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Abstract—Energy efficiency is a crucial challenge in cluster-
based capillary networks for Internet of Things (IoT) systems,
where the cluster heads (CHs) selection has great impact on the
network performance. It is an optimization problem to find the
optimum number of CHs as well as which devices are selected as
CHs. In this paper, we formulate the clustering problem into the
CHs selection procedure with the aim of maximizing the average
network lifetime in every round. In particular, we propose a
novel CHs selection scheme based on QPSO and investigate
how effective it is to prolong network lifetime and reserve the
overall battery capacity. The simulation results prove that the
proposed QPSO outperforms other evolutionary algorithms and
can improve the network lifetime by almost 10%.

Index Terms—IoT systems, cluster, QPSO, energy efficiency,
network lifetime, battery capacity.

I. INTRODUCTION

The Internet of Things (IoT) system is viewed to have

potential to improve the operational efficiency of many indus-

trial applications [1]. The capillary networks were introduced

to improve reliable and energy efficient communications for

the IoT systems. The capillary networks are specific local

networks which consist of a group of wireless devices to

be connected to other communication infrastructure such as

mobile networks [2]. Although capillary networks can provide

reliable connectivity to devices within a specific local area,

energy efficiency of the long-haul transmission is a main

challenging issue.

The clustering protocol was then proposed as an energy

efficient cross-layering technique to solve the aforementioned

issue, which organizes devices into several clusters to reduce

both long-haul distance and the data volume [3]. In particular,

a device is selected as cluster head (CH) in each cluster, which

consequently collects data from all cluster members (CMs),

eliminates the correlated data and transmits the aggregated

data to the sink via communication infrastructure networks.

From an optimization perspective, clustering is a kind

of NP-hard grouping problem [4]. Particularly, evolutionary

algorithms are metaheuristics widely believed to be effective

on NP-hard problems, being able to provide near-optimal solu-

tions to such problems in a reasonable time [5]. Evolutionary

algorithms such as [6] [7] [8] have been applied in centralized

clustering recently. In [6], the authors proposed an energy-

aware clustering for wireless sensor networks using particle

swarm optimization (PSO) algorithm which is implemented

at the base station, with the objective of simultaneously min-

imizing the intra-cluster distance and optimizing the energy

consumption of the networks. The simulation results suggest

that the performance of PSO-based algorithm outperforms

LEACH (Low-Energy Adaptive Clustering Hierarchy) [9].

In [7], the authors presented a dynamic clustering method with

multi-objectives that automatically determines the optimum

number of clusters in a network using binary particle swarm

optimization (BPSO). Simulation results demonstrate that the

proposed protocol can achieve an optimal number of clusters,

as well as prolong the network lifetime and increase the data

delivery at the base station. In [8], the authors proposed a

quantum genetic algorithm (QGA) based clustering protocol

to determine the CHs selection, aiming at the energy consump-

tion balance between CMs and CHs.

Quantum-inspired particle swarm optimization (QPSO)

combines the advantages of the quantum computing theory and

the evolutionary algorithm. Compared with PSO, QPSO adopts

novel rotation angle and quantum bit techniques so it has

the characteristics of strong searching capability, rapid conver-

gence, short-computing time, and small-population size [10].

In addition, the network lifetime is significantly affected by

the characteristics of selected CHs, e.g. the residual energy, the

long-haul distance and the total number of selected CHs [11],

which indicates that how to apply the evolutionary algorithms

to converge an optimal solution of the CHs selection problem

becomes a crucial challenge. This consideration motivated our

research work to investigate the ability of QPSO.

In this paper, the clustering problem is firstly formulated

into the CHs selection procedure with the aim of maximizing

average network lifetime. Then we apply QPSO in CHs selec-

tion and investigate how effective it is in prolonging network

lifetime as well as reserving the overall battery capacity among

the whole networks.

The rest of this paper is organized as follow. Section II in-

troduces the system model, the energy model and the problem

formulation. In Section III, we explain the QPSO algorithm



in detail and how to apply QPSO to obtain the optimal CHs

coalition with the objective of network lifetime longevity.

Simulation results are provided in Section IV, and conclusions

are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model
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Fig. 1. System model

The system model shown in Fig. 1 considers a capillary

networks for IoT systems with Ntotal power-constrained wire-

less devices: NCH CHs and NCM CMs, where Ntotal =
NCH + NCM . All devices are randomly distributed over the

capillary networks with following assumptions:

• All wireless devices are homogeneous and energy con-

strained.

• All wireless devices are aware of their geographical

locations and residual energies.

• All wireless devices are equipped with short-range local

area wireless radio, e.g. IEEE 802.15.4.

• All devices are capable of operating in data collection

and aggregation mode.

• A static capillary gateway is equipped with two radio

interfaces: the local area capillary radio to communicate

with the capillary networks and the cellular radio to

communicate with the IoT systems.

The transmission is operated in two phases of one round as

shown in Fig. 2: set-up phase and steady state phase. During

the set-up phase, the gateway executes the clustering algorithm

and informs every device with its role. The steady state phase

consists of several time frames. During one time frame, all

devices collect and transmit data in time division multiple

access (TDMA) scheduling. Denote the duration of one time

frame to be t∆ and number of time frames of the steady state

phase in one round to be Nframe. In general, compared with

the duration of the steady state phase, the duration of set-up

phase is much shorter, which can be omitted, therefore the

duration time of one round is Tround = t∆ ×Nframe.

Set-up Steady state Frame

Round 0 Round 1

............ 

Fig. 2. Transmission structure in cluster-based IoT system

B. Energy model

Assume the connection between CMs and CHs as well as

the connection between CHs and the gateway are all modelled

by the flat Rayleigh-fading channel. And the modulation

scheme is binary phase-shift keying (BPSK). Assume the data

packet is L bits for all devices. With these assumptions, when

a source device transmit data to a destination device, the trans-

mission energy consumption per bit Ēb can be approximated

as [12]

Ēb =
(4π)2MlNfN0d

κ

GTGRλ2Pb

, (1)

where d is the transmission distance, λ is the carrier wave-

length, κ is the path loss coefficient, Ml is the link margin,

Nf is the receiver noise figure, N0 is the single-sided thermal

noise power spectral density, GT and GR are the transmitter

and receiver antenna gain respectively, Pb is the required bit

error ratio (BER).

We adopt the energy consumption per bit of the source

device in [12], which is expressed as below

Ebt = (1 + α)Ēb +
Pct

Rb

, (2)

where α is a constant about the drain efficiency of radio

frequency (RF) power amplifier and the modulation, Pct is

the power consumption of transmission circuit and Rb is the

transmission bit rate.

On the other hand, when a destination device receives data

from a source device, the energy consumption is

Ebr =
Pcr

Rb

, (3)

where Pcr is the power consumption of receiver circuit.

C. Problem formulation

In this work, we focus on the intra-cluster and inter-cluster

energy consumption of data transmission in all rounds.

For every round, each CM transmits data to its CH based on

TDMA scheme in each cluster, thus the overall intra-cluster

energy consumption for the i-th cluster is,

Eintra(i) = L

ni
∑

j=1

Ebt(j) + niLEbr(i)

= L

ni
∑

j=1

[(1 + α)
(4π)2MlNfN0d

κ
j

GTGRλ2Pb

+
Pct

Rb

] +
niLPcr

Rb

,

(4)



where dj is the distance between CM j and CH i, and ni is

the CMs number of the i-th CH .

CHs are responsible for data aggregation. As referred

to [13], assume the data aggregation scheme is uniform

aggregation, and the aggregation factor is γagg .Then the packet

size after data aggregation of CH i in this phase is

Lagg(i) = γaggniL. (5)

The data aggregation energy consumption of CH i is

Eagg(i) = Lagg(i)Ēagg , (6)

where Ēagg is the energy consumption per bit in data aggre-

gation phase and depends on the algorithm complexity.

After data collection and aggregation, CHs transmit the

aggregated data to the capillary gateway, therefore, the inter-

cluster energy consumption of CH i is

Einter =

NCH
∑

i=1

Lagg(i)(Ebt(i) + Ebr)

=

NCH
∑

i=1

Lagg(i)[(1 + α)
(4π)2MlNfN0d

′κ
i

GTGRλ2Pb

+
Pct + Pcr

Rb

],

(7)

where d′i is the distance between CH i and the capillary

gateway.

Therefore, the overall network energy consumption can be

derived as

Enet = Einter +

NCH
∑

i=1

(Eintra(i) + Eagg(i)). (8)

Correspondingly, we can also obtain the energy consumption

of CM j denoted by E(j) in this round,

E(j) = L

[

(1 + α)
(4π)2MlNfN0d

κ
j

GTGRλ2Pb

+
Pct

Rb

]

. (9)

Similarly, the energy consumption of CH i denoted by E(i)
in this round is,

E(i) =L
Pcr

Rb

+ LaggĒagg

+ Lagg

[

(1 + α)
(4π)2MlNfN0d

′κ
i

GTGRλ2Pb

+
Pct

Rb

]

.
(10)

In addition, the capillary network lifetime is defined as the

duration from the deployment of the capillary network to the

time that the battery of the first device is fully drained [14]. In

this paper, we use average estimated average network lifetime

as the fitness value of the proposed algorithm. Denote the

residual energy of device n to be Er(n). Then the estimated

lifetime of device n which denoted by Tn is,

Tn =
Er(n)

E(n)
. (11)

The average estimated network lifetime T r
net in the round r is

T r
net =

Ntotal
∑

n=1

T r
n

Ntotal

. (12)

The research problem is to find the optimal CHs coalition

Λ = {CHr
1, · · · , CHr

NCH
} at each round in order to optimize

T r
net, which is expressed as

maximize
Λ

T r
net. (13)

III. DESCRIPTION AND ANALYSIS OF QPSO ALGORITHM

A. Quantum Particle Swarm Optimization

PSO is an evolutionary computing technique based on the

bird flocking principle. In PSO, a swarm consists of several

particles and each particle represents a candidate solution to

the optimization problem.

QPSO uses quantum coding mechanism to encode each

particle by a quantum bit. In [15], a quantum bit is defined

as a pair of composite numbers (α, β), where |α|2 + |β|2 = 1
and α > 0, β > 0. |α|2 gives the probability that the quantum

bit is found in ′0′ state and |β|2 gives the probability that the

quantum bit is found in ′1′ state. Then the quantum velocity

of the particle m at generation t is defined as

v
t
m =

[

αt
m1

βt
m1

αt
m2

βt
m2

· · ·
· · ·

αt
mR

βt
mR

]

, (14)

where m ∈ [1, 2, · · · , h], h is the number of particles and

R = Ncand which indicates the number of CH candidates

and will be further explained in Section III-B. Since βmn =
√

1− α2
mn, we can simplify Eq. (14) as

v
t
m = [ αt

m1 αt
m2 · · · αt

mR ]. (15)

The quantum particle position according to Eq. (15) can be

expressed as

xt
mn =

{

1 if δmn > (vtmn)
2

0 if δmn ≤ (vtmn)
2 , (16)

where δmn ∈ [0, 1] is a uniform random number. In this paper,

the quantum position indicates whether the device n is a CH

in particle m: xt
mn = 1 represents that device n in particle

m is a CH at generation t; otherwise, device n in particle m
is a CM at generation t. Therefore each particle in this paper

represents a candidate solution of a particular CHs coalition,

and the fitness value of each particle can then be obtained by

Eq. (12).

Denote the fitness value of particle m at generation t to be

f t
m , then the local individual optimum fitness value (the best

fitness value of particle m) fpbest
m and the corresponding local

individual optimum position pm is defined as below,

fpbest
m = max{f1

m, f2
m, · · · , f t

m}, (17)

pm = x
pbest
m . (18)



Similarly, the global optimum fitness value (the best fitness

value of all particles) fgbest and the corresponding global

optimum position pg is defined as below,

fgbest = max{fpbest
1 , · · · , fpbest

m , · · · , fpbest
h }, (19)

pg = pgbest. (20)

At generation t + 1, the quantum rotation angle θt+1
mn is

updated by

θt+1
mn = k1(pmn − xt

mn) + k2(pgn − xt
mn), (21)

where k1 and k2 are two positive learning factors of cogni-

tive and social acceleration factors, respectively. As referred

to [16], we set k1 = 1

5
ζ1 and k2 = 4

5
ζ2 where ζ1 and ζ2 are

Gaussian distributed random numbers with zero mean and unit

variance.

If θt+1
mn 6= 0, the updated velocity of quantum particle m at

t+ 1 generation is,

vt+1
mn = |vtmn × cos θt+1

mn −
√

1− (vtmn)
2 × sin θt+1

mn |. (22)

If θt+1
mn = 0 and r < c1, the updated velocity of quantum

particle m at t+ 1 generation is,

vt+1
mn =

√

1− (vtmn)
2
, (23)

where r is a uniform random number between 0 and 1, and

c1 is a constant which refers to the mutation probability, c1 ∈
[0, 1/R].

B. QPSO based CHs selection clustering algorithm

The CHs selection process based on QPSO is executed

by the capillary gateway and is summarized in Algorithm 2.

The clustering procedure is summarized in Algorithm 1. Note

that in order to ensure that the selected CHs are of sufficient

energy, CH candidates are selected beforehand. Denote the

CH candidates percentage to be PCH , then the number of

CH candidates is Ncand = PCH × Ntotal. Only first Ncand

devices with highest residual energy level among the scenario

are eligible to be CHs for this round. If the residual energy

of different nodes are the same, the long-haul distance is

considered, i.e. devices close to the gateway is more likely

to be selected as CH candidates.

IV. SIMULATION RESULTS

Assume 200 devices powered by AAA Carbon-zinc battery

(1.1V , 320mAh) [17] are randomly distributed located within

a square with 500m side length. The gateway is 250m away

from the closest device. The system parameters are given in

Table I.

In terms of battery energy conversion, We use following

battery capacity model [18] to convert the energy consumption

E(J) to Watt-hours E(Wh),

E(J) = Q(mAh)× V (v)× 3600

E(Wh) = Q(mAh)× V (v)

E(Wh) =
E(J)

3600
.

(24)

Algorithm 1 Clustering in capillary networks for IoT systems

1: while ∃n.Er(n) > 0 do

2: Set-up phase initialization. Every device reports its

location and residual energy to the gateway.

3: CHs candidates selection.

4: CHs selection. The CHs selection algorithm is ex-

plained in Algorithm 2.

5: Cluster formation. Each CH introduces itself to be a CH

by broadcasting a CH-JOIN message. Every non-CH

device choose the closest CH to form cluster according

to the received signal strength of CH-JOIN message.

6: Steady-state phase data transmission. The network per-

forms intra-cluster and inter-cluster data transmission in

every frame.

7: end while

Algorithm 2 QPSO-based CHs selection scheme

1: for each m ∈ [1, 2, · · · , h] do

2: for each n ∈ [1, 2, · · · ,Ncand] do

3: Set x1
mn by 0 or 1 randomly

4: Set v1mn = 1/
√
2

5: end for

6: Update f1
m by Eq. (12)

7: Set fpbest
m = f1

m

8: Set pm = x
1
m

9: end for

10: Update fgbest by Eq. (19)

11: Update pg by Eq. (20)

12: for each t ∈ [1, 2, · · · , Tmax − 1] do

13: for each m ∈ [1, 2, · · · , h] do

14: for each n ∈ [1, 2, · · · ,Ncand] do

15: Update θt+1
mn by Eq. (21)

16: Update vt+1
mn by Eq. (22) or Eq. (23)

17: Update xt+1
mn by Eq. (16)

18: end for

19: Update f t+1
m by Eq. (12)

20: if f t+1
m < fpbest

m then

21: Set fpbest
m = f t+1

m

22: Set pm = x
t+1
m

23: end if

24: end for

25: Update f t+1

gbest by Eq.(19)

26: if f t+1
gbest < fgbest then

27: Set fgbest = f t+1
gbest

28: Update pg by Eq. (20)

29: end if

30: end for

31: return pg as the optimum CHs coalition Λ

By Eq. (24), the initial battery capacity of all devices is 1268J
in energy and 0.35Wh in Watt-hours in the defined scenario.

In this work, we compare the proposed QPSO algorithm

with three evolutionary algorithms: PSO [6], BPSO [7] and

QGA [8].



TABLE I
SYSTEM PARAMETERS

Ml = 40dB Nf = 10dB N0 = −171dBm/Hz
κ = 2.5 GTGR = 5dBi λ = 0.12m

Pb = 10−3 α = 0.47 Rb = 10kbps
Pct = 98.2mW Pcr = 112.5mW L = 100bit

γagg = 0.5 Nframe = 24 PCH = 0.2
t∆ = 30min Eagg == 5nJ/bit

First, one of the main difficulties of applying an evolutionary

algorithm to a given problem is to decide an appropriate set

of parameter values [19]. In order to find the optimum particle

number and generation for the assumed scenario, we compare

in Fig. 3 the fitness value of different number of particles for

the proposed QPSO algorithm. Obviously, the fitness value

increases dramatically in the first 50 generations as all particles

are flying in the solution space moving towards the optimum

global fitness value. Then the fitness value converges to the

similar points because all particles have found global optimum

solution. Note that the fitness values of QPSO algorithm

with a different particle number remains constant after 200

generations. Most importantly, with the increase of particles

number from 30 to 100, the improvement of fitness value is

not significant. In addition, more particles means more time-

consuming computation in evolutionary algorithms. Therefore,

we set the optimum particles number to be 30 and generation

to be 200 for all the algorithms simulated in this paper.
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Fig. 3. Number of generations vs. fitness value

Fig. 4 depicts the fitness value of the four algorithms against

the number of generations. Similar to Fig. 3, all algorithms

can converge to the optimum fitness value with the increase

of generation. It is obvious that the proposed QPSO algorithm

can find the best cluster coalitions compared with other three

algorithms by the best fitness value in Eq. (12).

Moreover, in Fig. 5 we compare the overall residual battery

capacity of all devices among the scenario. It can be seen

that the proposed QPSO algorithm can prolong the network

lifetime compared with PSO, BPSO and QGA. In particular,

the overall residual battery capacity decreases significantly
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Fig. 4. Number of generations vs. fitness value

after 2000 hours, but QPSO outperforms other algorithms due

to optimum CHs selection and more evenly distributed energy

consumption.
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Fig. 5. Number of hours vs. overall residual battery capacity

Fig. 6 shows the number of alive nodes of the four algo-

rithms with respect to the number of hours. The first device

died after about 2000 hours for all algorithms, followed by

an increasing number of dead nodes from 2000 hours to 4500

hours. This is because the devices close to the gateway is

more likely to be selected as CHs and run out of energy

quicker, and the long-haul transmission requires more energy

consumption after the death of those devices. In addition,

almost all devices of PSO, BPSO and QGA enter dead status

at 5500 hours, however, the proposed QPSO algorithm can

prolong the network lifetime of the assumed scenario by

another 500 hours (about 10%).

Finally, we showed that the number of CHs of all algorithms

in Fig. 7. Similar to Fig. 6, the number of CHs decreases

with less alive nodes after 2000 hours. Although the QPSO

outperforms other algorithms in Fig. 4 - Fig. 6, the number of
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CHs selected by the proposed QPSO QPSO algorithm is not

the maximum at most time. This result indicates that higher

number of CHs is not necessary.
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V. CONCLUSIONS

In this paper, we investigate cluster structure design using

QPSO with the aim of network lifetime longevity in cluster-

based IoT systems. We show that the CHs selection plays

an important role in data forwarding. The QPSO algorithm

is proposed in order to select the optimum CHs coalition.

Simulation results show that the proposed QPSO scheme

outperforms PSO, BPSO and QGA algorithms in terms of

network lifetime by approximately 10%.
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