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Abstract—  Gene expression programming (GEP) is a data driven 

evolutionary technique that well suits for correlation mining. Parallel 

GEPs are proposed to speed up the evolution process using a cluster 

of computers or a computer with multiple CPU cores. However, the 

generation structure of chromosomes and the size of input data are 

two issues that tend to be neglected when speeding up GEP in 

evolution. To fill the research gap, this paper proposes three guiding 

principles to elaborate the computation nature of GEP in evolution 

based on an analysis of GEP schema theory. As a result, a novel data 

engineered GEP is developed which follows closely the generation 

structure of chromosomes in parallelization and considers the input 

data size in segmentation. Experimental results on two data sets with 

complementary features show that the data engineered GEP speeds up 

the evolution process significantly without loss of accuracy in data 

correlation mining. Based on the experimental tests, a computation 

model of the data engineered GEP is further developed to demonstrate 

its high scalability in dealing with potential big data using a large 

number of CPU cores. 

 
Index Terms — Gene expression programming, schema theory, 

data engineering, big data analytics, parallelization and segmentation. 

 

I. INTRODUCTION 

ENE expression programming (GEP) [1] is a member of 

Evolutionary Algorithms (EAs) [2] with a  similar idea to 

both Genetic Algorithms (GAs) [3] and Genetic Programming 

(GP) [4]. GEP operates on a genotype-phenotype system to 

handle the representation of a candidate solution. GEP 

combines the linear structure of GA with the tree structure of 

GP providing a structured and flexible mechanism in searching 

for solutions.  

GEP has been applied to many problems including 

combinatorial optimizations [6], finite transducers [42], 

classifications [7-10, 41], time series predictions [11-13] and 

symbolic regressions [14-16]. GEP was also employed to 

automatically generate a hyper-heuristic framework for 

combinatorial optimization problems [43, 44].  
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We have previously applied GEP in particle physics [17-19] 

to discriminate events from the background noisy signals. The 

performance was further improved with a prefix notation [20] 

to represent a candidate solution. In another work [39], we 

applied GEP to mine the correlations of Hadoop [40] 

parameters for big data analytics. GEP also has many 

applications in power systems such as the short-term load 

forecasting problem [21], and the static security problem [22]. 

The flexible structure of GEP together with its black-box 

style in solution searching makes GEP an appealing analytic 

approach to big data problems. However, the sheer size of big 

data would put a heavy burden on GEP computation in 

evolution. To speed up this process, a number of parallel GEP 

algorithms have been proposed using a cluster of computers 

[24, 26] or a single computer with multiple CPU cores [27]. 

Although the execution time of GEP decreases with an 

increasing number of CPU processors, these parallel GEPs 

suffer from two major limitations. On one hand, these parallel 

GEPs simply distribute the computation of chromosomes across 

a number of CPUs which breaks the generation structure of 

GEP leading to inefficiency in evolution. For example, the work 

presented in [26] assigns CPUs to process the chromosomes 

simultaneously, but it does not guarantee that the chromosomes 

of the same generation are assessed together in one iteration. 

On the other hand, these GEPs have not considered the size of 

an input data in parallelization leading to a scalability issue 

when dealing with an ever-growing size of potential big data. 

Therefore, the generation structure of chromosomes and the 

size of input data are two issues that tend to be neglected when 

speeding up the evolution process of GEP.  

To fill the research gap, this paper presents a novel data 

engineered GEP and makes four major contributions: 

• It proposes three guiding principles to elaborate the 

computation nature of GEP in evolution, which provides 

a theoretical foundation for GEP parallelization and 

segmentation. This is based on an analysis of our 

previous work on GEP schema theory [23] which is also 

highlighted by Zhong et al. in their work [38].  

• Different from the existing GEP solutions, the data 

engineered GEP follows closely the generation structure 

of chromosomes leading to an efficient process in 

evolution. 

• It employs two segmentation schemes to further speed 

up the evolution process. The cutting-in-sequence 

scheme segments an input data set into a number of 

overlapped data chunks with an aim to maintain the 

accuracy level of GEP in processing segmented data. 
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The random selection scheme selects samples from an 

input data set without overlapping and builds a single 

data chunk for processing.  

• A computation model of the data engineered GEP is 

developed to demonstrate its high scalability in dealing 

with potential big data. 

 

The data engineered GEP is evaluated on two data sets with 

complementary features. One data set has complex but loosely-

coupled data samples in that each sample has a large number of 

input factors. The other data set has strongly correlated data 

samples but each sample has a small number of input factors. 

Experimental results show that the data engineered GEP 

reduces the computation time significantly without loss of 

accuracy in processing the segmented data chunks, which 

makes it scalable in dealing with potential big data problems.  

The rest of this paper is organized as follows. Section II gives 

a review on related work. Section III proposes three guiding 

principles to elaborate the computation process of GEP based 

on an analysis of GEP schema theory. Section IV details the 

implementation of the data engineered GEP from the aspects of 

segmentation, overlapping and parallelization. Section V 

evaluates the performance of the data engineered GEP. Section 

VI develops a computation model to further demonstrate the 

scalability of the data engineered GEP in dealing with potential 

big data settings. Section VII concludes the paper and points out 

some future work. 

II. RELATED WORK  

   The majority of existing works on data engineering in GEP 

only focus on parallelization. This section reviews some of the 

representative works in this aspect. It first reviews some works 

on schema theory which provides a theoretical foundation for 

GEP computation analysis.  

 

A. Schema Theory 

Schema theory is used to describe how EAs work under the 

pressure of selection. A solution provided by EAs can be 

considered as a point in a search space which contains all the 

possible solutions to a problem. The schemata of a chromosome 

containing such a solution can be considered as the coordinates 

of the point in the search space. In order to find the location of 

a good solution, a guided search space is provided by the 

schemata of a chromosome during the evolutionary process [3]. 

The schemata are generated by linking a set of schema elements 

based on the output of a fitness function. In this way, the search 

space containing a good solution is explored point by point in 

the search space and eventually the best solution can be 

generated.   

Schema theory provides a theoretical support for analysis of 

EAs. By investigating the behaviors and the execution results 

of the genetic operations, the evolutionary process of EAs can 

be mathematically described with a set of formulas which are 

used to represent the propagation of schemata. 

Holland developed a GA schema theory [3] to explain the 

evolutionary mechanism of GA. The theorem predicts the 

number of strings matching a schema in the next generation 

based on the genetic information of the current generation. 

Following Holland’s GA schema theory, Koza [28] made the 

first attempt to define the schema in GP as a sub-space 

containing a set of sub-trees which share similar output 

behaviors. The GP schema is a tree structure which provides a 

deeper understanding of the input data. Poli and Langdon [30] 

introduced a fixed-size-and-shape schema which provides more 

restrictions on the shape of the S-expression program matching 

the schema. S-expression is a data representation of nested lists. 

In a later version, Poli and McPhee developed a Cartesian node 

reference system [31-32] to enhance the positional connection 

between the schema and the tree structure. Each position in the 

tree structure is indexed with one point in the node reference 

system. As a result, a more precise analysis of the propagation 

of the tree fragments matching the schema can be obtained. All 

these works try to provide a structured and flexible mechanism 

for a clear understanding of the GP evolutionary process. 

GEP is a relatively new EA algorithm. As a result, few 

studies have been proposed on GEP schema theory. Cheng and 

Xue [29] attempted to define GEP schema following closely the 

work on GA schema theory. This work does not fully consider 

GEP specific features such as the head-tail structure of a 

chromosome, and the phenotype-genotype translation 

mechanism.    

Huang [23] proposed a GEP schema theory which takes into 

account the GEP specific features in a systematic way. This 

work defines a schema together with a set of corresponding 

theorems to predict the propagation of a schema from one 

generation to another taking into account the head-tail structure 

of a chromosome. The phenotype-genotype separation is also 

considered. The genotype is used to select a schema which can 

be part of an entire chromosome, not only the part of the Open 

Reading Frame [1]. The phenotype is used only to provide the 

natural selection pressure through the fitness values of the 

chromosomes containing a schema. 

Recently, Zhong et al. [38] proposed a self-learning GEP in 

which each chromosome is embedded with sub-functions that 

can be deployed to construct the final solution. It is worth noting 

that this work can be theoretically explained by the schema 

theory proposed in our previous work [23]. The evolutionary 

process is actually conducted by accumulating the genetic 

information on schemata which can be computed 

mathematically. As a result, the proposed self-learning GEP 

provides a mechanism to maintain the structure of the 

accumulated schemata which leads to an enhanced 

performance. 

 

B. Parallel GEP  

There are a number of works in parallelization of GEP using 

a cluster of computers. For example, Cai et al. [24] proposed a 

Hybrid Parallel GEP combined with Simulated Annulling 

(HPGEPSA) using MPI [25] to achieve parallelism. In 

HPGEPSA, a new generation only can be generated when all 

the participating computers finish their computations. As a 

result, the computation improvement through parallelization is 
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not significant especially when different types of CPU 

processors are used with varied computing powers. 

The Asynchronous Distribute Parallel GEP based on the 

Estimation of Distribution Algorithm (ADPGEPEDA) further 

optimizes the load of each participating processor [26] using 

MPI. In ADPGEPEDA, each computer controls the 

evolutionary process of a part of the population independently. 

Since the computation capability of each participating computer 

is considered, ADPGEPEDA performs better than HPGEPSA 

in parallelization. However, the evolutionary process in 

ADPGEPEDA does not guarantee the chromosomes of the 

same generation would be assessed together in an evolutionary 

iteration which might break the nature of the selection process 

leading to an inefficient evolution. 

Jiang et al. [27] presented a Parallel Niche GEP (PNGEPMP) 

using a single computer with multiple CPU cores for 

parallelization. Since there is no delay in computation among 

the homogeneous CPU processors, PNGEPMP achieves an 

impressive speedup in computation compared with 

ADPGEPEDA. However, PNGEPMP only focuses on covering 

more points in the search space by calculating the best fitness 

value generated from part of a chromosome, which does not 

represent the behavior of the whole chromosome. As a result, 

the accumulation of genetic information is not properly 

maintained in PNGEPMP.  

Summarising, the aforementioned parallel implementations 

only focus on parallelization of the computation of GEP, but do 

not follow closely the generation nature of GEP leading to 

inefficiency in evolution. Furthermore, to make a parallel GEP 

scalable in dealing with potential big data, data engineering 

techniques such as segmentation should also be considered.  

 

III. GEP SCHEMA AND COMPUTATION 

In this section, we present three guiding principles to 

elaborate the computation nature of GEP. First we briefly 

describe how the genotype is translated into the phenotype in 

GEP and how the selection is conducted. 

 

A. Genotype-Phenotype Translation  

GEP combines a linear structured genotype chromosome 

with a phenotype Expression Tree (ET) [1] as shown in Fig.1. 

In this example the targeted problem has 4 input parameters (a, 

b, c, d) and 3 mathematic function operators { ′ + ′ , ′ − ′ , ′ ∗
′ }. The chromosome has only one gene which is composed of 

a head and a tail. The elements of the head are selected 

randomly from both the input parameters and the mathematic 

function operators. The elements of the tail are selected 

randomly only from the input parameters.  

The number of the elements of a gene is fixed which can be 

defined by user. The relation between the length of the head and 

the length of the tail can be calculated as  

 

𝑇𝑎𝑖𝑙 = 𝐻𝑒𝑎𝑑 ∗ (𝑛— 1) + 1   (1) 

 

 where n is the maximum number of arguments that a 

function operator requires. 

The chromosome combines the input parameters and 

function operators during the evolutionary process. The ET is 

used to express the correlations among the input parameters. In 

this example, a candidate correlation among these parameters is 

represented with a combination of the function operators, i.e. 

( a +  b ∗  ( ( b –  c )  ∗  a ) ). The translation from genotype to 

phenotype in GEP is conducted in the following steps: 

 

(1) The element in the chromosome containing the function of 

+ is selected to build the root of ET.   

(2) The input parameter a and the function * are selected to 

be placed on Level_1 as the leaf nodes of the function of 

+ in the ET.  

(3) For the function of * in Level_1, another two elements 

(input parameter b and function *) are selected to be 

placed on Level_2 as the leaf nodes of the Level_1 function 

of * in the ET. 

(4) The translation process continues until the ET is fully filled 

with the input parameters. 

 
Fig.1.  An example of translation from a chromosome to ET. 

 

It is noted that not all the elements in the tail are involved in 

the translation process which is a typical feature of GEP (i.e. 

open reading frame [1]). Based on their fitness values, 

chromosomes in GEP are selected proportionally in evolving 

into the next generation. 

 

B. GEP Computation Analysis 

Following the GEP schema theory proposed in [23], the 

computation time of GEP in evolution consists of two parts. 

One part is related to the search space starting from a 

chromosome of the initial generation to the best chromosome 

of the last generation. The other part in computation is related 
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to the size of an input data set. The total execution time 𝑇 of a 

GEP evolutionary process can be calculated as 

 

𝑇 = (𝑇𝑒×𝑇𝑑)×𝑁𝐺  (2) 

     where 

• 𝑇𝑒 is the time to go through the search space in one 

generation. 

• 𝑇𝑑 is the time to process an input data set.  

• 𝑁𝐺 is the number of generations. 

 

The evolution of GEP is actually a process in which some 

segments of a chromosome are found useful and linked together 

to build the best chromosome. Considering the performance of 

the chromosomes that have similar genetic characteristics in the 

current generation, the schema theory [23] estimates the 

number of the chromosomes with such characteristics in the 

next generation. A schema is defined as a segment of a 

chromosome and maintains a certain amount of genetic 

information. In turn, a chromosome consists of a number of 

schemata representing all the possible solutions in a search 

space. The search space is created with the feature dimensions 

of an input data set and a chromosome which provides a 

structure to maintain the feature dimensions in the coordinate 

space.  

The search space will be traversed during the evolutionary 

process to generate a number of schemata which are linked 

within a chromosome. The genetic information which is learned 

from the input data set is also accumulated by linking the 

schemata. At the end of the evolutionary process, the best 

chromosome which consists of the linked schemata is generated 

to represent the final solution to a targeted problem. 

Based on the above analysis of the schema theory, we now 

propose three guiding principles to elaborate the computation 

nature of GEP evolution. 

 

Guiding Principle 1: To efficiently accumulate the genetic 

information, the chromosomes of the same generation must be 

processed together in one evolutionary iteration. 

 

Supporting Arguments: As indicated in the GEP schema 

theory, the evolutionary process is an accumulation of genetic 

information which is maintained in a chromosome. Schema is a 

segment of a chromosome which contains genetic information 

useful for a solution. The evolutionary process that a schema is 

propagated into the next generation can be represented by  

 

𝐸[𝑀(𝐻, 𝑡 + 1)] = 𝑀×𝑃𝑅(𝐻, 𝑡)×𝑃𝐺𝑀(𝐻, 𝑡)   (3) 

where 

• 𝐻 is a schema. 

• 𝑡 is the number of generations. 

• 𝑀 is the number of chromosomes in a generation.  

• 𝑀(𝐻, 𝑡 + 1) is the number of chromosomes matching 

the schema 𝐻 in the generation of 𝑡 + 1. 

• 𝐸[𝑀(𝐻, 𝑡 + 1)] is an estimation of  𝑀(𝐻, 𝑡 + 1). 

• 𝑃𝑅(𝐻, 𝑡)  is the probability of a chromosome that 

matches 𝐻 and is selected for Replication taking into 

account all the chromosomes in the generation 𝑡. 

• 𝑃𝐺𝑀(𝐻, 𝑡) is the probability that the schema 𝐻 is still 

valid after the genetic modification process taking into 

account all the chromosomes in the generation 𝑡. 

• 𝑀×𝑃𝑅(𝐻, 𝑡)×𝑃𝐺𝑀(𝐻, 𝑡)  is a theoretical number of 

chromosomes matching the schema 𝐻  in the 

generation of  𝑡 + 1. 

 

The evolution progresses with an increasing number of 

chromosomes that match the schema 𝐻 from one generation to 

the next generation. 𝑃𝑅(𝐻, 𝑡)  relies on the genetic operations 

which are performed on the chromosomes. A genetic operation 

is performed on all the chromosomes of the same generation 

with an aim to maximize the exchange of genetic information 

among these chromosomes. 𝑃𝑅(𝐻, 𝑡) can be calculated by 

 

𝑃𝑅(𝐻, 𝑡) = 𝑀(𝐻, 𝑡)×
𝑓̅(𝐻,𝑡)

𝑀×𝑓(𝑡)
    (4) 

where 

• 𝑀(𝐻, 𝑡)is the number of the chromosomes matching 

H in the generation of 𝑡. 

• 𝑓(̅𝐻, 𝑡) is the average fitness value of the 

chromosomes matching 𝐻 in the generation of 𝑡. 

• 𝑓(̅𝑡) is the average fitness value of all the 

chromosomes in the generation of 𝑡. 

 

Let 𝑃𝑅
′(𝐻, 𝑡) represent the probability of a chromosome that 

matches 𝐻 and is selected for Replication taking into account 

only a group of the chromosomes in a generation. We have 

𝑃𝑅
′(𝐻, 𝑡) = ∑ (𝑃𝑅𝑖

(𝐻, 𝑡)×
𝑚𝑖

𝑀
)

𝑛

𝑖=1

 

= ∑ (𝑚𝑖(𝐻, 𝑡)×
𝑓𝑖̅(𝐻, 𝑡)

𝑚𝑖×𝑓𝑖(𝑡)
×

𝑚𝑖

𝑀
)

𝑛

𝑖=1

 

= ∑ (
𝐹𝑖(𝐻, 𝑡)

𝐹𝑖(𝑡)
×

𝑚𝑖

𝑀
)

𝑛

𝑖=1

 

≤ ∑
𝐹𝑖(𝐻, 𝑡)

𝐹𝑖(𝑡)
×

𝑀

𝑀

𝑛

𝑖=1

= ∑
𝐹𝑖(𝐻, 𝑡)

𝐹𝑖(𝑡)

𝑛

𝑖=1

 

≤ 𝑀(𝐻, 𝑡)×
𝑓(̅𝐻, 𝑡)

𝑀×𝑓(𝑡)
 

   (5)  

where 

• 𝑃𝑅𝑖
(𝐻, 𝑡) is the probability of a chromosome matching 

𝐻  that is selected from the 𝑖𝑡ℎ  group of the 

chromosomes in the generation of 𝑡. 

• 𝑛 is the number of groups of the chromosomes in the 

generation of 𝑡. 

• 𝑚𝑖 is the number of chromosomes in the 𝑖𝑡ℎ group.  

• 𝐹𝑖(𝐻, 𝑡)  is the sum of the fitness values of the 

chromosomes matching 𝐻  in the 𝑖𝑡ℎ  group of the 

generation of 𝑡. 

• 𝐹𝑖(𝑡)  is the sum of the fitness values of all the 

chromosomes in the 𝑖𝑡ℎ group of the generation of 𝑡. 
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Considering (4) and (5), we have 

  

    𝑃𝑅
′(𝐻, 𝑡) ≤ 𝑃𝑅(𝐻, 𝑡)                   (6) 

 

We denote 𝑃𝐺𝑀
′(𝐻, 𝑡) as the probability that the schema 𝐻 is 

still valid after the genetic modification process considering 

only a group of the chromosomes in a generation. Following the 

deduction process of (5), we have 

 

𝑃𝐺𝑀
′(𝐻, 𝑡) ≤ 𝑃𝐺𝑀(𝐻, 𝑡)    (7) 

 

Let 𝐸[𝑀(𝐻, 𝑡 + 1)]′ represent an estimation of the number 

of chromosomes that match the schema 𝐻  considering only a 

group of chromosomes in the generation of 𝑡. Based on (6) and 

(7), we have  

 

𝐸[𝑀[𝐻, 𝑡 + 1]] ≥ 𝐸[𝑀[𝐻, 𝑡 + 1]]
′
   (8) 

 

which indicates that a group of chromosomes matching 

schema 𝐻  in a generation would lead to an evolutionary 

progress not faster than the case when all the chromosomes in 

the same generation are processed together.  

 

Guiding Principle 2: A smaller size of an input data set leads 

to a faster evolutionary process of GEP. 

 

Supporting Argument: The size of an input data set has an 

impact on the evolutionary progress of GEP. As indicated in 

(2), the time in processing an input data set (i.e. 𝑇𝑑) depends on 

the size of the input data which can be computed as 

 

𝑇𝑑 = ∑ (∑ (𝑇𝑒𝑖
×𝑁𝑑)

𝑁𝑒
𝑖=1 )

𝑗

𝐺
𝑗=1   (9) 

where 

• 𝑁𝑒 is the number of elements in a chromosome. 

• 𝐺  is the number of chromosomes in the current 

generation. 

• 𝑇𝑒𝑖
 is the time needed to process the 𝑖𝑡ℎ element of a 

chromosome corresponding to a data point in the input 

data set. 

• 𝑁𝑑 is the number of data points in the input data set. 

 

We denote 𝑇𝑑
′ as the execution time to process a data chunk 

which is smaller than the original input data set. 𝑇𝑑
′  can be 

computed as 

 

𝑇𝑑
′  = ∑ (∑ (𝑇𝑒𝑖

×𝑁𝑑
′ )

𝑁𝑒
𝑖=1 )

𝑗

𝐺
𝑗=1   (10) 

 

where 𝑁𝑑
′  is the number of data points in a data chunk.  

Based on (9) and (10), the execution time difference between 

the original input data set and a segmented data chunk can be 

computed as 

 

       𝑇𝑑 − 𝑇𝑑
′    = ∑ (∑(𝑇𝑒𝑖

×𝑁𝑑)

𝑁𝑒

𝑖=1

)

𝑗

𝐺

𝑗=1

− ∑ (∑(𝑇𝑒𝑖
×𝑁𝑑

′ )

𝑁𝑒

𝑖=1

)

𝑗

𝐺

𝑗=1

      

                                 = ∑ (∑ ((𝑇𝑒𝑖
×𝑁𝑑) − (𝑇𝑒𝑖

×𝑁𝑑
′ ))

𝑁𝑒

𝑖=1

)

𝑗

𝐺

𝑗=1

= ∑ (∑ (𝑇𝑒𝑖
× (𝑁𝑑 − 𝑁𝑑

′  ))

𝑁𝑒

𝑖=1

)

𝑗

> 0

𝐺

𝑗=1

    

                      (11) 

 

Guiding Principle 3: To achieve a fair selection of the 

chromosomes, an input data set must be segmented into equally 

sized chunks. 

 

Supporting Argument: The evolutionary process 

progresses with an increasing number of chromosomes 

matching the schema 𝐻 in each generation.   

 

Let 

• 𝐹 be the fitness function representing the performance 

of a chromosome in a generation. 

• 𝑑𝑖 be the size of the 𝑖𝑡ℎ data chunk. 

• 𝑐 be a chromosome. 

• 𝑛 be the number of chromosomes matching a schema 

𝐻. 

• 𝐺  is the number of chromosomes in the current 

generation. 

 

Considering (5), it can be observed that 𝑃𝑅(𝐻, 𝑡) depends on 

both 𝑓(̅𝐻, 𝑡) and 𝑓(𝑡) which can be computed by 

 

𝑓(̅𝐻, 𝑡) =
∑   𝐹(𝑐, 𝑑𝑖)𝑛

𝑖=0

𝑛
    (12) 

 

𝑓(𝑡) =
∑ 𝐹(𝑐, 𝑑𝑖)𝐺

𝑖=0

𝐺
   (13) 

 

As a result, the probability that a chromosome is selected for 

evolution depends on the size of the data chunk that the 

chromosome processes. To ensure a fair selection, each 

chromosome is processed with data chunks of the same size 

which leads to an efficient evolution. 

 

IV. DATA ENGINEERING IN GEP  

Based on the proposed three guiding principles in Section III, 

we present a data engineered GEP to speed up computation in 

evolution. 

 

A. Segmentation  

Segmentation is employed to segment the original input data 

set into a number of smaller data chunks of an equal size. The 

size of a data chunk is determined by a pre-defined 

segmentation ratio. A data chunk consists of a number of data 

samples. Two segmentation approaches are employed which 

are random selection and cutting in sequence. Following the 

approach presented in [33] which provides a good sampling 

performance in data coverage, random selection is developed to 
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select data samples from the original input data set and generate 

a data chunk. Each chromosome in a generation is processed 

with the same data chunk during the evolution of GEP. Cutting 

in sequence is implemented to cut the original input data set into 

a number of data chunks of an equal size in sequence. The order 

of the data samples in the data chunks remains the same as they 

appear in the original data set. While random selection targets 

at data samples without a strong correlation, the cutting in 

sequence segmentation scheme considers the correlations 

among the data samples of a data chunk. 

 

B. Overlapping 

   While segmentation reduces the computation complexity of 

GEP, processing individual data chunks instead of the whole 

data set normally degrades the accuracy level of GEP [1]. This 

is especially true when the data samples have strong 

correlations. To minimize the accuracy degradation of GEP in 

data segmentation, an overlapping scheme is developed which 

takes into account the correlations among the data samples. 

Algorithm 1 presents the overlapping scheme implemented in 

the data engineered GEP. 

 

Input: two data chunks (A, B) without overlapping; 

Output: two overlapped data chunks (A, B);  
 

1:  Set an overlapping ratio; 

2:  Calculate the number of samples to be overlapped; 

3:  FOR x=1 TO number of samples DO  

4:    Take a sample from the overlapped partition in data chunk A; 

5:    Overwrite the sample in the overlapped partition of data chunk B; 

6:    x++; 

7:  ENDFOR   

8:  RETURN data chunks A and B;
 

 

Algorithm 1:  Overlapping implementation. 

 

C. GEP Implementation 

Considering segmentation and overlapping, the data 

engineered GEP is implemented as shown in Algorithm 2. The 

GEP takes an input data set, and generates a mathematical 

expression which represents the correlations of the input data 

parameters. The fitness evaluator of Line 9 assesses the 

performance of each chromosome in a generation following the 

classical fitness function proposed in [1]. This fitness evaluator 

has two versions, one is designed for the random selection 

segmentation scheme without overlapping, whereas the other is 

designed for the cutting in sequence segmentation scheme with 

overlapping. In the case of random selection, the quality of a 

chromosome is assessed considering the best local fitness value.  

However, the assessment in the case of cutting in sequence 

follows the way as shown in Algorithm 3. In this case, the 

quality of a chromosome is assessed based on its global fitness 

value which is an average of the local fitness values of the 

chromosome when processing all the data chunks as shown in 

Lines 6-12. This helps prevent the GEP from trapping in a local 

optimum. 

Input: A data set; 

Output: A mathematical expression;  
 

1:   Segment the input data set into N data chunks 

2:   Generate N overlapped data chunks  

3:   Initialize the first generation of the population with more than N   

      chromosomes; 

4:   best_chromosome = chromosome(1); 

5:   best_fitness_value = 0; 

6:   WHILE  i< termination generation number DO 

7:      FOR  x=1 TO size of the current population DO 

8:          Translate chromosome(x) into an expression tree(x); 

9:          global_fitness_value(x) =fitness_evaluator(expression_tree(x), N   

             data_chunks); 

10:        IF global_fitness_value(x)=the number of samples in  

             data_chunk(x) THEN 

11:              best_chromosome = chromosome(x) GOTO 21; 

12:        ELSE IF global_fitness_value(x) > best_fitness_value THEN 

13:               best_chromosome = chromosome(x); 

14:               best_fitness_value = global_fitness_value(x); 

15:        ENDIF 

16:        x++; 

17:     ENDFOR 

18:     Generate the population of the next generation; 

19:     i++; 

20:  ENDWHILE 

21:  RETURN best_chromosome;
 

 

Algorithm 2:  GEP implementation. 

 

Input: N data chunks and an expression_tree(x); 

Output: The fitness value of a given chromosome; 
 

1:      data_chunk_no = x mod N;  

2:      current_data_chunk = data_chunk(data_chunk_no); 

3:      local_fitness_value = fitness(expression(x), current_data_chunk);  

4:      fitness_value = local_fitness_value; 

5:      IF local_fitness_value > best_fitness_value THEN 

6:          FOR y=1 TO the number of N DO 

7:            current_data_chunk = data_chunk(y);  

8:            local_fitness_value=fitness(expression(x), current_data_chunk); 

9:            accumulation = accumulation + local_fitness_value;         

10:        ENDFOR 

11:        average_fitness_value = accumulation / N;  

12:        fitness_value = average_fitness_value; 

13:    ENDIF 

14:    RETURN fitness_value; 

 

Algorithm 3:  Fitness evaluator. 

 

D. GEP Parallelization 

The data engineered GEP presented in Section III-C is further 

parallelized with an aim to speed up the computation process 

when dealing with potential big data. The parallel GEP 

maintains the generation structure in such a way that it 

processes the chromosomes on a generation basis using a 

number of CPU cores simultaneously of which each CPU core 

has 2 threads. The multi-threaded OpenMP [36] is employed in 

the parallelization of the GEP calculating the fitness values of 

the chromosomes of a generation in parallel as shown in 

Algorithm 4. 
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Input: m CPU-threads, a population of chromosomes, N data chunks; 

Output: the fitness values of chromosome in a population; 
 

1:      remain_chromosome= size of the current population; 

2:      WHILE remain_chromosome>0 DO 

3:        FOR y=1 TO the number of m DO  

4:           index= remain_chromosome; 

5:          Assign CPU-Thread(y, chromosome (index)) //parallel execution 

6:          { 

7:               Translate chromosome(index) into an expression tree(index); 

8:               fitnese_value=fitness_evaluator(expression_tree(index), N  

                  data_chunks); 

9:               global_fitnese_value = fitness_value; 

10:         } 

11:         remain_chromosome= remain_chromosome - 1; 

12:        ENDFOR     

13:      ENDWHILE 

14:      RETURN global_fitnese_value; 

  

Algorithm 4:  GEP parallelization. 

 

V. PERFORMANCE EVALUATION 

To evaluate the performance of the data engineered GEP, a 

number of experiments were conducted. This section analyzes 

the impact of segmentation, overlapping and parallelization on 

the performance of the GEP respectively. First it introduces the 

two data sets employed in the evaluation. 

 

A. Data Sets 

Two data sets were evaluated in the experimental tests which 

are detailed below.  

Power system data set. The total data set contains 9568 data 

points (measurements) collected from a Combined Cycle Power 

Plant over 6 years [34, 35]. It consists of 5000 measurements 

for training and 4568 measurements for testing. Following our 

previous work presented in [39], GEP generates a mathematical 

function which represents the correlations of the power related 

environmental factors for production prediction of the power 

plant.  

Particle physics data set. This data set [17, 18, 19] contains 

10,000 samples of events of which the first 5000 samples were 

used for training and the rest were used for testing. A sample 

can be classified into an event signal or a background noise. 

Each sample has 8 input factors. Similar to the processing on 

the power system data set, the data engineered GEP also 

generates a mathematical function representing the correlations 

of the input factors which is used for classification.  

It is worth noting that the use of two data sets in the 

evaluation has some considerations. On one hand, the time 

serial power system data set is not complex in that each data 

sample has a small number of factors with simple mathematical 

dependencies. However, the power data samples have a strong 

correlation among them. On the other hand, the particle physics 

data set is complex due to the large size of input factors of a 

data sample together with the mathematical or logical 

dependencies among these factors. Different from the power 

data set, the samples in the particle physics data set are not 

highly correlated. As a result, these two data sets with 

complementary features were selected for evaluating the 

performance of the data engineered GEP. 

 

B. GEP Parameter Settings 

The settings of data engineered GEP are listed in Table 1. 

The parameters were set using the classical values used for a 

traditional GEP. 

 
Table 1: GEP parameter settings. 

Parameters  Values 

Population size 100 

No. of genes in a 

chromosome 

1 

No. of generations Physics data 20000 

Power system data 10000 

 

Genetic 

modifications of 

GEP 

one-point recombination 

rate 

30% 

two-point 

recombination rate 

30% 

insertion sequence 

transposition rate 

10% 

inversion rate 10% 

mutation rate 0.44% 

 

One gene was employed for each chromosome to avoid the 

use of the connection function which might lead to an 

inefficient chromosome structure [1]. Considering the 

complexity of the two data sets, we set 20,000 generations for 

the physics data and 10,000 generations for the power data. 

To evaluate the performance of the data engineered GEP, an 

Intel Xenon Server was configured with two Intel E5-2697 V2 

CPU processors at 2.7GHz running Linux Ubuntu version 

14.04. Each of the two processors has 12 CPU cores and 

supports 24 threads with a shared memory space of 64GB. We 

conducted 10 runs for each test in the evaluation and observed 

that the execution times of the 10 runs were highly stable. For 

example, Table 2 shows the coefficient of variation values of 9 

tests on the two data sets which are in the range between 2.2% 

and 10.8%. As a result, an average value of 10 runs was taken 

for each test.  
 

Table 2: Coefficient of variation values (%). 
Number of CPU 

threads 
1 2 3 4 8 12 16 24 48 

Particle physics data 4.4 3.7 3.7 2.8 8.6 5.4 4.6 2.2 5.4 

Power system data 10.8 10.5 8.3 9.6 8.8 7.8 6.2 6.9 8.3 

 

C. Overlapping 

A number of tests were conducted to evaluate the 

performance of the GEP with the cutting in sequence 

overlapping scheme from the aspects of both accuracy and 

execution time. Fig.2 and Fig.3 show the results of the GEP on 

the two data sets with a segmentation ratio of 10%.  

From Fig.2 and Fig.3 it can be observed that accuracy level 

of the GEP goes up with an increasing overlapping ratio on the 

two data sets but at the cost of a higher execution time in 

computation. The overlapping ratios of 10%, 40%, 50% and 

80% were evaluated with a consideration that a low or high 

overlapping ratio would not balance well the trade-off between 
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the accuracy gain and execution time incurred. That was the 

reason why 50% was selected as the best overlapping ratio. 
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Fig.2. The impact of overlapping on particle physics data. 
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Fig.3. The impact of overlapping on power system data. 

 

D. Segmentation 

   The segmentation ratio determines the size of a data chunk 

that is assigned to each chromosome. Three segmentation ratios 

(i.e. 50%, 10% and 5%) were tested in the evaluation. Fig.4 

shows the impacts of the segmentation ratios on the execution 

time of the data engineered GEP on the two data sets 

respectively. 

Although the execution time of GEP decreases when the 

segmentation ratio goes down, a small segmentation ratio might 

lead to a low accuracy level in data processing. For example, 

when the segmentation ratio is 10%, the GEP produces an 

accuracy of 94.68% on the particle physics data and 99.06% on 

the power system data respectively. However, the case of using 

a segmentation ratio of 5% generates 93.942% on the particle 

physics data and 96.81% on the power system data in term of 

accuracy. As a result, a segmentation ratio of 10% was selected 

in the evaluation. 

 

E. Parallelization 

To evaluate the performance of the data engineered GEP in 

parallelization (denoted as P-GEP), we implemented an 

existing parallel GEP work (i.e. NICHE) [27] for comparison 

purpose. The number of CPU threads was varied from 1 to 48 

in the tests. Two versions of the P-GEP were implemented. The 

P-GEP-overlap adopts the cutting in sequence segmentation 

scheme with overlapping whereas the P-GEP-random adopts 

the random segmentation scheme without overlapping.  
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Fig.4. The impact of segmentation on the two data sets. 

 

It can be observed from Fig.5 and Fig.6 that the execution 

time of the P-GEP in processing both the particle physics data 

and the power system data decreases with an increasing number 

of CPU threads. The two versions of the P-GEP are 

significantly faster than the NICHE work. This is mainly due to 

the fact that P-GEP follows closely the generation structure of 

GEP leading to an efficient evolution. In addition, processing 

segmented data chunks further speeds up the computation. P-

GEP-random is even faster than P-GEP-overlap because the 

less computation overhead incurred in accessing the multiple 

data chunks. It is worth noting that the execution time of the P-

GEP in processing small data chunks does not decrease 

significantly when the number of CPU threads increases which 

reflects the fact that parallelization better suits big data 

processing which will be further discussed in Section VI.  
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Fig.5. The computation of the P-GEP on particle physics data. 
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Fig.6. The computation of the P-GEP on power system data. 
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Fig.7 and Fig.8 show the accuracy of P-GEP in comparison 

with the NICHE work in processing the two data sets. The 

accuracy of P-GEP-overlap is similar to that of NICHE in all 

the tests. On average, P-GEP-overlap produces an accuracy of 

94.57% on the particle physics data and 96.26% on the power 

system data whereas NICHE produces an accuracy of 94.62% 

and 94.83% respectively. It is worth noting that P-GEP-overlap 

is more accurate than P-GEP-random on the power system data 

due to the fact that overlapping well suits data sets such as the 

power system data with a strong correlation among data 

samples. The P-GEP-random produces the worst level of 

accuracy due to its random selection of data chunks without 

overlapping.  

 
Fig.7. The accuracy of the P-GEP on particle physics data. 

 

 
Fig.8. The accuracy of the P-GEP on power system data. 

 

Fig.9 and Fig.10 further show that parallelization better suits 

for processing potential big data. It can be observed from Fig.9 

that the execution time of P-GEP-overlap using a segmentation 

ratio of 50% decreases significantly when the number of CPU 

threads increases. However, P-GEP-overlap does not produce 

much difference in processing the particle physics data using a 

segmentation of 10% and 5% respectively. In the case of 

processing power system data as shown in Fig.10, the execution 

time of the parallel P-GEP-overlap using a segmentation ratio 

of 5% is even slower than the case of using a segmentation ratio 

of 10% when the numbers of CPU threads are 24 and 48 

respectively. This is because the segmented power system data 

chunks are small in volume which leads to a higher overhead in 

parallelization than the speedup achieved in computation.  
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GEP-overlap in processing particle physics data. 
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F. Statistical Analysis 

   To further compare the performance of the data engineered 

GEP with that of the NICHE work, we employed 48 CPU 

threads and conducted 50 runs in total on the two data sets 

respectively. The execution times in running the two algorithms 

follow a normal distribution as can be observed from Fig.11.  
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Fig.11. The distributions of the execution times of the P-GEP and 

NICHE in processing the two data sets. 
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We further performed normality test on the execution times of 

the two algorithms using the Shaprio-Wilk test [46] which 

handles well with a small number of data samples. The W values 

of the Shaprio-Wilk tests as shown in Table 3 confirm the 

observed normal distributions as shown in Fig.11.  

 
          Table 3: The results of Shapiro-Wilk test. 

Samples W values 

NICHE (physics data) 0.920 

NICHE (power data) 0.958 

P-GEP (physics data) 0.988 

P-GEP (power data) 0.957 

 

Therefore, we employed t-test [45] to compare P-GEP with 

NICHE on the execution times which follow a normal 

distribution and the comparison results are shown in Table 4. It 

can be observed that the data engineered GEP with overlapping 

is faster than NICHE on both data sets at a significance level 

higher than 99.9%. We further observe that the accuracy of the 

data engineered GEP is slightly higher and more stable than that 

of NICHE. This is mainly due to the fact that the data 

engineered GEP considers the global fitness of chromosomes 

rather than their local values. 

 

Table 4: The results of t-test. 
 Execution Time (s) Accuracy (%) 

mean 

 

t-value significance 

level (%) 

mean 

 

standard 

deviation 

NICHE 

(physics data) 
3326.74 

 

108.5 

 

99.99 

94.49 0.622 

P-GEP (physics 

data) 906.69 94.51 0.670 

NICHE (power 

data) 
1625.99 

 

4.506 

 

99.99 

96.65 8.685 

P-GEP  

(power data) 515.47 96.81 3.860 

 

VI. GEP COMPUTATION SCALABILITY ANALYSIS 

   To further investigate the computation scalability of the data 

engineered GEP in dealing with potential big data using a large 

number of CPU threads, we developed its computation model 

based on the experimental results presented in Section V. In this 

section, we present the computation model and analyze the 

computation scalability of the data engineered GEP.  

 

A. GEP Computation Model 

Following our previous work [39] we developed a 

computation model of the data engineered GEP on the two data 

sets respectively, which represents the correlations between the 

input parameters (number of CPU threads 𝑥0 , data size 𝑥1 , 

segmentation ratio 𝑥2) and the output (execution time).  

The computation model of the data engineered GEP for the 

particle physics data set can be represented by  

 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 

 

[
−49.6019773651

𝑆𝑖𝑛(𝑥0)
∗ 𝑆𝑖𝑛(𝑥1)] + 2 ∗ (

𝑆𝑞𝑢𝑎𝑟𝑒(𝑥0)

𝑆𝑞𝑟𝑡(𝑥1)
) + 𝑆𝑞𝑢𝑎𝑟𝑒(25.013766624) 

+𝑆𝑞𝑟𝑡 (
𝑃𝑜𝑤𝑒𝑟(20.9463112056,4)

𝑆𝑞𝑟𝑡(𝑥1)
)                                   

(14) 

 

This is mined from the experimental results obtained using 

both 5% and 50% segmentation ratios on the physics data. 

These two ratios generated a large gap between the two result 

sets which leads to a highly accurate computation model in 

dealing with data samples with a large number of factors.  

For the power system data, we employed the experimental 

results obtained using both 5% and 10% segmentation ratios to 

mine the computation model of data engineered GEP which can 

be represented by 

 

 
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 

𝑃𝑜𝑤𝑒𝑟(𝑆𝑞𝑟𝑡(𝑥1 − 𝑇𝐴𝑁(𝑥2)), 3) + ((
𝑥0−𝑥1

𝑆𝑞𝑟𝑡(𝑥0)
) ∗ (𝑥0 − 𝑥2)) +

𝐶𝑜𝑠(𝐿𝑜𝑔(𝑥1)) ∗ (𝑆𝑞𝑢𝑎𝑟𝑒(𝑥0)) +𝐶𝑜𝑠(𝑃𝑜𝑤𝑒𝑟(𝑥1, −401043.774094)) ∗

[𝑆𝑞𝑢𝑎𝑟𝑒(𝑥0)] − (𝑇𝑎𝑛 (𝐿𝑜𝑔 [𝑆𝑞𝑢𝑎𝑟𝑒 (
80595.3126401

𝑥1
)]) 

+𝑆𝑞𝑢𝑎𝑟𝑒(𝐿𝑜𝑔(𝑆𝑞𝑢𝑎𝑟𝑒 [
−409114.183858

𝑥1
]) 

+𝑆𝑞𝑢𝑎𝑟𝑒 (𝐿𝑜𝑔 (𝑆𝑞𝑢𝑎𝑟𝑒 [
−22415.3897725

𝑥1

])) ∗
𝑥2

100
∗

𝑥0

80.6
 

∗ (𝑃𝑜𝑤𝑒𝑟 (1 + 0.6 ∗
1

𝑥0

, 𝑥0 − 1) − 𝑃𝑜𝑤𝑒𝑟(1.0093, 𝑥0)) 

 (15) 

 

The use of these two ratios on the power system data with a 

small gap aimed to reflect the fine-grained behaviors of the 

computation model in dealing with data samples with a small 

number of factors. 

 

B. Validation of GEP Computation Model 

We employed the two data sets of the original sizes to 

generate the computation model to estimate the execution times 

of the data engineered GEP running on a varied number of CPU 

threads. To validate the computation model of the data 

engineered GEP, we compared the estimated values with the 

actual execution times in processing the two data sets but with 

doubled sizes. Fig.12 and Fig.13 show the performance of the 

computation model on the two data sets respectively using a 

segmentation ratio of 50%. 
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Fig.12. Computation model validation on particle physics data. 
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Fig.13. Computation model validation on power system data. 

 

The accuracy of the computation model can be computed by 

 

Accuracy =100% − (
|𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡−𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡|

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡
) ×100%  (16) 

 

Table 4 and Table 5 show that the computation model 

achieves an average accuracy level of 96.05% on the particle 

physics data and 95.14% on the power system data respectively. 
 

Table 4. Computation model validation on particle physics data. 
Number 

of threads 
4 8 12 16 24 32 40 48 

Accuracy 

level (%) 
88.88 93.87 97.17 97.12 98.41 97.46 95.80 99.66 

Average 

(%) 
96.05 

 

Table 5. Computation model validation on power system data. 
Number  

of threads 
4 8 12 16 24 32 40 48 

Accuracy 

level (%) 99.40 91.84 91.93 93.44 94.02 98.42 94.31 94.78 

Average 

(%) 
95.14 

 

C. Computation Scalability  

We applied the computation model to evaluate the scalability 

of the data engineered GEP in dealing with big data scenarios. 

Fig.14 and Fig.15 show that for the two data sets, the execution 

time of the data engineered GEP increases slowly with an 

increasing size of input data up to 100TB, using 10,000 CPU 

threads.   
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Fig.14. Computation scalability on particle physics data. 
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Fig.15. Computation scalability on power system data. 

 

   We further evaluated the computation scalability of the data 

engineered GEP in dealing with varied numbers of CPU 

threads. Fig.16 shows that the execution time of the data 

engineered GEP decrease when processing 1TB particle 

physics data with an increasing number of CPU threads up to 

1000. It can be observed that the speedup of parallelization is 

high when the number of CPUs is less than 100 due to the fact 

that CPU threads themselves can also cause an additional 

computation overhead.  
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Fig.16. Parallelization on particle physics data. 

 

Data samples in the power system data set have a simpler 

structure than the data samples in the particle physics data set. 

As a result, the performance gain achieved via parallelization in 

processing one unit of power system data using a number of 

CPU threads is less than the case of processing one unit of 

particle physics data. When the structure of a data set like the 

power system data is simple, the performance gain of 

parallelization can be easily offset by the computation overhead 

incurred in maintaining these CPU threads. This can be 

observed from Fig.17 showing that the execution time of the 

data engineered GEP decreases sharply with an increasing 

number of CPU threads up to 23. The data engineered GEP 

reaches the lowest estimated execution time of 5.66E+013 

seconds when 23 CPU threads participate in the computation. 

After this point, the execution time goes up due to a high ratio 

of the overhead incurred in maintaining these CPU threads to 

the performance gain achieved through parallelization. The 

fluctuations in performance gain via parallelization can be 
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further observed in Fig.18 where a segmentation ratio of 5% 

was used on the two original data sets. 

 

0 100 200 300 400 500 600 700 800 900 1000 1100

0.00E+000

2.00E+017

4.00E+017

6.00E+017

8.00E+017

1.00E+018

1.20E+018

1.40E+018

1.60E+018

1.80E+018

2.00E+018

2.20E+018

2.40E+018

 

 

E
xe

cu
tio

n 
tim

e 
(s

)

Number of threads  
Fig.17. Parallelization on power system data. 
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Fig.18. Fluctuations in performance gain via parallelization. 

 

Overall the data engineered GEP achieves a high scalability 

in dealing with potential big data using a large number of CPU 

threads. 

VII. CONCLUSION AND FUTURE WORK 

In this research, we have presented an efficient data 

engineered GEP solution in dealing with potential big data. It 

builds on the proposed three guiding principles which 

necessitate the considerations on the generation structure of 

chromosomes, the size of input data and the segmentation of 

data chunks when speeding up the evolution process of GEP. 

Experimental results confirmed that the data engineered GEP 

which follows closely the generation structure of chromosomes 

in evolution and considers the size of input data did speed up 

the evolution process significantly without loss of accuracy in 

data correlation mining. The computation model further 

showed that the data engineered GEP is highly scalable in 

dealing with potential big data.  

It should be pointed out that for data sets with a high volume 

in size but a low complexity in data structure, purely increasing 

the number of CPU threads could lead to slow executions due 

to the fact that the overhead incurred in maintaining these CPU 

threads is higher than the performance gain to be achieved 

through parallelization. 

The data engineered GEP can further benefit from the 

schema theory proposed in our previous work [23] which 

introduces the concept of building blocks in GEP evolution. A 

GEP building block is a segment shared by high quality 

chromosomes in a population which can be discovered during 

the evolutionary process. Building blocks can be used to replace 

the corresponding segments of low quality chromosomes for 

computation speedup in evolution. Therefore, a future work 

will research how the data engineered GEP can be integrated 

with building blocks. 
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