. These classifiers were trained and tested on the dataset for six activities. The dataset was pre-labeled 327 

for all six activities performed by ten different users. The users who performed these activities were labeled as 328 

well. It means that the ground truth was available for the activities as well as for the users performing those 329 

activities. So, our idea was to exploit the dataset for recognizing individual users from this labeled activity data. 330 

For this reason, we combined the data of all the users related to same activity at the same body position and 331 

assigned user labels to the data according to the ground truth. For example, the labeled data of the walking 332 

activity for a single body position was combined for all the participants and the user labels were assigned to the 333 

data. These user labels were representing the walking activity patterns of different participants. This process 334 

was repeated for each activity data for all body positions. It was done in order to train the selected classifiers for 335 

activity patterns of individual users. For every activity, the classifiers were trained for all five body positions 336 

separately to recognize ten different users. For this purpose, sixteen different features (as described in Table 3) 337 

were extracted for all four dimensions of accelerometer, gyroscope, and magnetometer. These sixteen features, 338 

extracted from four dimensions of three sensors, were concatenated into a single feature vector of size 339 

           computed over a data segment of 5 seconds (250 samples with 50 Hz sampling rate) in time. 340 

As mentioned earlier, the duration of each activity data was 3 minutes (180 seconds), therefore using a 50% 341 

overlapping sliding window, total 
   

   
      feature vectors were computed related to each activity for a 342 

single body position. For total ten participants, 71 x 10 = 710 feature vectors were computed for each activity. 343 

The feature vectors computed for each activity were passed as input to the selected classifiers along with the 344 

user labels for classifiers training to recognize users from their activity patterns.  345 

4.1. Evaluation Approach and Performance Metrics 346 

To validate the performance of different classifiers, the data was divided into training and testing splits 347 

using k-fold cross validation scheme with k=10, and the classifiers were evaluated. For K-NN classifier, the 348 

nearest neighbor parameter K was set equal to 1 and Euclidean distance metric with equal weight was used for 349 

similarity measure. In case of DT classifier, the standard Classification and Regression Trees (CART) 350 

algorithm (Breiman et al., 1984) was used for creating the decision tree and the nodes were split using Gini’s 351 

diversity index as a split criterion. A linear kernel was used for SVM classifier and one-vs-one multi-class 352 

method was used for classification. In Table 4, different performance metrics are given on the basis of which the 353 

performance of these classifiers was measured for user recognition. These performance measures are computed 354 

separately pertaining to each activity for five different body positions. . 355 

Table 4. Performance metrics for evaluating classifiers performance for user recognition are: Accuracy (A), 356 

Precision (P), Recall (R), F-measure (F), and Error Rate (E). Here tp , tn , fp , and  fn represent true positives, 357 

true negatives, false positives, and false negatives respectively. 358 

Metric Formula 

Accuracy   
     

           
 

Precision   
  

     
 

Recall    
  

     
 

F-measure     (
     

   
) 

Error Rate        
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4.2. Performance Analysis of User Recognition 359 

This section provides the results of user recognition based on six selected activites. For every activity, the 360 

results are presented for five different positions of the smartphone on the user’s body. To make a comparison 361 

between the classifiers performance in recognizing the users, the results are computed for each selected 362 

classifier i.e., DT, K-NN, and SVM. Table 5 to Table 10 summarizes the results of user recogntion based on 363 

walking, running, standing sitting, walking upstairs, and walking downstairs activity respectively. It can be 364 

observed from these tables that overall performance of SVM classifier is better than DT and K-NN classifiers in 365 

recognizing the users from their activity patterns. 366 

Table 5. Performance measures of selected classifiers for user recognition based on walking activity 367 

Classifier Accuracy Precision Recall F-measure Error Rate  Phone Position 

DT 0.989 0.989 0.989 0.989 0.011 

Waist K-NN 0.989 0.989 0.989 0.989 0.011 

SVM 0.996 0.996 0.996 0.996 0.004 

DT 0.966 0.966 0.966 0.966 0.034 

Left Pocket K-NN 0.976 0.976 0.976 0.976 0.024 

SVM 1 1 1 1 0 

DT 0.986 0.986 0.986 0.986 0.014 

Right Pocket K-NN 0.974 0.975 0.973 0.974 0.026 

SVM 1 1 1 1 0 

DT 0.945 0.946 0.945 0.946 0.055 

Upper Arm K-NN 0.973 0.973 0.973 0.973 0.027 

SVM 0.994 0.994 0.994 0.994 0.006 

DT 0.983 0.983 0.983 0.983 0.017 

Wrist K-NN 0.989 0.989 0.989 0.989 0.011 

SVM 0.994 0.994 0.994 0.994 0.006 

Table 6. Performance measures of selected classifiers for user recognition based on running activity 368 

Classifier Accuracy Precision Recall F-measure Error Rate  Phone Position 

DT 0.982 0.982 0.982 0.982 0.018 

Waist K-NN 0.972 0.972 0.972 0.972 0.028 

SVM 0.997 0.997 0.997 0.997 0.003 

DT 0.972 0.972 0.972 0.972 0.0280 

Left Pocket K-NN 0.989 0.989 0.989 0.989 0.011 

SVM 0.999 0.999 0.999 0.999 0.001 

DT 0.966 0.967 0.966 0.967 0.034 

Right Pocket K-NN 0.983 0.983 0.983 0.983 0.017 

SVM 1 1 1 1 0 

DT 0.975 0.975 0.975 0.975 0.025 

Upper Arm K-NN 0.975 0.975 0.975 0.975 0.025 

SVM 0.993 0.993 0.993 0.993 0.007 

DT 0.963 0.963 0.963 0.963 0.037 
Wrist 

K-NN 0.975 0.975 0.975 0.975 0.025 
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SVM 0.996 0.996 0.996 0.996 0.004 

Table 7. Performance measures of selected classifiers for user recognition based on standing activity 369 

Classifier Accuracy Precision Recall F-measure Error Rate  Phone Position 

DT 0.990 0.991 0.990 0.990 0.010 

Waist K-NN 0.879 0.880 0.879 0.880 0.121 

SVM 0.994 0.994 0.994 0.994 0.006 

DT 0.975 0.975 0.975 0.975 0.025 

Left Pocket K-NN 0.766 0.770 0.766 0.768 0.234 

SVM 0.959 0.963 0.959 0.961 0.041 

DT 0.954 0.954 0.954 0.954 0.046 

Right Pocket K-NN 0.845 0.847 0.845 0.846 0.155 

SVM 0.966 0.967 0.966 0.967 0.034 

DT 0.951 0.951 0.951 0.951 0.049 

Upper Arm K-NN 0.734 0.755 0.734 0.744 0.266 

SVM 0.954 0.955 0.954 0.954 0.046 

DT 0.952 0.953 0.952 0.952 0.048 

Wrist K-NN 0.841 0.840 0.841 0.841 0.159 

SVM 0.970 0.970 0.970 0.970 0.030 

Table 8. Performance measures of selected classifiers for user recognition based on sitting activity 370 

Classifier Accuracy Precision Recall F-measure Error Rate Phone Position 

DT 0.991 0.991 0.991 0.991 0.009 

Waist K-NN 0.811 0.817 0.811 0.814 0.189 

SVM 0.989 0.989 0.989 0.989 0.010 

DT 0.992 0.992 0.992 0.992 0.008 

Left Pocket K-NN 0.904 0.906 0.904 0.905 0.096 

SVM 0.993 0.993 0.993 0.993 0.007 

DT 0.986 0.986 0.986 0.986 0.014 

Right Pocket K-NN 0.934 0.936 0.934 0.935 0.066 

SVM 0.992 0.992 0.992 0.992 0.008 

DT 0.955 0.955 0.955 0.955 0.045 

Upper Arm K-NN 0.844 0.849 0.844 0.846 0.156 

SVM 0.983 0.983 0.983 0.983 0.017 

DT 0.945 0.945 0.945 0.945 0.055 

Wrist K-NN 0.863 0.870 0.863 0.867 0.137 

SVM 0.968 0.968 0.968 0.968 0.032 

Table 9. Performance measures of selected classifiers for user recognition based on walking upstairs activity 371 

Classifier Accuracy Precision Recall F-measure Error Rate Phone Position 

DT 0.963 0.963 0.963 0.963 0.0370 Waist 
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K-NN 0.966 0.968 0.966 0.967 0.0340 

SVM 0.986 0.986 0.986 0.986 0.0140 

DT 0.903 0.905 0.903 0.904 0.0970 

Left Pocket K-NN 0.911 0.913 0.911 0.912 0.0890 

SVM 0.986 0.986 0.986 0.986 0.0140 

DT 0.901 0.903 0.901 0.902 0.0990 

Right Pocket K-NN 0.925 0.926 0.925 0.926 0.0750 

SVM 0.987 0.988 0.987 0.988 0.0130 

DT 0.858 0.865 0.858 0.861 0.142 

Upper Arm K-NN 0.883 0.891 0.883 0.887 0.117 

SVM 0.975 0.977 0.975 0.976 0.0250 

DT 0.862 0.865 0.862 0.864 0.138 

Wrist K-NN 0.858 0.860 0.858 0.859 0.142 

SVM 0.969 0.970 0.969 0.970 0.0310 

Table 10. Performance measures of selected classifiers for user recognition based on walking downstairs 372 

activity 373 

Classifier Average Precision Recall F-measure Error Rate Phone Position 

DT 0.911 0.914 0.911 0.912 0.0890 

Waist K-NN 0.918 0.919 0.918 0.919 0.0820 

SVM 0.952 0.954 0.952 0.953 0.0480 

DT 0.901 0.903 0.901 0.902 0.0990 

Left Pocket K-NN 0.877 0.888 0.877 0.883 0.123 

SVM 0.959 0.961 0.959 0.960 0.0410 

DT 0.904 0.905 0.904 0.904 0.0960 

Right Pocket K-NN 0.863 0.866 0.863 0.864 0.137 

SVM 0.965 0.968 0.965 0.966 0.035 

DT 0.811 0.820 0.811 0.815 0.189 

Upper Arm K-NN 0.813 0.818 0.813 0.815 0.187 

SVM 0.927 0.931 0.927 0.929 0.073 

DT 0.794 0.804 0.794 0.799 0.206 

Wrist K-NN 0.841 0.850 0.841 0.846 0.159 

SVM 0.937 0.937 0.937 0.937 0.063 

In case of walking activity, SVM classifier achieved an accuracy of 100% in recognizing the users when the 374 

smartphone was placed in their left jeans pocket or right jeans pocket. For the same activity, DT and K-NN 375 

classifiers achieved 96.6% and 97.6% accuracy for the left pocket position and an accuracy of 98.6% and 97.3% 376 

for the right pocket position respectively. The values of other performance metrics i.e., precision, recall, and 377 

f-measure were also better for SVM classifier. For the waist and wrist positions, SVM classifier achieved 99.6% 378 

accuracy. However, the recognition accuracies obtained for DT and K-NN classifiers are 98.9% for the waist 379 

position, and 98.9% and 98.3% for the wrist position respectively. The worst accuracy achieved by SVM, DT, 380 

and K-NN classifiers in recognizing users from walking activity is for upper arm position as shown in Table 5. 381 

These results state that recognizing users from their walking activity is easier if the phone is kept in their left or 382 

right pocket as compare to other positions. Keeping phone at upper arm position makes it difficult to recognize 383 
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a user based on walking pattern. The same thing can be said for identifying users on the basis of running activity 384 

as indicated by the results in Table 6.  385 

On the basis of standing activity, the users are best recognized for the case when the smartphone was 386 

hanged with a belt clipper. The best accuracy rate achieved in this case is 99.4% for the waist position using 387 

SVM classifier. The accuracy rate obtained using DT and K-NN classifier for the same position is 99% and 388 

87.6% respectively as given in Table 7. Table 8 shows that for sitting activity, the best accuracy rate achieved is 389 

99.3% for the left pocket position using SVM classifier. On the other hand, DT and K-NN classifier achieved 390 

99.2% and 90.4% accuracy for the left pocket position. The worst accuracy rate achieved by SVM for standing 391 

activity is 95.4% for the upper arm position, whereas in case of sitting activity it is 97% for the wrist position. 392 

These results depict that it is possible to identify a user based upon standing and sitting activities. In case of 393 

these two activities, the users are distinguished from each other because of the differences in their standing and 394 

sitting postures. This difference is detected by the inertial sensors of the smartphone placed on the user’s body. 395 

The orientation of smartphone inertial sensors changes when a user stands or sits in a different pattern/posture 396 

as compare to other persons. Hence, the readings of these sensors change, which leads to identification of that 397 

user. From the results obtained from Table 7, it can be said that it is easier to recognize a user on the basis of 398 

his/her standing posture/stance if the smartphone is hanged near waist position. On the other hand, it is very 399 

hard to recognize the user if the smartphone is placed on the upper arm position. Similarly, results from Table 8 400 

report that the identification of a user based on sitting activity is easier if the phone is placed in the jeans pocket 401 

as compare to other phone positions. 402 

For the case of recognizing users from walking upstairs and walking downstairs activities also, the best 403 

results are also obtained using SVM classifier. The highest accuracy achieved for walking upstairs and walking 404 

downstairs activity is 98.7% and 96.5% respectively for the right pocket position using SVM classifier as shown 405 

in Table 9 and Table 10 respectively. The accuracy achieved by DT and K-NN classifier for walking upstairs 406 

activity is 90.1% and 92.5% respectively for the right pocket position. For downstairs activity for similar phone 407 

position, DT and K-NN classifiers attained an accuracy rate of 90.4% and 86.3% respectively. The results of 408 

these activities, i.e., walking upstairs and walking downstairs, obtained for the waist position are comparable to 409 

the results obtained for pocket positions as given in Table 9 and Table 10. Moreover, it can be observed from the 410 

results reported in these tables that upper arm and wrist position provides lower user recognition accuracies. 411 

Hence, it can be stated that the recognition of a user on the basis of walking upstairs and walking downstairs 412 

activity is easier if the smartphone is kept in pocket of the user or hanged at the waist position.  413 

 
Fig. 4. Comparison of selected classifiers performance for user recognition based on six selected activities 414 
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Fig. 5. Confusion matrices of user recognition (performed using SVM classifier) based on four different 415 

activities: (a) standing with phone at waist position, accuracy = 99.4%, (b) sitting with phone in left pocket 416 

position, accuracy = 99.3% (c) walking upstairs with phone in right pocket, accuracy = 98.7 (d) walking 417 

downstairs with phone in right pocket, accuracy = 96.5%.  418 

Fig. 4 shows and compares the average accuracy rate achieved by the selected classifiers in recognizing the 419 

users on the basis of six different activities. For each activity, average accuracy percentage calculated over five 420 

body positions is shown in the figure. It can be observed that for all six activities, SVM classifier obtained the 421 

best average accuracy percentage for user recognition. The overall performance of K-NN classifier was better 422 

than DT classifier in recognizing the users based on walking, running and walking upstairs activities. For the 423 

remaining activities i.e., sitting, standing, walking downstairs, DT classifiers achieved better results than K-NN 424 

classifier. The overall average recognition accuracy achieved for SVM classifier is 97.95%, which is 3.87% and 425 

7.72% more than the overall average accuracy obtained for DT and K-NN classifiers respectively. Moreover, 426 

the precision, recall, f-measure, and error rate are also better for SVM classifiers as depicted in Table 5 to Table 427 

10. So, it can be concluded based on the above results and discussions that the performance of SVM classifier is 428 

better for user recognition based on activity patterns recognition. It suggests SVM classifier as the best choice 429 

for on-device user recognition based on recognizing the activity patterns for individual users. 430 

To find out the best individual accuracies of recognition for different users, the confusion matrices for user 431 

recognition are provided in Fig. 5 ((a)-(d)). For every activity except walking and running, only one confusion 432 

matrix is shown for the position where the best performance metrics were achieved for user recognition using 433 

SVM classifier. In case walking and running activities, the best value of accuracy, precision, recall, and 434 

f-measure obtained for user recognition using SVM classifier is 100% for each (as shown in Table 5 and Table 435 

6). It means that no user was misclassified or wrongly identified as any other user; hence the individual 436 

recognition accuracy achieved for every user is 100%. From Table 7 to Table 10, it is clear that for recognizing 437 
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a user based on the walking upstairs and walking downstairs activity, the best position to keep smartphone is the 438 

right jeans pocket. On the other hand, for standing and sitting activities, the best positions are waist and left 439 

pocket respectively. As discussed earlier, there were total 71 samples for all individual users corresponding to 440 

each activity for a single position. Therefore the confusion matrices in Fig. 5 ((a)-(d)) are presented in terms of 441 

recognized over total number of samples (i.e. 71) for the all the users. The rows of the confusion matrices are 442 

representing actual users while columns are representing the predicted users. It can be seen from Fig. 5 ((a)-(d)) 443 

that there are a few misclassifications where the actual user of the smartphone is identified as any other user. 444 

However, for each user, the value of correctly classified samples is very high. It means that every user is 445 

correctly identified with a very high accuracy. From these promising results, it is worth mentioning that it is 446 

possible to efficiently recognize different users on the basis of their activity patterns because of their behavioral 447 

differences. 448 

Typically, there is only a single owner of a smartphone who is called as the authenticated user of that 449 

phone. The owner of the phone has full access to each and everything on his/her phone. However, a smartphone 450 

is not necessarily to be used by a single person only. An owner of a mobile device may share his/her phone with 451 

other people, who can use that phone for performing any of their tasks as allowed by the phone owner. All such 452 

users of the phone are supplementary users. The device owner may set different levels of access to his/her 453 

smartphone data and services for different supplementary users. Other than authenticated and supplementary 454 

users, any other user of the phone is treated as an impostor with no access given to phone data. To ensure the 455 

privacy of any confidential information and data stored on the owner phone, it is necessary to identify the phone 456 

user. The proposed system for user recognition identifies a user on the basis of his/her behavioral traits while 457 

using smartphone. Once the user is identified by the system, the system assigns the user a respective level of 458 

access privileges. The system can only identify a user on the basis of the activities for which the system is 459 

trained. In real time, if a user performs a random activity for which is unknown to the system, the system is 460 

improbable to be capable of identifying the user in an accurate way as there is no training of the system. 461 

However, the proposed system can be trained for the new activity by collecting raw data from the motion 462 

sensors of the smartphone. The system can then quickly learn the behavioral patterns of different users for the 463 

new activity and adapt itself to identify users based on new activity. In this way, adaptive behavioral 464 

authentication is also incorporated in the proposed system. 465 

5. Conclusions 466 

In this paper, we analyzed continuous authentication of smartphone users based on their behavioral traits 467 

using activity pattern recognition. For this purpose, we proposed a novel scheme for validating smartphone 468 

users, which identifies the users based on the way they perform certain activities using mobile sensing. Six 469 

activities of daily life i.e., walking, running, sitting, standing, walking upstairs, and walking downstairs, are 470 

used to distinguish between different users based on sixteen different features extracted from the time domain. 471 

For each activity, five different positions are employed for keeping a smartphone on the user’s body and the 472 

user recognition results are analyzed for all these positions. It is noted that the performance of the user 473 

recognition based on a particular activity is different for varying positions of the smartphone on the user’s body. 474 

A user can be easily and efficiently recognized on the basis of his/her walking pattern if the phone is placed in 475 

his/her jeans pocket. In contrast, keeping the phone at the upper arm position makes it very difficult to recognize 476 

a user based on the walking activity. Similarly, on the basis of standing posture, a user can be easily recognized 477 

if he/she keeps the phone at the waist position, whereas in case of sitting activity, the jeans pocket is the best 478 

place for user recognition. In the same way, the activities of walking upstairs and walking downstairs can easily 479 

distinguish between different users if the phone is kept in the jeans pocket or hanged with a belt clipper at the 480 

waist. Three different machine learning algorithms i.e., Decision Tree, K-Nearest Neighbors, and Support 481 

Vector Machine, are used for the purpose of user recognition. It is observed that Support Vector Machine 482 

classifier provides the best performance for on-device user identification. Hence, it is an ideal choice for 483 

on-device user identification based on activity pattern recognition. 484 

To further extend this work, more sensors and activities can be incorporated into the system for recognizing 485 

users. Physiological sensors can be used along with the motion sensors for identity authentication. The 486 

emotional state of the users can also be recognized along with activity pattern recognition using physiological 487 

sensors. As the behavior of the user may change in a random way in different settings; hence an un-supervised 488 

machine learning approach can be used for user recognition, which will be helpful in adapting the system to 489 

random activity patterns. Contextual information is of very much importance while recognizing a user based on 490 
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his/her behavioral traits as the behavior of the user changes with different contexts. Hence, context-awareness 491 

can be incorporated into the system to efficiently recognize a smartphone user keeping in view the contextual 492 

information. Once a user is identified, we can keep track of his/her activities for health monitoring, social 493 

interaction monitoring, and behavior prediction and modeling. 494 
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