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Concrete carrosio n due t o sul p h uri c aci d attack is known t o be o ne of the mai n contributory factars far 
degradati an of concrete sewer pipes. This artide proposes to use a nove! data mining technique, namely, 
evolutionary polynomial regression (EPR), to predict degradati an of concrete subject to sulphuric acid 
attack. A comprehensive dataset from literature is collected to train and develop an EPR m od el far this 
purpose. The results show that the EPR m od el can successfully predict mass loss of concrete specimens 
exposed to sulphuric acid. Parametric studi es show that the proposed m od el is capable ofrepresentingthe 
degree towhich individuai contributing parameters can affect the degradati an of concrete. The developed 
EPR m od el is compared with a mode! based on artificial n eural netwark (ANN) and the advantageous of 
the EPR approach aver ANN is highlighted. In addit i an, based o n the developed EPR mode! and u sing an 
optimisation technique, the optimum concrete mixture to provide maximum resistance against sulphuric 
acid attack has been identified. 

Sewerpipes 

1. Introduction 

Sewer systems are essential infrastructures that play a pivotal 
role in economy, prosperity, social well-being, quality of !ife and 
especially the h e al th of a country. The nature of the wastewater an d 
the propensity for anaerobic conditions in the buried pipes lead to 
complex chemical and biochemical transformations in the pipes, 
resulting in inevitable deteriorati an ofpipe materials due to a vari
ety of mechanisms such as hydrogen sulphide induced corrosion 
of concre te. The sewer networks have had to expand as a result 
of population growth and thus t he extended hydraulic retention 
time of wastewater in the sewer pipes tends to create a suitable 
environment for sulphide production, leading to the corrosion of 
pipes [1]. In addition i t is also believed that the widely projected 
climate change induced temperature rise will further acce lerate 
corrosion. The pipe corrosion results in reduction ofwall thickness, 
leading to collapse of the pipes and possibly the whole system, 
unless proactive intervention is carried out in a timely manner, 
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based on an accurate prediction of their remaining safe !ife. The 
consequences of the collapses of sewers are socially, economically 
an d environmentally devastating, causing enormous disruption of 
daily !ife, massive costs, and widespread pollution [1]. 

Concrete corrosion due to sulphuric acid attack is known to be 
one of the main contributory factors for degradation of concrete 
sewer pipes. Sulphate, which exists in wastewater, is reduced to 
sulphide by anaerobic bacteri a. These bacteri a are present in a thin 
slime layer on the submerged surface of the sewer pipe and the 
production of sulphide occurs in this slime layer. The generated 
sulphide escapes to the exposed sewer atmosphere where it is 
transformed to sulphuric acid by aerobic bacteria. The acid reacts 
with calcium hydroxide in the cementitious sewer pipe which 
forms gypsum and causes corrosion [2- 4]. 

Pomeroy [3] proposed a mode! to predict the corrosion rate in 
cementitious sewer pipes. 

C = 11.5 k</Jsw 
A 

(1) 

In this equation, c is the aver age rate of corrosi o n of the materia! 
(mm/year), k is a factor representing the acid formation based on 
climate condition, <Psw is the average flux of sulphide to the pipe 
wall (g/m2 h) and A is the alkalinity of the pipe materia!. 
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Eq. (1) shows that amongst pipe materia! characteristics, alka~ 
linity (A) is the most influential factor in the corrosion of concrete 
sewer pipes. Many researchers have investigate d the effect of aci d 
attack on different mixtures and admixtures of concrete. Attiogbe 
and Rizkalla [5] evaluated the response of four different concrete 
mixtures including two different cement types (ASTM Type I and 
ASTM Type V) to accelerate d aci d attack. The concrete samples were 
immersed in sulphuric aci d solutions with a p H of 1.0. This concen~ 
tration of sulphuric aci d was selected sin ce i t was a representative 
of what is expected in sewer pipes in the process of deterioration. 
After 70 days of immersi an, the results of the experiment showed 
that the weight Ioss of concrete samples with cement Type V is 
slightlymore than those samples created with cementType I. !t was 
conci uded that in the long term, the sulphate resistant cement do es 
not contribute to an improved resistance of concrete compared to 
ordinary Portland cementwhen they are subjected to sulphuric aci d 
attack. Ehrich et al. [6] carried out biogeni c and chemical sulphuric 
acid tests to monitor the corrosion of different cement mortars. 
They used ordinary an d sulphate resistant Portland cement as well 
as calcium aluminate cement to produce different mortars. The bio~ 
genie tests were carri ed out using a simulation chamber where the 
temperature, humidity and amount of sulphide were monitored 
and controlled. For the chemical test, the mortar samples were 
immersed in PVC containers fìlled with sulphuric acid. The results 
of both eh emica! an d biogeni c tests showed that calcium aluminate 
cement mortars had greater resistance against both types of acid 
attacks. Monteny et al. [7] simulated chemical and biogenic sul~ 
phuric aci d corrosion of different concrete compositions including 
ordinary an d polymer cement concrete. For the biogeni c tests, they 
put small concrete samples in a microbiological suspension con~ 
taining bacteri a, sulphur and nutrients which generated sulphuric 
acid in a biogenic manner. The chemical tests were performed 
using a rotating apparatus. Concrete samples were set up on an 
axis which was rotating in such a way that the concrete samples 
were only partially immersed in a solution of sulphuric acid with 
a pH of around 1.0. The results of both tests revealed that con~ 

crete mixtures with styrene~acrylic ester polymer showed a higher 
resistance compared to the concrete with high sulphate resistance 
cement. On the other hand the concrete mixtures with acrylic 
polymer and styrene butadiene polymer showed a lower strength 
than the high sulphate resistance concrete. De Belie et al. [8] pre~ 
sented the results of biogenic and chemical sulphuric acid tests 
carried out on different types of commercially produced concrete 
sewer pipes. They performed both types of tests o n different mix~ 
tures of concrete including different aggregate and cement types. 
The results of both chemical and biogenic tests showed that the 
aggregate type had the largest effect on degradation of concrete 
samples. In additi an, based on the results obtained from their stud~ 
ies, they proposed an equation to predict the degradation depth 
taking into account both alkalinity an d water absorption of concrete 
(Eq. (2)). 

(2) 

where Cis degradation depth after four cycles ofthe microbiologi~ 

ca! test(mm),A is alkalinity, Wis water absorption (%)and c1 an d c2 
are the coeffìcients of the equation. Chang et al. [9] investigated the 
use of different aggregates and cements to improve the resistance 
of concrete subject to sulphuric aci d attack. The concrete samples 
were produced with limestone, and siliceous aggregate, and Port~ 
land, binary an d ternary cements. The water/cement ratio was kept 
constant (i.e. W/C= 0.4) for all the samples. The concrete specimens 
were immersed into a sulphuric acid solution with a pH between 
1.27 an d 1.3 S. The changes in w eight an d compressi an strength of 
samples were examined at different ages up to 168 days. It was 
shown that t he use of limestone aggregates and ternary cement 

containing silica fume and fly ash will help to reduce the weight 
loss and reduction in compressive strength of concrete under sul~ 
p h uri c aci d attack. Hewayde et al. [ 1 O] carri ed out an investigati an 
o n 78 different concrete mixtures including different cement types, 
different water/cement ratios and various admixtures subject to 
sulphuric acid attack. The concrete samples were immersed in sul~ 
phuric aci d solutions with pH levels of0.3, 0.6, and 1.0. The authors 
stated that the solution with a pH of 0.6 represents conditions 
with a high count of anaerobic bacteri a that exist in the submerged 
surface of the sewer pipes, while the solution with a p H of 0.3 rep~ 
resents a supercritical condition that may occur in industriai sewer 
systems subject to high temperature an d humidity. The experiment 
consisted of determining the compressive strength of samples at 
different ages an d measuring the changes in weight a t different p H 
values. Using the data collected from the tests, they developed two 
artifici al neural network (ANN) models to predict the mass Ioss an d 
compressive strength of concrete. They showed that the developed 
ANN models are capable of predicting both compressive strength 
and mass Ioss of concrete samples under exposure to sulphuric 
aci d, providing the required parameters (i.e. the concrete contents) 
have been inputted. The studies presented above and many more 
in literature show that the constituents of concrete mix including 
admixtures play an important role in the alkalinity of concrete an d 
consequently its vulnerability to sulphuric aci d induced corrosion. 
However, insuffìcient work has been carried out in relation to the 
modelling and development of an explicit relationship to predict 
the deterioration of concretes with various mixtures subject to sul~ 
phuric acid. No doubt the development of such model(s) would 
help industry to evaluate and possibly improve the concrete mix 
design of their sewer pipes. In addition if the concrete mix design 
of existing pipes is known, water com pani es can carry out proactive 
intervention, based on the accurate predictions provided by such 
mode! s. 

The rapid development in computational software and hard~ 
ware in recent decades has introduced severa! soft computing 
and data~driven approaches to modelling engineering problems. 
Although there are various data~driven techniques based on arti~ 
fìcial intelligence, artifìcial neural network (ANN) and genetic 
programming (GP)are among the bestknown techniques that have 
been used to mode! civil and mechanical engineering problems. 
ANN uses models composed of many processing elements (neu~ 
rons) connected by links ofvariable weights (parameters) to form 
black box representations of systems. ANNs are capable of dealing 
with a large amount of data and can Iearn complexmodel functions 
from examples, by training sets of input and output data [11,1 2]. 
ANNs have the ability to m od el complex, nonlinear processes with~ 

out having to assume the form of the relationship between input 
and output vari ab! es [13,14] . However, ANN has shown to possess 
some drawbacks. A major disadvantage of ANN is the large com~ 
plexity of the network structure; i t represents the knowledge in 
terms of a weight matrix and biases which are not accessible to the 
user. ANN models, as a black box class of models, gives no informa~ 
tion on how the input parameters affect the output(s). In addition, 
parameter estimation and over~fìtting are other disadvantages of 
models constructed by ANN [1 5,16]. Genetic programming (GP) is 
another modelling approach that has been used to mode! engi~ 
neering phenomena. G P is an evo! utionary computing method that 
generates transparent an d structured mathematical expressions to 
represent the system being studied. The most common type of GP 
method is symbolic regression, which was proposed by Koza [17]. 
This technique creates mathematical expressions to fìt a set of data 
points using the evolutionary process of genetic programming. The 
genetic programming procedure mimics natura! selection as the 
'fitness' of the solutions in the population improves through sue~ 

cessive generations [ 18,19]. However, GP also has some limitations. 
!t is prove n that GP is not very powerful in fìnding constants and, 



more importantly, that i t tends to produce functions that grow in 
length over ti me [15]. 

In this artide, using a dataset collected from literature and 
a nove! hybrid data-driven technique that overcomes the short
comings of ANN and GP, a mode! is developed to predict the 
degradation of concrete subject to sulphuric aci d attack. This new 
data mining technique, called evolutionary polynomial regression 
(EPR), provides a structured, transparent and concise mode! repre
senting the behaviour of the system. Description of EPR technique 
is provided in following sections. Then development of the m od el 
to predict the degradation of concrete subject to aci d attack is pre
sented. A parametric study is carried out for the proposed mode! 
in order to investigate the effect of changes in different input 
parameters on the output. ln additi an the developed EPR mode! is 
compared with a neural network m od el to show the advantageous 
ofthe proposed technique. Using the developed mode! and optimi
sation techniques, the optimum ingredients of concrete mixtures 
to resist against aci d attack is determined. 

2. Evolutionary polynomial regression 

Evolutionary polynomial regression (EPR) is a new hybrid 
technique for creating true or pseudo-polynomial models from 
observed data by integrating the power of least square regression 
with the efficiency of genetic algorithm. A typical formulation of 
EPR can be expressed in the following equation [15] : 

m 

y = 2._)(X,J(X), ai) + ao 
j=l 

(3) 

In this equation, y is the estimated output of the system; ai is 
a constant value; F is a function constructed by process; X is the 
matrix of input variables; f is a function defined by user; and m 
is the number of terms of expression excluding the bias term ao. 
The generai functional structure represented by F(X,j(X), ai) is con
structed from elementary functions by EPR using genetic algorithm 
(GA). The function of GAis to select the useful input vectors from 
X to be combined together. The building blocks (elements) of the 
structure of Fare defined by the user based on understanding of 
the physical process. While the selection offeasible structures to be 
combined is done through an evolutionary process, the parameters 
ai are estimated by the least square method. 

The first step to identify the structure of the m od el is to convert 
Eq. (3) into the following vector form [ 15,20] : 

(4) 

where YNx1(6, Z) is the least square (IS) estimate vector of Ntarget 
values; Od xl is the vector of d = m+ 1 parameters aj an d ao (Or is 
the transposed vector); an d ZNxd is a matrix formed by I ( unity 
vector) for bias ao and m vectors of variables zJ. Fora fixed j, the 
variables z) are a product of the independent predictor vectors of 
inputs, X = ( X1 X2· · .Xk) . 

EPR starts from Eq. ( 4) and searches for the best structure, i.e. 
a combination of vectors of independent variables (inputs) X5• 1 :l<· 

The matrix of input X is given as [15] : 

(5) 
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where the kth column ofX represents the candidate variable for the 
jth term of Eq. ( 4 ). Therefore the jth term of Eq. ( 4) can be written 
as: 

(6) 

where z) is thejth column vector in which its elements are products 
of candidate independent inputs and ES is a matrix of exponents. 
Therefore, the problem is to find the matrix ESI<xm of exponents 
whose elements can be values within user-defined bounds. For 
example, ifa vector of candidate exponents for inputs, X. ( chosen 
by user) is EX = [0, 1, 2] an d number of terms (m)(excluding bias) 
is 4, an d the number ofindependentvariables (k)is 3, then the poly
nomial regression problem is to find a matrix of exponents ES4x3 
[ 15]. An example of such matrix can be as following: 

o 2 
o 1 

2 o 
o 

(7) 

When this matrix is applied to Eq. ( 6) the following set of math
ematical expression is obtained: 

Z1 = (X1)0 · (X2)1 -(Xd=X2 x~ 

Z2 = (X1)0 · (X2)1 .(xd = X2 -XJ 

Z3 = (Xd · (X2)2 . (X3)0 = X1 x~ 
(8) 

~ = (Xd · (X2)1 . (X3)0 = X1 -X2 

Thus the expression of Eq. ( 4) is: 

Y = ao + a1 · Z1 + a2 · Z2 + a3 · Z3 + a4 · Z4 

= a o + a1 · X2 · X1 + a2 · X2 · X3 + a3 · X1 · X~ + a4 · X1 · X2 
(9) 

I t should be noted that each row ofES determines the exponents 
of the candidate vari ab le of the jth term in Eqs. (3) an d ( 4). Each 
of the exponents in matrix ES corresponds to a value from user
defined vector EX This allows the transformation of the symbolic 
regression problem into finding the best ES, i.e. the best structure 
ofthe EPR equation, e.g. in Eq. (9). 

In addition to the above structure, EPR can construct non
polynomial mathematical expressions. lt is possible to assume a 
functionf, such as naturallogarithm, hyperbolic tangent, hyper
bolic secant and exponential and a structure among the following 
[15] : 

Y=ao+ 2...>! · (X!)'-"J, l) · · (X,, )rs:J,k) ·f ((xl)'SZj,/<+l)) · . .. ·f((Xk)rs:J,ll<)) Case l 

)=l 
m 

Y=ao+ 2.=: aJ ·t ((X1 )ES\~ l)· . (X~<)'-"J,k)) Case2 

)=l 
m 

Y=ao+ 2.=: aJ ·(Xl)'S:J,l). . (XI<)'S\J,k) ·f ((xl)'S\J,k+l). . (XdS\~2k)) Case3 

)=l 

Y= g (ao+ t a!· (XJ)ESZJ,l) · · (Xk)ES:J ,k) Case4 

(1 O) 

An integer GA coding is used in EPR to determine the location of 
the candidate exponents of EX in the matrix ES [20,21]. For exam
ple, the positions in EX= [0,1 ,2] correspond to the following string 
for the matrix of Eq. (7) and the expression of Eq. (9): 

EX = [1 23, 122, 231, 221] (11) 
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It is clear that the presence of a zero in EX ensures the ability 
to exclude some of the inputs and/or input combinations from the 
regression equation. 

The modelling process ofEPR starts byevoiving equations. As the 
number of evoiutions increases, EPRgraduallypicks up the different 
contri buting parameters t o forme q uations representing the system 
being studi ed. 

In order to provide the best symbolic modei(s) of the system 
being studi ed to the users, EPR is facilitated with different objective 
functions to opti mise. The originai EPR methodoiogy used oniy o ne 
objective (i.e., the accuracy of data fitting) to explore the space of 
solutions while penalising complex mode! structures using some 
penalisation strategies [15]. However the single-objective EPR 
methodologyshowed some shortcomings, and therefore the multi
objective genetic algorithm (MOGA) strategy has bee n ad de d to EPR 
[22]. The multi-objective approach in EPR (MOGA-EPR) is designed 
to seek those mode[ structures that on one hand satisfy the fitness 
and on the other hand controlling the structural complexity. In this 
approach the contro[ offitness an d complexity are demanded to dif
ferent singly acting objective functions. The objectives represented 
by the functions are mutually conflicting, and therefore their opti
misation returns a trade-off surface of models [20-22]. MOGA-EPR 
tackles a multi-mode! strategy by varying the structural parsi
mony (i.e. the number of constant values in the equation) while 
working on the objective function used in Single-Objective EPR. 
Then, MOGA-EPR finds the set of symbolic expressions that per
form well according to two (or more) conflicting criteria considered 
simultaneously, the leve[ of agreement between simulated and 
observed measurements, an d structural parsimony of the expres
sions obtained. The objective functions used are: (i) Maximisation 
of the fitness; (ii) Minimisation of the total number of inputs 
selected by the modelling strategy; (iii) Minimisation of the length 
of the mode! expression. A further advantage of MOGA-EPR is the 
increased pressure to a chieve structural parsimony because a large 
number of ai values or a large total number of inputs must be jus
tified by the fitness of the mode l (note that the Pareto dominance 
criterion and the function are to be minimised). The introduced 
objective functions can be used in a two objective configuration 
or all together [20- 22]. At least one objective function limits the 
complexity of the models while the other one contro[ the fitness 
of the mode! s. The multi-objective strategy returns a trade-off sur
face (or line) of complexity versus fitness which allows the user 
to a chieve a lo t of purposes of the modelling approach to the phe
nomenon studied [20- 22]. In this study the multi-objective EPR is 
used to develop the EPR-based models. Further details of the EPR 
technique can be found in [15,20- 22]. 

The accuracy of the developed models by EPR is measured at 
each stage using the coefficient of determinati an (Co D) [23]: 

CoD- 1- ~N(Ya - Yp)2 

- ~N (Ya -1 /N~NYP) 2 
(12) 

where Ya is the actual input value; Yp is the EPR predicted value an d 
Nis the number of data points on which the Co D is computed. Ifthe 
mode! fitness is not acceptab le or other termination criteria (e.g., 
maximum number of generation an d maximum number of terms) 
are no t satisfied, the current mode! should go through another evo
luti o n in order to obtain a new mode! [20]. A typical flow diagram 
for the EPR procedure is presented in Fig. 1. 

The EPR algorithm has been implemented in MATIAB by 
"hydroinformatics" research group at the Technical University of 
Bari, Italy [20- 24 ]. EPR has a friendly and easy-to-use interface and 
offers a wide range of options to contro[ the complexi ty and struc
ture of the mode ls. EPR is provento be capable of learning complex 
non-linear relationships from a set of data, and i t has many desir
able features for engineering applications. The EPR technique has 

Crossover of the populalion J 
.-

Seleclion (based an ranking) of 
the mating pool of exponent 

veclor individuals 

L Fitness evaluation --~ 

YES 

Fig. t. TypiCll flow diag ram far EPR procedure. 

been successfully applied to modelling a wide range of complex 
engineering problems including modelling sewer failure [24], pipe 
break prediction [25], mechanical behaviour of rubber concrete 
[26], torsional strength ofreinforced concrete beams [27] and many 
other applications in civil and mechanical engineering [28- 30]. 

3. Development of models 

3. 1. Database 

The database to train an d deve! o p EPR models is collected from 
a study by Hewayde [31]. Hewayde [31 ] carried out a set of exper
iments to evaluate the compressive strength and mass loss of 
different concrete mixtures un der sulphuric aci d attack. The exper
iment involved the preparation of severa[ concrete cylinders with 
various mix design, followed by immersing them in sulphuric aci d 
solutions with different p H values in order to measure the leve[ of 
degradation. Degradation of samples was evaluated by means of 
measuring and recording t he mass loss of concrete samples after 
immersion in acid solution. Two different cement types (ASTM 
Type I and ASTM Type V), siliceous fine and coarse aggregate and 
various admixtures including silica fume, metakaolin, geopolymer 
ce ment, organic corrosion inhibitor (OCI), Caltite, and Xypex were 
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Table t 
lnput and output parameters of models l an d IL 

Mode! l (Mass loss) 

lnputs Output 

Parameter Cement Grave! Sand Water SP' Slag Silica Fume Metab O Cl Caltite Xypex Geo' p H Mass Loss 
Unit kgfml kgfml kgfml Lfml L/ m3 kg/m3 kgfml 
Symbol c G s w H Sg SF 

' SP: superplasticizer. 
b Meta: Metakaolin. 
' Geo: geopolymer cement. 

Table2 
Statistics of the training and testing data used to develop the EPR mode!. 

Parameters c G s w H Sg 

Training data 
Minimum 140.0 745.0 798.0 109.2 0.0 
Maximum 571.0 1009.0 926.0 202.0 2.8 
Mean 352.7 870.1 869.1 148.3 1.1 
Standard deviation 96.4 35.5 21.7 17.9 0.6 

Testing data 
Minimum 182.0 851.0 829.0 120.5 0.5 
Maximum 430.0 952.0 892.0 168.3 2.4 
Mean 341.6 875.8 870.2 147.2 1.1 
Standard deviation 83.7 18.3 11.0 10.3 0.5 

used to prepare concrete specimens. The effect of using ASTM Type 
V cement in the mixtures was presented in terms of percentage of 
slag sin ce Type V cement, is a blended cement m ade of 65% ordinary 
Portland cement (ASTM Type I) and 35% fìnely ground granulated 
blast furnace slag. The concrete samples had different values of 
water/cement ratio and aggregate contents as well as various per
centages of superplasticizer and admixtures which made a very 
suitable collection of datato trai n and develop EPR models. Further 
details ofthe experiments are described in [10,31]. In this study all 
the above ingredients of concrete are considered as input parame
ters of the EPR mode! an d percentage of mass loss as an indication 
of degradati an as the output. Details of the all parameters, symbols 
and units used to develop the mode! are presented in Table 1. 

3.2. EPR procedure 

In order to ensure the validity and reliability of the developed 
models, before the EPRprocedure starts, the data is divided into two 
independent training and validation sets. This is also a common 
approach in most of the data mining techniques based on artifì
cial intelligence such as neural network and genetic programming 
[10- 20]. The construction of the mode! takes piace by adaptive 
learning over the training set and the performance of the con
structed mode! is then appraised using the validation set. In order 
to select the most robust representation of the whole data for train
ing and validation sets, a statistica[ analysis was carri ed out on the 
input and output parameters of severa[ randomly selected sets of 
data. The purpose of the analysis is to ensure that the statistica[ 
properties of the data in each of the subsets were as close to each 
other as possible. After the analysis, the most statistically consis
tent combination was used for construction and validation of the 
EPR mode! s. In addition the statistica[ analysis will help to keep the 
validation data in the range of the maximum an d minimum values 
ofthe training data as generally the EPR technique (like other data
mining techniques) is stronger in interpolation than extrapolation 
over the data. Maximum, minimum, average and standard devia
tions are the parameters used to perform the analysis. The result of 
the statistica[ analysis is presented in Table 2. 

Before the start of t he EPR process the training data was shuf
fled to avoid any bias during the training process over a particular 

0.0 
150.5 

46.9 
65.7 

0.0 
150.5 

53.1 
67.8 

kgfml Lfml Lfml kg/m3 kgfml (%) 
M O Cl Cl t x Geo p H ML 

SF M O Cl Cl t x Geo p H ML 

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 
64.5 64.5 7.0 35.0 13.1 215.0 1.0 70.0 

4.8 5.8 0.5 2.7 0.9 20.8 0.5 0.2 
14.0 15.3 1.6 8.3 2.8 58.6 0.2 0.1 

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 
64.5 43.0 6.0 30.0 8.6 172.0 1.0 0.3 

5.4 8.0 0.8 2.9 1.5 21.5 0.5 0.2 
14.9 14.7 1.9 8.9 3.3 55.1 0.2 0.1 

part of the data. Once the training and validation sets are chosen, 
the EPR process can start. T o develop the EPR models, a number of 
settings can be adjusted to manage the constructed models in terms 
of the type of the functions, number of terms, range of exponents, 
etc. [20]. When the EPRstarts, the modelling procedure commences 
by evolving equations. As the number of evolutions increases, EPR 
gradually learns an d picks up the participating parameters in order 
to form equations. Each proposed mode! is trained using the train
ing data and tested using the validation data. The leve[ of accuracy 
at each stage is measured using the CoD (Eq. (12 )). Severa[ EPR runs 
were carried outand the analysiswas repeated withvarious combi
nations and ranges of exponents, different functions and different 
numbers of terms in or der to obtain the most suitable form for the 
mode!. The following setting returned the strongest se t of mode! s. 
Range of exponents: [O Y2 1 2 3]; number of terms: 20; function 
type: no function; MOGA strategy: Co D vs. (% aj). The EPR process 
with the setting outlined above completed in 4 mi n and 49 sona 

Table3 
A summary of EPR results far degradation mode!. 

Mode! No. 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

No. 
participating 
parameters 

o 
2 
4 
8 
9 

10 
12 
12 
12 
10 
11 
11 
10 
10 
12 
13 
13 
13 
13 
12 

Number of 
terms 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

CoD training CoD testing 
(%) (%) 

0.0 0.0 
68.0 78.4 
72.9 79.6 
84.3 79.9 
87.3 87.3 
88.8 90.4 
89.8 90.9 
91.4 91.3 
94.8 90.0 
94.9 89.2 
95.0 87.4 
96.8 91.0 
97.0 94.0 
97.2 89.7 
97.2 88.7 
94.7 87.3 
96.6 96.1 
97.0 88 .3 
97.3 94.2 
97.7 96.0 
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Fig. 2. Prediction results ofmodell for training and validation data. 

personal computer with Inte[® Core 1M i7 processar with 2.2 GHz 
of speed and 4GB memory. As mentioned earlier the MOGA-EPR 
returns a trade-off curve of the m o del complexity versus accuracy 
which allows the user to select the most suitable mode! based on 
his judgement and knowledge of the problem. The results of the 
EPR processare presented in Table 3. The EPR models in this table 
are ranked based on the number ofterms. lt can be seen from this 
table that of the 20 equations constructed by EPR only relationship 
number 16, 17, 18, and 19 include all the participating parameters. 
Based on the simplicity of the models and the CoD values of both 
training an d testing datasets m od el number 17 ( Eq. (13 )) is found to 
be the most robust models for predicting degradation of concrete. 

to further corrosi o n ofthe concrete. The sensitivityofthe EPR m od el 
to one of the admixtures (OCI) is presented in Fig. 4. It is evident 
from this figure that as the amount of OCI increases the mass loss 
is reduced. This indicates that adding a limited amount of OCl as a 
parti al replacement of cement will reduce the deterioration of con
crete against sulphuric aci d. ln addition i t can be observed that Eq. 
( 13) has captured the effect of different values of p H an d its effect 
o n the degradati an of the concrete. As expected Fig. 3 an d 4 show 
that a lower value of p H, which represents a harsher acidic environ
ment, cause further degradation in concrete. These predictions are 
in agreement with those reported in Hewayde [31]. It can be seen 
from the figures above that the developed EPR mode! was success
ful in capturing the sensitivity of mass loss to changes of different 
concrete mixture and admixture contents. 

3.4. Comparison with ANN mode/ 

The results of the developed EPR m od el (Eq. ( 13)) is compared 
with other existing models to assess the performance of EPR and 
further validate reliability ofthe developed mode!. From literature 
the work carri ed out by Hewayde et al. [1 O] is the only study o n 
prediction of concrete degradation as a result of sulphuric acid 
attack that includes all the concrete ingredients mentioned above. 
As explained before Hewayde et al. [10] developed an ANN mode! 
to predict the mass loss of the concrete samples immersed in 
sulphuric acid solutions. ln this study the mode! developed by 
Hewayde et al. [10] is used as a reference to examine the perfor
mance of the developed EPR mode!. Hewayde et al. [10] did not 
report any CoD or R2 values for their developed models. There
fore fora fair comparison a feed-forward back-propagation neural 

ML= 1.5 x w-4 (Sg)2 + 4.7 x w-7 (W)(SF).y'S - 2.2 x w-6 (W) j (H)(Clt)(S) + 1.6 x w-2 j (G)(Sg) 

-1.5 x w- 7(H)(Geo) j(G)(pH)(W)(Sg)+ 2.8 x w-6 (X)j (G)(S)(M) -1.3 x w- 6(G)(W)JPH 

+ 1.9 x 1 o-8(G)\/(W)- 9.4 x w-11 (G)2(Sg)(S)- 3.2 x w-4 J(c)(s) + 5.6 x 1 o-8(S)(pH)j (C)(W)(Geo) 

-7.2 x 10-13(G)3 (pH)2 j(C)(W) - 5.8 x 10-6 (pH)2(C)(H)j (W)(SF) - 5.2 x 10-7 (C)(W)..;H 

(13) 

+3.3 x 10- 5(C)j(G)- 2.2 x 10-15(S)3(H)3 ( C)j(G )(X)( p H)- 1.2 x 10- 10(C)2 j (G)(S)(OCI) 

The symbols used in Eq. (13) aredescribed inTable 1. The predic
tions provi d ed by this relationship for both training an d validation 
data is illustrated in Fig. 2. From this figure and the CoD values pre
sented in Table 3 i t is evident that the EPR mode! performs well and 
represent a very accurate prediction for unseen cases of data. 

3.3. Parametric study 

A parametric study was carried out for further examination of 
the prediction capabilities of the proposed EPR mode l (i. e. Eq. ( 13)). 
The parametric study will help to assess the extent to which the 
EPR mode! represents the physical relationships between differ
ent parameters an d the effects of different input parameters o n the 
m od el output. All the input parameters except the o ne being exam
ined were set to their mean values and the mode! predictions for 
different values ofthe parameter being studied were investigated. 
Each parameter was vari ed within the range of its maximum and 
minimum values. Fig. 3 shows the results of the parametri c study 
conducted to investigate the effect of change in cement content 
and W/C ratio on the developed mode!. The results are presented 
for three different p H values (Le. 0.3, 0.6 and 1.0). The results show 
that the mass loss of concrete subject to sulphuric acid attack esca
lates by increasing cement content or reduction in W/C ratio. Both 
of these behaviours are consistent w i t h previous stud i es [ 1 O] . These 
results show that as t he cement content of concrete increases, the 
sulphuric aci d will expand its reaction with the cement which leads 

network was developed using the same training and testing 
datasets as those used in the development of the EPR mode!. The 
structure an d architecture of the neural network was kept same as 
the one presented in Hewaydeet al. [10]. The neural networkmodel 
comprised of 13 elements in input layer representing the mixture 
ingredients, o ne hidden layer with 1 O processing elements an d o ne 
node in output layer representing the mass loss of concrete. The 
performance of EPR and accuracy of the EPR-based mode l is com
pared with the ANN mode! in terms of coefficient of determinati an 
(CoD), root mean square errar (RMSE) and mean absolute error 
(MAE). These coefficients are defined in Eqs. (12), (14) and (15) 
respectively. The result of this comparison is presented in Table 4 . 

(14) 

(15) 

T ab le 4 shows that the EPR mode! has captured the underlying 
relationship between the parameters in different levels and has 
performed slightly better than the ANN mode! in all three criteria 
for both training an d testing datasets. However apart from the small 
differences between these coefficients for EPR and ANN, t he fact 
that the EPR models are transparent, concise, and practical mat he
matical equations, makes EPR approach more favourable compare 



Table4 
Performance of EPR and ANN mode! in prediction of concrete degradati an. 
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40 

35 

30 

~ 25 

::l 
o ..... 20 

"' "' "' 15 2 

10 

o 
300 

30 

25 

~ 
20 

::l 
o 15 ..... 
::l 
"' 2 10 

...... ...... 
...... ...... 

Co D 

EPR 

96.61 
96.14 

..... ...... ...... 
...... ...... 

ANN 

94.28 ± 0.22 
95.16 ± 0.48 

...... ...... ...... 

--pH=0.3 

----- pH=0.6 

- )(- p H= LO 

350 400 450 500 

Cement Content (kg/m 3) 

550 

(a) 

--........ ---........... .......... __ 

600 

o +------T------T------r------~-----r----~ 
0.20 0.25 0.30 0.35 

w/c ratio 

(b) 

0.40 0.45 

Fig. 3. Changes in mass los s with (a ) cement content (b ) W/C ratio. 

0.50 

30 ~---------------------~ 

25 

~ 20 

"' "' ..9 15 

:Il 
"' 2 10 

5 

o 

..... _______ _ 

2 

------------------~ 

4 

--pH=0.3 

----· pH=0.6 

)(- pH=l.O 

X-.c-.c-x 

6 

Fig. 4. Changes ofmass loss with OCI. 

8 

991 

RMSE MAE 

EPR ANN EPR ANN 

1.22 1.71 ± 0.06 
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Fig. 5. Changes ofmass loss versus WJCratio in the customised mode! (Eq. (16)). 

with ANN models which are m ade of compi ex black box ofweight 
matrices an d cannot be readily accessed by the user. 

3.5. Customised model 

As shown in previous sections, Eq. ( 13) is the generai EPR mode! 
that includes ali the mixture and admixture parameters and can 
accurately predict the degradation of concrete exposed to sulphuric 
acid. However i t is also possible to use these models for the con
cretes that have been prepared with no admixtures or with only 
some of the admixtures. This can be done by adapting Eq. (13) 
when those admixture parameter(s) are equa! to zero. The results 
of such evaluations le ad to the generation of more concise an d prac
tical equations that include ali the essential concrete ingredients. 
As an example, Eq. (13) is customised here for the case when no 
admixture is used, an d p H value is equa! to 0.6. The result of these 
adjustments is presented in Eq. (16). 

ML = - 9.8 x w-7 (G)(W) + 1.9 x w-8 (G)\/(w) - 3.2 x w-4 

yi(C)(S)- 2.6 x 10-13 (G? v (C)(W) (16) 

-5.2 x w-7(C)(W)./H+3.3 x w-5c.JG 

The customised Eq. ( 16) is a practical tool that can be used to 
evaluate the degree of deterioration of ordinary concretes exposed 
to sulphuric aci d. The sensitivity analysis of Eq. ( 16) is examined 
for changes ofW/C ratio which is known to be a key parameter in 
concrete mass loss due to sulphuric aci d attack [ 32] . The re sul t is 
shown in Fig. S. It can be observed that Eq. (16) has successfully 
predicted the reduction in mass loss as the W/C ratio increases. 
This shows the reliability of the customised mode! in predicting 
concrete degradation. 

4. Optimum mixture of concrete subject to sulphuric aci d 
attack 

From t he results of t he parametric study it is evident that 
different concrete ingredients may have different e ffects on the 
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Table 5 
Optimum concrete mixture for minimum mass loss. 

Parameter 
Uni t 

M ix design 

30 

25 o, .. .... 
~ 20 
~ 
"' "' o 15 ....l 

"' "' "' ~ 10 

5 

o 
0.2 0.25 

Cement 
(kgfml ) 

404.0 
447.0 
478.1 
513.9 
555.6 
571.0 

'o ...... ...... 
"'.., ...... 

Grave! 
(kgfml ) 

778.2 
745.0 
745.0 
745.0 
745.0 
794.4 

'"'O .... ...... o-........ 0 

0.3 0.35 0.4 0.45 0.5 

w/c ratio 

Sand 
(kgfml ) 

926.0 
926.0 
926.0 
926.0 
926.0 
926.0 

0.55 

Fig. 6. The results ofoptimisation: minimum mass loss fordifferentW/C ratios. 

degradation of concrete. For example while increasing cement con
tent will escalate the corrosion due to the mass loss, adding more 
water will help to reduce the concrete degradati an. Therefore i t is 
important to fìnd a concrete mixture that can minimise the con
crete degradation when it is exposed to sulphuric acid attack. ln 
this section, using optimisation techniques and customised mode! 
(Eq. ( 13)), different optimum concrete mixtures to minimi se degra
dation are obtained. Although only main concrete ingredients (i.e. 
cement, grave!, sand, water and superplasticizer) are optimised 
here, the technique can be extended to fìnd both the optimum 
mixtures and admixtures in Eq. (13). 

Eq. (16) was minimised using a nonlinear programming optimi
sation technique. Lower limits and upper limits of each variable in 
the equation were set based on the minimum and maximum val
ues of those parameters in the dataset. A constraint was defìned to 
ensure that the total volume of concrete is always equa! to uni t 
value during the optimisation process. This process was carried 
out severa! times for different values ofW/C ratios. The results of 
this optimisation are presented in Table S. From this table it can 
be conduded that the W/C ratio has a signifìcant influence on the 
vulnerability of the concrete when encounter an acidic environ
ment. This has al so been reported by other researchers in previous 
studies [32]. The results show that i t is possible to achieve a min
imum 10% mass loss with a W/C value of 0.50 and the presented 
mix design. The relationship between W/C ratio and mass loss is 
also depicted in Fig. 6. While the W/C ratio is evidently a key role 
in the rate of degradati an, the influence of other ingredients such 
as grave! and sand seems to be compi ex. This can be related to the 
nature of aggregate materials which are non-homogenous mate
rials (unlike cement and water) as well as the effect of different 
types of aggregate which has different reaction in the vicinity of 
an acidic environment . Further investigation and experiments on 
various types of aggregate can help to unders tand its function in 
amount of the concrete degradation due to aci d attack. 

Water Superplastidzer W/C Mass loss 
(kgfml ) (Lfml) (%) 

202.0 2.0 0.50 10.0 
201.1 1.5 0.45 11.2 
191.2 1.5 0.40 13.5 
179.9 1.5 0.35 16.3 
166.7 1.5 0.30 19.6 
142.8 1.5 0.25 24.4 

5. Summary an d conclusions 

Sulphuric acid attack is recognised as one of the main causes 
for concrete sewer pipe degradation. Degradation of sewer pipes 
results in reduction ofpipe's wall thickness and the eventual break
down of the system. The collapse of sewer systems can incur many 
fìnancial and social problems. 

ln this artide a new approach is presented for the prediction of 
degradation of concretes subject to sulphuric acid attack. Using a 
fairly comprehensive dataset from severa! aci d attack experiments 
on various concrete mixtures and admixtures and a hybrid data 
mining technique ( EPR), a m o del was developed an d validated to 
predict the mass loss percentage of concrete when i t is exposed to 
sulphuric acid. EPR integrates numerica! and symbolic regression 
to perform evolutionary polynomial regression. The strategy uses 
polynomial structures to take advantage of their favourable mathe
matical properties. The developed EPR m od el presents a structured 
an d transparent representation of the system, allowing a physical 
interpretation of the problem that gives the user an insight into the 
relationship between degradation an d various contributing param
eters. 

The main feature of the EPR approach presented in this artide is 
the possibility of getting more than one mode! for concrete degra
dation. The bes t mode! is chosen on the basis of simplicity and its 
performances o n a test se t of unseen data. For this purpose, the ini
tial dataset is split into two subsets, (i) training and (ii) validation. 
The validation data set is no t seen by EPR in the m o del construction 
phase and predictions provided by EPR models based on this data 
can be used as an unbiased performance indicator of generalisa
tion capabilities ofthe proposed mode! s. Another major advantage 
of the EPR approach is that, as more data becomes available, the 
quality of the prediction can be easily improved by retraining the 
EPR mode! using the new data. 

A parametric study was conducted to evaluate the effect of the 
contributing parameters (i.e. concrete contents) on the predictions 
of the proposed EPR mode! s. Combined effects of the parameters 
were also considered in the sensitivity analysis to investigate the 
interdependencies of parameters and their effect on the EPR pre
dictions. The results show that the developed EPR models provi de 
very accurate predictions for concrete degradation and are easy 
to use from a practical viewpoint. The results of the EPR mode! 
were compared with an ANN mode! and i t was shown that the EPR 
mode! provided more accurate results on both training and vali
dation datasets. ln addition unlike ANN, EPR returns structured, 
transparent, concise and practical mathematical equations which 
allow the user to have a better understanding on the relationship 
between input and output parameters. Using the developed EPR 
models, a customised mode! was obtained in which i t onlyincludes 
the essenti al concrete contents (i. e. cement, grave!, sand, water an d 
superplasticizer). The proposed EPR mode! was optimised in order 
to fìnd the optimum concrete mixture that provides the maximum 
resistance against sulphuric aci d attack. The results of the optimisa
tion confìrmed that, degradati an or mass loss is highly dependent 
on w ater-cement ratio. When using the models developed by EPR 



or fìnding optimum solutions using the developed models, pre
cautions should be taken as the models are only val id and reliable 
w ithin the range of the data that has bee n used for training them. 
Any attempt to use these models outside the training range may 
lead to unreliable predictions and unexpected errors. 
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