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Abstract With the number of satellite sensors and date centers being in-
creased continuously, it is becoming a trend to manage and process massive
remote sensing data from multiple distributed sources. However, the combi-
nation of multiple satellite data centers for massive remote sensing (RS) data
collaborative processing still faces many challenges. In order to reduce the huge
amounts of data migration and improve the efficiency of multi-datacenter col-
laborative process, this paper presents the infrastructures and services of the
data management as well as workflow management for massive remote sensing
data production. A dynamic data scheduling strategy was employed to reduce
the duplication of data request and data processing. And by combining the
remote sensing spatial metadata repositories and Gfarm grid file system, the
unified management of the raw data, intermediate products and final prod-
ucts were achieved in the co-processing. In addition, multi-level task order
repositories and workflow templates were used to construct the production
workflow automatically. With the help of specific heuristic scheduling rules,
the production tasks were executed quickly. Ultimately, the Multi-datacenter
Collaborative Process System (MDCPS) were implemented for large-scale re-
mote sensing data production based on the effective management of data and
workflow. As a consequence, the performance of MDCPS in experiments envi-
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ronment showed that those strategies could significantly enhance the efficiency
of co-processing across multiple data centers.

Keywords multi-datacenter infrastructure · remote sensing data processing ·
distributed computing · big data computing · data management · workflow
management

1 Introduction

In recent decades, with the rapid development of earth observing technol-
ogy, many countries and regions have generally established various satellite
platform and satellite data centers with the space observing capacity of the
multi-spectral [1], multi-angle [2], multi-temporal [3] and multi-spatial reso-
lution [4]. And these different types of satellite platforms have generated and
will continue to produce vast amounts of remote sensing data. These data will
be used to meet the requirements of specialized information extraction and
analysis. For example, the United States Earth Observing System Data and
Information System (EOSDIS) currently has 12 satellite data centers [5], and
its archive data [6] is about 7,000 unique datasets, and the total data amount
is over 7.5 PB. China RS Satellite Ground Station has four receiving station-
s which receive China Brazil Earth Resources Satellite (CBERS), HuanJing
(HJ) satellites, Land Satellite (Landsat), SPOT satellites and other data type-
s. The amount of their daily data is about 996 GB, and of their total annual
data is about 354TB [7].

Due to a number of factors’ limits, such as revisit period, coverage limit-
s, spectral channels etc., it is difficult for single-source satellite data to meet
the needs of large-scale integrated RS application. For example, the world-
wide production of the 1KM land surface temperature (LST) product needs 4
types of RS data from Advanced Very High Resolution Radiometer (AVHRR),
Moderate Resolution Imaging Spectroradiometer (MODIS), FengYun-3 (FY-
3) and Advanced Along-Track Scanning Radiometer (AATSR) [8]. Therefore,
the current multiple satellite data centers agencies should be combined togeth-
er to provide the services of multi-source RS data. And there is no doubt that
carrying out large-scale RS data processing and analysis to meet the demand
of different end users has become a popular development trend [9,10].

However, there are many problems to integrate multiple satellite remote
sensing data centers and build a distributed data processing system. Firstly,
a comprehensive remote sensing application requires massive RS data. Due to
the multi-source data distributed in different data centers, large-scale data mi-
gration could be generated easily. It will not only cause a high load of satellite
data centers, but also affect the efficiency of multi-datacenter collaborative
process because of the low data transmission efficiency. Secondly, there are
different data levels during the collaborative process, including the raw da-
ta, intermediate products and final products. The dependencies between data
and products are more complex. On one hand, different products may need the
same input data, if these data cannot be effectively managed, it would result
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in the duplication of some data processing, thus reduce the overall processing
efficiency of the system. On the other hand, RS data processing is very com-
plex, including pre-processing, post-processing and other complex processes.
For example, there are many differences between the processing tasks with d-
ifferent types of data. Additionally, the integrated remote sensing applications
often requires the system to automatically complete the bulk of data pro-
cessing tasks, which can automatically manage the complex process flow and
carrying out the relevant processing in a distributed scenarios. In summary,
the multi-level RS data management and complex processes flow management
are two key issues to build an efficient RS data collaborative processing system
based on multi-datacenter infrastructure.

In this paper, we present the design and implementation of a massive
remote sensing data production system based on the multiple satellite da-
ta centers infrastructure, the Multi-datacenter Cooperative Process System
(MDCPS). In order to solve the duplication problem of data request and data
processing, we adopt spatial metadata repositories and distributed grid file sys-
tem to build a distributed, dynamic remote sensing data caching system. We
build the remote sensing image processing repositories and multi-level task or-
ders repositories for decomposition and manage complex processing flow, and
composed some processing workflow templates and heuristic scheduling rules
to automatically match and schedule the specific complex processing. Finally,
we provide a use case of remote sensing production on several data centers, to
show the feasibility of MDCPS in processing multi-source, massive, distributed
remote sensing data.

The rest of this paper is organized as follows: Section 2 describes the related
work of distributed remote sensing data processing. Section 3 presents the
MDCPS environment and its infrastructures. Section 4 presents the design and
implementation of data management and workflow management in MDCPS,
Section 5 takes a specific remote sensing production process as an example to
evaluate the performance of data management and task scheduling in MDCPS.
Section 6 gives some further discussions to evaluate the MDCPS. Section 7
describes the conclusions and future work prospects.

2 Related Work

Spatial big data processing usually requires significant computational capabil-
ities. Several studies have attempted to apply parallel computing, distributed
computing and cloud computing to speed up the calculation process [32,36,
34,35]. In the area of RS data distributed processing, lots of grid-based dis-
tributed systems were built [11], such as Grid Processing on Demand (G-POD)
[12], DataGrid [13], InterGrid [14], MedioGrid [15], Earth Observing System
Data and Information System (EOSDIS) [16]. In these distributed data pro-
cessing systems, data management and workflow management are two impor-
tant components. For the distributed remote sensing data management, data
transmission [17] is often carried out by means of grid middleware, such as
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GridFTP [18]. In the aspect of data access and integration, multi-source data
are often exchanged in accordance with certain standards or the corresponding
conversion, for example, the data format of Committee on Earth Observation
Satellites, and the data standard of Open Geospatial Consortium (OGC) and
Geographic information/Geomatics ISO/TC 211 [19,20]. In the area of replicas
management, Globus Tookits middleware are often used for data replication
and distribution [21]. Gfarm Grid File System [22], as a distributed file sys-
tem, designed to support the data-intensive calculation based on wide area
network (WAN), combines each local file system to be a global virtual file
system through the metadata server MDS and distributed I/O nodes, and im-
proves the read and write bandwidth for distributed replicas. L. Wang, et al.
[23] have designed and implemented a distributed multi-datacenter system G-
Hadoop, which applied MapReduce framework [24,25] to the distributed clus-
ters. In the area of workflow management, lots of scientific workflow systems
have made an important progress, with a certain ability in tasks monitoring
and control, scheduling policy management, and workflow fault tolerance [26].
But those work management systems are only designed and developed for the
specific computing scenarios in their researches, and lack the common skills
of abstract describing. So it is very difficult to meet the needs of different
users when they require the deep customizations of scheduling policy, fault
tolerance, etc.

The remote sensing data processing system based on multi-datacenter in-
frastructure is a solution to process massive, multi-source and distributed re-
mote sensing data, and the current research in this field is under developing.
The system based on multi-datacenter infrastructure can improve the effi-
ciencies of the acquisition, organization and processing of distributed data
[27]. Like grid-based distributed processing systems, data management and
task scheduling are also two major challenges among the massive spatial da-
ta processing under this infrastructure. Most relative studies are focused on
the algorithm of task scheduling [28,33,40] so far. For examples, W. Song, et
al. [29] proposed the task scheduling mechanism and framework for spatial
information processing and geocomputation across multiple satellite data cen-
ters; W. Zhang, et al [8,30] proposed a workflow scheduling method based on
nearby data calculation, and designed a kind of image processing infrastruc-
ture based on multi-satellite center. However, few studies focus on the aspects
of data management across multiple data centers, particularly on the data
management of distributed collaborative processing.

3 Infrastructures Overview

3.1 Target environment

As a research result of the 863 program, MDCPS is designed to produce the
large-scale and global coverage RS data production based on multi-datacenter
infrastructure. It combines China Centre for Resources Satellite Data and Ap-
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plication (CRESDA), National Ocean Satellite Application Center (NSOAS),
National Satellite Meteorological Center (NSMC), Computer Network Infor-
mation Center (CNIC), Twenty First Century Aerospace Technology Co. Ltd
(21AT), and Institute of Remote Sensing and Digital Earth (RADI). More
than 60 kinds of RS data types, which sourced from the Aqua satellite, Terra
satellite, Landsat series,CBERS, ZiYuan (ZY) satellite series, HaiYang (HY)
satellite series, FengYun (FY) satellite series, BeiJing-1 (BJ-1) satellite series,
National Oceanic and Atmospheric Administration (NOAA) satellite series,
Multi-functional Transport Satellites (MTSAT) series, etc., could be processed
in this environment. The amount of RS data could be over 1PB. It aims to
provide a safe, reliable and efficient environment to support the applications of
massive remote sensing production. Currently, MDCPS has the production ca-
pacity of more than 40 kinds of RS products, and its products are summarized
in Table 1.

We keep the following goals when developing MDCPS:

– Effective management of RS data: In the collaborative process, we try to
effectively manage raw data, intermediate products and final products. We
try to use the data dependencies and data caches, and try to avoid the
large-scale data migration by reducing the duplication of data processing;

– Automated processing platform: Aiming at improving the efficiency of co-
processing, we try to implement the following process automation: match
the complex process workflow, task decomposition, workflow organization,
and workflow scheduling.

3.2 MDCPS infrastructures overview

MDCPS adopts the centralized system framework for massive RS data pro-
duction. It consists of a master datacenter and several different data centers
in geographic distribution. Master data center (MDC) is mainly composed of
data management system (DMS) and business processing system (BPS). DMS
manages raw data, intermediate products, and final products in co-processing,
and provides the service of data query, scheduling and data discovery. BPS is
responsible for the overall mission receiving, workflow organization, and task
scheduling. Each data center consists of two subsystems: one is its own data
service system with the responsibility of providing raw data services, the oth-
er one is the task execution proxy system (TEPS) with the responsibility for
pre-processing raw data. The MDC will decompose global task, schedule each
sub-task to the data centers proxy system over the WAN, post process togeth-
er after merging the intermediate processing results in MDC, and ultimately
complete the processing tasks. The system architecture diagram is shown as
Figure 1.

The software architecture of MDCPS is shown as Figure 2, including ap-
plication interface layer, business logic layer, software architecture layer and
resource layer. In resource layer, the distributed resources underlying MDCPS
include RS data resources, algorithms resources and computing resources over
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Table 1 The RS products in MCCPS, their spatial and temporal characteristics

Product Product Spatial Temporal
ID Name Resolution Resolution

ADR Aerodynamic roughness 1km 5d
AOD Aerosol optical depth 1km 1d
AOD Aerosol optical depth 30m 10d
ARVI Atmospherically resistant vegetation index 1km 5d
ARVI Atmospherically resistant vegetation index 30m 10d
BRDF Bidirectional reflectance distribution function 1km

CLI Cloud index 1km 5d
DLR Downward longwave radiation 5km 3h
DSR Downward shortwave radiation 5km 1d
ET Terrestrial evapotranspiration 25km 5d
EVI Enhanced vegetation index 1km 5d
EVI Enhanced vegetation index 30m 10d

FPAR Fraction of photosynthetically active radiation 1km 5d
FPAR Fraction of photosynthetically active radiation 30m 10d
FVC Fractional vegetation cover 30m 10d
FVC Fractional vegetation cover 1km 5d
HAI Hydroxy abnormal index 30m 365d
LAI Leaf area index 1km 5d
LAI Leaf area index 30m 10d
LHF Latent heat flux 1km 1d
LSA Land Surface Albedo 30m 16d
LSA Land surface albedo 1km 5d
LSE Land surface emissivity 1km 1d
LST Land surface temperature 1km 1d
LST Land surface temperature 5km 1d
LST Land surface temperature 300m 4d

NDVI Normalized vegetation index 1km 5d
NDVI Normalized vegetation index 30m 10d
NDWI Normalized difference water index 1km 1d
NPP Net primary productive force 1km 5d
NPP Net primary productive force 300m 10d
NRD Net radiation data 300m 4d
PAR Photosynthetically active radiation 5km 1d
PRE Precipitation 10km 1d
SAI Suicide abnormal index 30m 365d
SBI Soil brightness index 1km
SBI Soil brightness index 30m
SHF Sensible heat flux 1km 1d
SID Sea ice distribution 1km 10d
SMI Soil moisture index 1km 1d
SWE Snow water equivalent 25km 5d

TCWV Total column water vapour 1km 1d

data centers. In the software services layer, we adopts MyProxy and Globus
Simple Certificate Authority (CA) as its security certification middleware be-
tween the data centers. And we use Gfarm grid file system to manage the
distributed data replicas, use GridFTP to supply distributed data transmis-
sion services, use Ganglia to monitor the TEPS on distributed satellite data
centers and get the information of performance. At the same time, the Kepler
scientific workflow system is chosen as our processing workflow engine and we
adopt MySQL as the backend database to complete the persistent of all data.
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Fig. 1 The System Architecture Diagram of MDCPS

In business logic layer, MDCPS has the daemon module, data management
module, workflow management module, task scheduling module, order man-
agement module, spatial metadata management module, computing resource
management module, algorithm management module, log management mod-
ule and other functional modules. These modules are used to manage all the
distributed data replicas and organize tasks workflow automatically, schedul-
ing and execution. In the application interface layer, the web portal of MDCPS
supplies a friendly interface for users to submit their needs for processing mas-
sive RS data.

4 Design and Implementation

4.1 Data management

Global and large coverage of RS products often require massive input datasets,
and the distributed computing, multi-datacenter collaborative process has a
huge amounts of data transfer, including raw data, intermediate products and
final products. And as a multi-user remote sensing data processing platform,



8 Jie Zhang et al.

Fig. 2 The Software Architecture Diagram of MDCPS

there may be a lot of the same processing requests, the same spatial and tem-
poral scales of input datasets, or the same remote sensing products. All these
mentioned above can cause a lot of repeat transmission and processing. To
reduce these unnecessary duplication transmission and production, MDCPS
needs to achieve a unified management of raw data, intermediate product-
s and final products in the process of co-processing. It would not only need
to manage the metadata of distributed data, achieve reliable distributed file
operations, but also need to manage the complex relationships between RS
data. If these issues are addressed, MDCPS would be able to use effective da-
ta scheduling strategy based on the spatial relationships, the distribution of
relations, affiliations, dependencies between RS data. It could maximize reuse
the cached data and reduce large scale data migration in collaborative process.

In MDCPS, we used the strategies of ”Spatial Metadata Management &
Distributed File Cache Management” to realize the dynamic data manage-
ment of multi-datacenter collaborative process. Firstly, for the management of
metadata and data relationships aspect, we established three basic metadata
repositories in MDC to manage the spatial metadata information of the raw
data, intermediate products and final products. And then we established a
public repository encoding geographic coordinates for the unity of all data s-
patial relationships. In addition, knowledge repositories of final products were
established in MDC for input data parsing for RS products. We also added
a series of relationships knowledge between products and implemented the
management of products’ relations. For distributed data file management, we
realized a unified management in the data catalog access, data transmission
and data cleaning. In the catalog management, we builded specific cache di-
rectories in MDC and others datacenters. The cache directories in MDC, as
products cache catalog, it would cache intermediate products and final prod-
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ucts. These directories in TEPS across each data center are used to store the
raw data downloaded from the data center. All data files’ information about
distribution and request will be registered to spatial metadata repositories.
Therefore, we achieved unified management of the cached data file’s metada-
ta. For the capacity monitoring and cleanup of data cache catalogs, we adopted
Ganglia system client to monitor the capacity of cache directory in a near real-
time. If exceeding limited quotas, we would choose specific data by querying
spatial metadata repositories. In data transmission, we deployed GridFTP to
implement a safe, efficient and stable data transmission service. MDCPS data
management system structure is depicted in Figure 3.

Fig. 3 The data management system of MDCPS

4.1.1 Spatial metadata management for co-processing

A normal production processes in RS data processing system includes: accept
request, parsing the input raw data, raw data query, data download, prepro-
cessing, post processing, products registration to the repositories, and final
products feedback. Usually, there are two typical scenarios to meet the user’s
products need in a processing system.

– Carry out the whole process, and finally feedback processed products;
– Direct feedback these products, because all the needed products have been

produced and archived.

To achieve the goal of greatest reuse of the resource, reduce the large-scale
data migration and repetitive processing, and in addition to the above two
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production scenarios, MDCPS also has the dynamic production scenario based
on the cached raw data and intermediate products. In the production process
of multi-datacenter co-processing, it not only requires the management of the
final products, but also requires the management of the intermediate data,
such as the downloaded raw data and the intermediate products after pre-
processing (standard products) and other auxiliary products. If realized, we
could avoid the duplication of raw data download and intermediate products
production.

In order to achieve the dynamic management, we builded a spatial meta-
data repository to manage the metadata of raw data, standard products and
final products. The metadata information include data ID, file name, created
time, data type, data size and cloud cover. In order to unify management of
data spatial relations, we established a common grid of geographical coordi-
nates. In addition, we also registered some information about data replica,
such as request time, request frequency, replica distribution. These metadata
information will be used for data scheduling and cleanup. For the manage-
ment of data dependencies, we builded knowledge repositories to resolve the
final products rely on the raw data, intermediate products and other auxil-
iary products. Finally, the dynamic management of data in multi-datacenter
collaboration processing will be shown in Figure 4 as follows:

(1) Receive request of production;
(2) Inquire the final products repositories and confirm whether there are cor-

responding products. If yes, direct return, otherwise, continue;
(3) Analyze the dependency of the intermediate products and raw data;
(4) Inquiry products repositories, if the intermediate dependency products

have been archived, calculate spatial relationships and decide the uncov-
ered area, recursive products records and check the missing products;

(5) Keep on query until all the missing products data have been identified and
make sure the corresponding data plan;

(6) Query the raw data cache repository to determine whether you need the
data downloads;

(7) Query distribution information of data replicas, select an appropriate repli-
ca.

(8) Determine the final data plan dynamically.

4.1.2 Distributed file management

In the management of distributed RS data file, we integrated the Gfarm grid
file system, GridFTP, Ganglia monitoring system and our spatial metadata
repositories. It supplied the services of distributed data management, data
transmission, file operations and catalogs monitoring. The efficiency and con-
sistency of distributed file operations could be guaranteed in this environment.
Figure 5 shows the system deployment.

Firstly, we builded a cache catalog in each data center for storing data
replica files. A new created file in this catalog would be uploaded to Gfarm
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Fig. 4 The RS data dynamic scheduling strategy in MDCPS
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Fig. 5 MDCPS distributed file management

file system. In addition, we builded a public cache catalog in the master center
of MDCPS and used Gfarm2fs to mount Gfarm system to this cache catalog.
Then, all replicas of RS data in distributed Gfarm system could be displayed in
this catalog. Just like as local files, we could use gfexport command to export
data easily. Since the metadata in Gfarm backend database contains limited
information and lack spatial metadata information, we saved the data distri-
bution information in our spatial metadata repository which could instead the
service of replicas matedata in Gfarm. To ensure the consistency of distributed
remote sensing data files and its’ metadata, we will update the corresponding
information when it alters. The MDC is responsible for the global control of
data transmission between data centers, which requires the third-party control
of data transmission. In addition, large-scale data transmission requires a se-
cure and reliable data transfer service. So we adopt the GridFTP as MDCPS’s
data transmission middleware.

Secondly, with the ongoing production, the cache catalog in each datacen-
ter will keep caching lots of RS data and when it will be out of quota, the
data transmission and production will terminate. Therefore, it is necessary for
MDCPS to adjust and manage cache catalog capacity automatically during
the production. In MDCPS, the capacity monitor was used, whose specific
programs of data replacement and clean-up are as follows: Ganglia monitoring
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system was adopted to monitor disk usage. When a datacenter’s usage exceeds
the quota threshold, the monitor daemon in MDC will throw a warning. Then,
MDCPS will use Gfarm client to statistic the data amount in that cache cata-
log, and the MDC will decide whether to clear the cache catalog according the
feedback. If need to clean up, the system will query the metadata information
of data replicas, filter some data based on the Least Recently Used (LRU)
algorithm and delete these data replicas in corresponding cache catalog by
Gfarm client. The sequence of data monitoring and cleanup operations are
shown in Figure 6.

Fig. 6 Distributed file management sequence in MDCPS
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4.2 Workflow management

Workflow management is a key module of the distributed processing system,
which determines the reliability and stability of the system. The processing
tasks of large-scale RS data based on the multi-datacenter infrastructure is
complex, and it is difficult to organize, manage and schedule. The difficulties
can be classified into two aspects:

– Complex distributed remote sensing data processing: Remote sensing da-
ta processing involves pre-processing and post-processing generally, and
the processing methods are very different between different kinds of data,
what’s more, due to the different distribution of data and computing, the
input and output data parameters of different processing flow are quite
complex, and it is difficult to automatically match and organize a suitable
workflow in a distributed environment;

– Complex scheduling of multi-datacenter scenarios: Multi-datacenter collab-
orative processing system combines multiple data centers to build a system
of systems. The single scheduling policy is difficult to meet this hierarchi-
cal scheduling scenarios. In addition, the task scheduling in MDC involves
a variety of dynamic resources across distributed datacenters, including
data resources, computing resources and algorithm resources. An optimal
scheduling model needs a comprehensive consideration for overall factors
and it is a difficulty so far.

So as to solve the problems above, MDCPS builds an entire workflow sys-
tem which connects the MDC and other datacenters. In MDC, we constructed
a process flow repository and multi-level task orders repositories for matching
and decomposition of complex processing tasks. We integrated Kepler work-
flow system as the workflow execution engine, and built Kepler workflow tem-
plate repository for RS data production. The workflow template could help
achieve the automatic construction of concrete workflow. Considering the fea-
tures of hierarchical architecture, two-level scheduling strategy was adopted.
MDC will schedule tasks to each datacenter by heuristic scheduling reposito-
ry. TEPS over each datacenter batch the sub-processing tasks by Torque PBS.
The monitoring service of task order could effectively monitor workflow status
and provide support for workflow fault-tolerant. The workflow management
architecture of MDCPS is depicted in Figure 7.

4.2.1 Workflow construction

In order to solve the complex issues of distributed remote sensing data pro-
cessing, we constructed a processing repository, multi-level orders repository
and workflow template repository to decompose, decouple and map the com-
plex processing task. To begin with, we distinguished the different process
flow by unified naming, and established a unique processing depending on its
corresponding RS data types. Then, we divided it into several sub-processes
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Fig. 7 The workflow management architecture of MDCPS

following the pre-processing, post-processing steps of each process flow. Fi-
nally, we store the hierarchical relations between different levels of processing
flow in the process repository. For example, CP represents a top level process-
ing of common RS products. CP1 and CP2 are two subclasses of CP in the
second level. CP1 represents the processing flow of Landsat data and the CP2
represents the processing flow of MODIS data. CP1 processing contains five
sub-processes in the third level: data preparation (DP), geometric normaliza-
tion (GN), radiation normalization (RN), standard product uploading (SPU),
common product production (CPP) and common product register (CPR). In
addition to the former five sub-processes, CP2 also has a data swath (DS)
sub-processing. The hierarchical relationship between different CP processing
is shown as Figure 8 (a), and it will be stored in the processing repository.
When a task was submitted, MDCPS will automatically match the processing
repository, divide the task into several different levels of orders according to
the corresponding processing, and store them to the task orders repository. We
added the L1, L2, L3 prefix in the front of different levels of task orders. L1
represents the top level order of product production, L2 represents the second
level order of processing for certain RS data type, L3 represents the third level
order of sub-processing belonging to L2 order. In addition, we divide L3 order
based on its input data’s distribution in which data center and increase the
number suffix to distinguish. For example, L3GN1, L3GN2, L3GN3 represent
the GN process is conducted in different data centers. And all these make up
a multi-level order for CP, which is shown in Figure 8 (b). The existence of
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a multi-stage task execution sequence order constitutes an abstract workflow.
Finally, we got an original abstract workflow of processing task without any
resource parameters.

Fig. 8 The processing tree and multi-level task orders

Kepler workflow system comes from Ptolemy system [38]. It is an actor
oriented open source scientific workflow system. It enables scientists to easi-
ly design and efficient execution of local or distributed workflows. We choose
Kepler as the workflow system of MDCPS, because its web and grid services
actors allow scientists to utilize computational resources on the net in a dis-
tributed scientific workflow [37]. We developed some user-defined actors for
job submission and status monitoring, and also customized servals workflow
template corresponding RS data processing based Kepler’s Modeling markup
language (Moml). Based on these template, abstract workflow will get specific
data, algorithms, computing resources after workflow scheduling, and become
a concrete workflow automatically. Workflow organizational process is shown
in Figure 9.

4.2.2 Task scheduling

Multi-datacenter collaborative process is a process of data-intensive comput-
ing. MDCPS system task scheduling strategy should consider not only the
performance of distributed computing resources, but also consider large-scale
data migration. We investigated the correlation scheduling algorithm, finally
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Fig. 9 Workflow organizational progress in MDCPS

applied Min-Min algorithm [39] to our system scheduling strategy. The dif-
ference between Min-Min scheduling and our scheduling is that we choose
the computing resource (data center) instead of computing tasks in this step.
Based on the Best-effort scheduling, MDCPS focus on to the execution time
constraints to build the objective function. The target of scheduling is to
achieve a minimum execution time for L3 task orders, and scheduling objective
function is shown as Equation 1:

ECT (t, r) = max{EAT (t, r), FAT (t, r)}+ EET (t, r)

(1)

In above equation, t represents a L3 task order, the resource r represents
a distributed datacenter. ECT (t, r) (Estimated Completion Time) represents
the estimated time by which task t will complete execution at resource r.
EAT (t, r) (Estimated Availability Time) represents the time at which the
resource r is available to execute task t. FAT (t, r) (File Available Time) rep-
resents the earliest time that all the required RS data files of the task t will be
available at the datacenter r. EET (t, r) (Estimated Execution Time) repre-
sents the amount of time the datacenter r will take to execute the task t, from
the time the task starts to execute. We computed ECT s of each task on all
available datacenters and obtained the MCT (Minimum Estimated Comple-
tion Time) for each task. We assigned the task on the datacenter to complete
it at earliest time. The basic steps of this scheduling are listed in Algorithm 1
as following.

In the data scheduling and computing resource scheduling stage, the time
estimation methods are shown as follows:
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Algorithm 1 Scheduling algorithms based Min-Min
1: while ∃ task ∈ U is not scheduled do
2: priorTask ← get an unscheduled ready task whose priority is highest.
3: DOSHEDULE(priorTask)
4: end while
5: procedure doShedule(t) . Select the optimal data center
6: while task is unscheduled do
7: for all rΞ availDatacenters do
8: compute ECT (t, r)
9: end for

10: R ← min{ECT (t, r)} . get a datacenter with minimum ECT (t, r)
11: schedule t on R
12: end while
13: end procedure

In the stage of RS data scheduling, the RS data that have been cached
in MDCPS spatial metadata repository will be the first choice to allocate.
For non-cached data resources, the system sends download request to the cor-
responding data center according to the data type. We will estimated each
datacenter’s FAT (t, r) according to amount of the data request.

In the stage of computing resource scheduling, MDCPS will dynamically
monitor system performance information for each datacenter by deploying
Ganglia system, The information such as CPU, I/O, memory, network, load,
will update in near real-time to the computing resource repository. We are
able to predict the capacity based on these monitor information of datacenter
in the scheduling stage, and get the EET (t, r). In addition, we can predict
availability time by querying each data center’s PBS task queue and task
order running status in task order repository, and estimated the EAT (t, r).

On this basis, we built a heuristic scheduling rules repository on the ba-
sic principle of ”Near Data Calculation” [31]. It contains some heuristic rules
for scheduling, including some empirical parameters for compute FAT , per-
formance indicators of weight parameters for EET and EAT , performance
metrics thresholds for resource scheduling, etc. MDCPS could dispatch the
processing tasks automatically appropriate data centers based on the heuris-
tic scheduling rules.

Taking the L3GN order processing for example to explain the scheduling
method in MDCPS. Under the assumed conditions that MDCPS system has
five data centers (DC1∼DC5), DC2 caches 60% of the required RS data and
DC3 caches 20%. The remaining 20% of the required RS data will be required
and downloaded from some datacenters. When L3GN order is submitted to
MDCPS scheduling system, the detailed scheduling processes are as follows:

(1) Firstly, MDCPS determines which input data are already cached in the
datacenter based on the data management system, and which data should
be requested and downloaded at this time. In this example, the system
determined 80% of the data were already cached on DC2 and DC3, 20%
of the data should be requested and downloaded;
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(2) Then, according to ”near data computing” heuristic rule, the processing
tasks to the data centers who have already cached data are assigned pref-
erentially. So the GN processing tasks will be scheduled on DC2 and DC3;

(3) Next, MDCPS selects a suitable data center to download, and assigns the
GN processing tasks of the 20% non-cached data by our scheduling algo-
rithm based on Min-Min, In this example, MDCPS firstly determined that
only DC2, DC3, DC5 could provide the services of download for non-cached
data based on the data service system. Then, MDCPS calculated the ECT
of DC2, DC3 and DC5 to process the 20% non-cached data. The methods
of time estimation are as previously described. Finally, a datacenter with
the minimum ECT should be selected to execute tasks. Here, we assume
DC5 was the final selection. The dynamic scheduling process is shown as
Figure 10;

(4) Finally, L3GN order is split into three sub-orders L3GN1, L3GN2 and
L3GN3, and the processing task of GN will be scheduled to DC2, DC3,
and DC5.

Fig. 10 The procedure of workflow dynamic scheduling in MDCPS
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4.2.3 Workflow fault-tolerant

To ensure the reliability of the workflow, the fault-tolerance policies should
consider the following aspects:

– Fault-tolerant based on retry: the construction phase in the workflow, if
workflow can’t be built correctly caused by the resource temporarily u-
navailable, the system will retry build after a certain time interval. The
reasons of this kind of fault-tolerant mainly include: unsuccessful webser-
vice call caused by network congestion, insufficient disk space while waiting
for cleanup, excessive tasks in the data center, data center overload and
data resource is in the ready state;

– Fault-tolerant based on checkpoint recovery: In order to ensure a fast re-
boot of the complex process flow, and to avoid duplication of data trans-
mission and computing, each sub-workflow’s condition will be monitored
, and the parameters and conditions information will updated to the task
orders libraries at the completion of the sub-task. As soon as the workflow
errors occur in the implementation phase, the system will automatically
check the recently completed state and rebuild the unfinished task, then
resume operation;

– Timeout-based exit strategy: The system will set a threshold, the longest
wait time of workflow and PBS job, to avoid long-term occupation of com-
puting resources due to the abnormal operation of workflow, if it goes over
the threshold ,the workflow or algorithm will stop automatically, and the
resources occupied will be recovered.

5 Experiments

In order to verify the validity of distributed remote sensing data management
and complex workflow management in MDCPS, we conducted the following
experiments of performance comparison on several specific data production.

In this paper, we constructed our experiment MDCPS environment with
four distributed datacenters: CRESDA, NSOAS, CNIC and RADI. RADI is
the MDC, consisted of two compute nodes: one is for workflow management
and the other one is for post-processing. The former which is a blade server
is configured with 8 cores Intel(R) Xeon(R) E5-2603 (1.80GHz) and 32 GB
memory. The latter is configured with 24 cores Intel(R) Xeon(R) E5645 CPU
(2.40GHz) and 62 GB memory. All TEPS of CRESDA, NSOAS and CNIC
are configured with 16 cores Intel(R) Xeon(R) E5-2640 CPU (2.00GHz) and
32 GB memory. The operating system is CentOS 6.5 and the Java version is
1.8.05.

The groups of experiments produced two kinds of RS product, 1KM Nor-
malized Vegetation Index (NDVI) product and 1KM Net Primary Productive
force (NPP) product, during the 180th-185th day of 2014, Zhangye, Gansu
Province, China (36◦ E-43◦ E, 95◦ N-103◦ N), which is shown in Figure 11.
The NDVI experiment requires 11.5GB of MODIS and FY3 RS data, and the
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NPP needs 168.7 GB of MODIS, MST2 and FY3 RS data. The results of 1KM
NDVI and 1KM NPP products produced by MDCPS are shown as Figure 12
and Figure 13.

Fig. 11 Zhangye experiments area

Fig. 12 1KM NDVI Product produced by MDCPS
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Fig. 13 1KM NPP product produced by MDCPS

5.1 Related experiments on dynamic data management

MDCPS realized the dynamic management of the raw data, intermediate prod-
ucts, and the final products, and reduced the large-scale data transmission and
repetition. In order to verify the validity of reducing data transmission and da-
ta processing in MDCPS, we adopted the following comparative experiments
to validate the effect of multi-level RS data cache management. In MDCPS,
the production of NDVI and NPP contains seven processing stages: DP, GN,
RN, DS, SPU, CPP and CPR, of which, DP and SPU are two stages of data
transmission, GN, RN, CPP and DS are four stages of RS algorithmic pro-
cessing. Generally, distributed massive RS data processing is a data-intensive
computing, data transmission and RS algorithmic processing are very time-
consuming.

Firstly, we carried out a normal production of NDVI and NPP in MDCPS.
This normal production wouldn’t reuse any cached data and product, and it is
a typical scenario in other distributed data processing system over WAN. The
time-consume statistics for each stage in normal production of NDVI and NPP
is shown in Figure 14. It is easy to find out that the runtime of data transmis-
sion occupies larger proportion, the proportion of NDVI production process
is about 29.2% and the NPP production process is up to 56.3%. The runtime
of algorithm processing also accounted for a considerable proportion, the pro-
portion of NDVI production process is about 69.5% and the NPP production
process is 43.3%.

Secondly, we carried out other three typical scenarios based on the same
production experiment in MDCPS system. These productions reused different
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Fig. 14 Runtime of each stage of NDVI and NPP normal production

levels of data cache in MDCPS system, including: raw data cached (80% hit),
intermediate products cached (80% hit) and final products cached (100% hit).
Compared to the normal production, the processed statistical results are shown
in Figure 15 and 16. By comparison, we can see that the dynamic management
of the final products could maximize production efficiency with little time to
feedback final products. By comparing the time-consume of cache raw data and
cache intermediate products production scenarios, we could found that the raw
data cache can only reduce the time-consume preparation in DP stage, because
it can avoid the repeated request of the same data from satellite data center.
But the data transfer (mainly at the stage of SPU) and algorithmic processing
are still time-consuming. The intermediate products caching is better than the
raw data caching to enhance the efficiency of production. Its effect is obvious
both in stage of data transmission and algorithm processing. The total time-
consume of intermediate products cached (80%hit) is generally a quarter of
that in normal process (NDVI process was 32% and NPP process was about
18%).

According to the above two experiments, we can conclude that multi-level
data caching strategies in MDCPS can reduce data transmission and repetition
in varying degrees. It can significantly improve the efficiency of production in
multi-datacenter environment.

To test the processing extensions performance of MDCPS for differen-
t amount of data, we tested time-consume by processing 11.5 GB, 52 GB,
168.7 GB, and 209.2 GB input data for NDVI production. According to the
results are shown in Figure 17, as the amount of process data increasing, it
shows that time-consume will non-linear increase. It could draw the conclusion
that MDCPS has a certain degree capacity for massive data processing.
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Fig. 15 Runtime of each stage of NDVI with four different scenarios
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Fig. 16 Runtime of each stage of NPP with four different scenarios

5.2 Related experiments on workflow management

In order to test the relevant performance of MDCPS in workflow management,
we used part of the test data for NDVI products to conduct related concurrent
expansion experiment, and to test the performance of MDCPS under different
scheduling strategies. We tested multi-task concurrent scene under EET, EET
+ FAT and EET + EAT + FAT three scheduling strategies. The average time-
consume is shown in Figure 18. By comparison of time-consume, it could be
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Fig. 17 Runtime of NDVI with the increase of data volume

found that with the increase in the amount of concurrency tasks, task time-
consume under the first two scheduling strategies increased rapidly, and that
under the last strategy shown a relatively stable growth. The scalability of
EET + EAT + FAT is better than the first two scheduling strategies. We can
see that the ”Near Data Calculation” scheduling strategies adopted in MDCPS
can increase the efficiency of remote sensing data production.
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6 Discussion

6.1 System Architecture

MDCPS adopts a centralized system architecture to achieve the management
of distributed multi-source RS data and production tasks. This centralized
system architecture is easy to implement. It not only make good use of the
existing centralized grid middleware such as Globus Grid Security Infrastruc-
ture (GSI), GridFTP, Ganglia and Gfarm to build, but also has little influence
on the current architecture of data centers, just adding a task execution agent
system in the satellite datacenters could meet the needs of large-scale pro-
duction. In addition, the centralized management of workflow can be efficient
in global task decomposition and scheduling, and it will significantly improve
production efficiency. To avoid the single point of failure in a centralized sys-
tem, MDCPS could resolve this problem by using the redundant backup of
the metadata in back-end databases and distributed replicas in Gfarm.

6.2 System Feasibility

In general, data transmission and processing accounted for a large proportion
in a distributed systems for large-scale data processing. As can be seen from
the experiment performance, the data management system in MDCPS can
reduce the duplication of data transmission and processing by using the dis-
tributed RS data cache and dynamic data scheduling strategy. In contrast to a
general production system, although the complexity of the data management
system will be increased due to the management of cached raw data, cached
intermediate products and their dependencies, but the efficiency of large-scale
production process can be significantly improved. Thus, the data management
system is the key point of a RS data production system based on multi-center
architecture.

In the co-processing of multiple satellite data center, each type of RS data
is only distributed on several particular data centers. In addition, the tasks
execution agent system in each data center has limited computing resources.
These reasons result in the workflow scheduling’s certain particularity in MD-
CPS. As can be seen from the performance of the experimental task scheduling,
the strategy of ”Near Data Calculation” scheduling which MDCPS adopt-
ed, optimizes the workflow scheduling model from the perspective of data
transmission, task queue status and the performance of computing resources.
The model of multi-objective optimization scheduling is applicable to data-
intensive computing in the multi-datacenter co-processing.

6.3 System Scalability

MDCPS has achieved the unified management of data resources, computing
resources and algorithm resources, which plays an important role in expand-
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ing its ability. When the system wants to add new resources, it only needs to
deploy the TEPS in datacenter and register its metadata information to mas-
ter datacenter. It can easily integrate new multi-source remote sensing data,
processing algorithms and computing resources. And its extension tools, such
as automated deployment scripts, will help users expanding the system on a
cluster or cloud computing platform quickly.

7 Conclusion and Future Work

Constructing a remote sensing data processing system based on multiple satel-
lite data centers infrastructure is an effective solution to the problem of massive
multi-source remote sensing data processing and analysis. And it is important
to support the large scale and global remote sensing application projects. In
this systematic project, data management and workflow management are the
key issues to build a reliable and efficient distributed processing system.

This paper summarized the current status of distributed remote sensing
data processing across multiple satellite data centers and analyzed the reasons
of low efficiency in co-processing from the perspective of data managemen-
t. In order to solve the problems of massive data migration, we presented a
distributed caching strategy of the raw data, intermediate products and final
products. Combined with the Gfarm distributed file system, we implemented
a distributed data management system in MDCPS. Aiming at the problems of
distributed process task management, we completed the decomposition of com-
plex processing tasks by processing repositories. With help of multi-level orders
task repositories and Kepler workflow template, we achieved automated work-
flow construction. In addition, we designed a two-level distributed scheduling
framework for dispatching processing tasks. The NDVI and NPP production
experiments showed that the distributed remote sensing data caching and the
scheduling strategies of ”Near Data Calculation” could significantly improve
the overall efficiency.

In the future, more work will be done to better meet the massive remote
sensing data production needs based on MDCPS, including developing the
user-defined knowledge repositories of remote sensing data processing, provid-
ing a service for users to define their own processing workflow based on Kepler,
optimize the knowledge base of RS data production and the heuristic schedul-
ing rules by using the intelligent mobile agent technique, and improving the
performance of data distribution strategies to optimize the infrastructure and
services of MDCPS.
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