
UWL REPOSITORY

repository.uwl.ac.uk

SCAN: a smart application platform for empowering parallelizations of big

genomic data analysis in clouds

Xing, Wei, Jie, Wei ORCID: https://orcid.org/0000-0002-5392-0009 and Miller, Crispin (2015) SCAN:

a smart application platform for empowering parallelizations of big genomic data analysis in

clouds. In: 44th International Conference on Parallel Processing (ICPP-2015), 01-04 Sept 2015,

Beijing, China.

http://dx.doi.org/10.1109/ICPP.2015.38

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/1729/

Alternative formats: If you require this document in an alternative format, please contact:

open.research@uwl.ac.uk

Copyright:

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

SCAN: A Smart Application Platform for Empowering Parallelizations of Big
Genomic Data Analysis in Clouds

Wei Xing
Cancer Research UK Manchester Institute

University of Manchester, Manchester, United Kingdom
email: wei.xing@cruk.manchester.ac.uk

Wei Jie
School of Computing and Technology

University of West London, London, United Kingdom
email: wei.jie@uwl.ac.uk

Crispin Miller
Cancer Research Manchester Institute

University of Manchester, Manchester, United Kingdom
email: crispin.miller@cruk.manchester.ac.uk

Abstract—Cloud computing is often adopted to process big
data for genome analysis due to its elasticity and pay-as-
you-go features. In this paper, we present SCAN, a smart
application platform to facilitate parallelization of big genome
analysis in clouds. With a knowledge base and an intelligent
application scheduler, the SCAN enables better understanding
of bio-applications’ characteristics, and helps to orchestrate
huge, heterogeneous tasks efficiently and cost-effectively. We
conducted a simulation study and found that the SCAN
platform is able to improve the performance of genome analysis
and reduce its cost in a wide variety of circumstances.

Keywords-genome analysis; application platform; cloud com-
puting; parallelization

I. INTRODUCTION

Cancer is a disease of the genome. Systematic studies of
the cancer genome can provide us with a global view of
the molecular architecture of complex traits, which is useful
for the identification of genes, pathways, and cell signal
networks that may dictate tumour clinical behaviour and
treatment response [1]–[3]. Because cancer cells have a large
variety of relatively rare mutations, a computational chal-
lenge arises to process hundreds of millions of short DNA
sequences (corresponding to billions of DNA nucleotides)
in a cost-effective way.

Today cloud computing is often employed to provide huge
computational resources for the needs of genome analysis
on an on-demand basis. Genome analysis normally encom-
passes a chain of various biological applications, which
may engage thousands of analytic tasks with hundreds of
thousands of copies of heterogeneous data in different sizes
derived from geographically diverse sources. Though current
cloud computing systems are able to adapt to workload
changes by provisioning required resources automatically,
there is still plenty of room to improve the performance and
reduce the total cost for processing big genomic data.

There are two major issues with cloud-based big ge-
nomic data analysis. Firstly, most genome analytic processes

are currently executed sequentially in clouds when there
are huge opportunities for application parallelization. This
opportunity is missed because we lack a smart scheduler
that can “understand” the genomic applications and identify
opportunities for concurrency. Secondly, very often analysis
processes spend large proportions of their running time on
blocked I/O due to the volume of data that must be fetched
or retrieved, both to/from the analysis user and to/from
intermediate storage used to communicate between analysis
processes.

To address the above issues, We need a smart scheduling
mechanism to orchestrate the huge number of analysis
processes and make them execute effectively in clouds. For
example, it could assign analysis tasks with their required
computing resources in a “just enough and just on time”
manner, so that the utilisation of cloud computing resources
can be optimised. we also need an intelligent mechanism
that can supply data when required with the progress of
analysis execution. For example, it could upload required
genome reference files just before they are needed to avoid
a long waiting time, or fragment large sequencing datasets
into suitable small pieces to enable parallel execution and
thus speed up the whole process.

SCAN, a smart application platform to empower paral-
lelization for big data processing in a cloud environment, is
proposed in this paper. The SCAN is a generic platform that
can be applied to any type of big data processing. However,
our efforts focus on exploring the research challenges within
the context of big genomic analysis and in the research
area of translational cancer research through well-defined
examples and the application tools, i.e., Genome Analysis
Toolkit (GATK). GATK is one of most popular software
tools today that is used to process genomic data. Together
with a sequencing machine and pre-processing by other soft-
ware tools that map the machine’s output onto a reference
genome, it can achieve many different functions for genomic
data analyses. We thus select GATK tools for our evaluation.

Other genomic data processing share the same kernel of the
SCAN platform.

The SCAN platform has two key components. The first
component distributes large amounts of biological data
required by analysis processes in an intelligent manner.
This is informed by an application knowledge base which
includes information about various bio-applications and their
characteristics, such as input data format, parameter settings,
performance suggestions, etc. By querying the knowledge-
base, the SCAN can determine, for example, the most
suitable file size for each type of genomic data analysis
based on the resource cost and performance requirements.
It can then suggest to subdivide a big input data file into
some number of small input files for parallel processing. The
second key component of the SCAN platform applies smart
algorithms to determine what cloud resources to hire, and
how to distribute resources between different analysis jobs,
aiming to execute analysis tasks in the cloud as efficiently
as possible.

In this paper, we present the design and development
of the SCAN platform. We also describe a reward-based
job scheduling mechanism to orchestrate large numbers of
heterogeneous genome analysis tasks. Finally, the benefits
of the SCAN platform is demonstrated through a simula-
tion study. The evaluation results indicate that the SCAN
platform can improve overall genomic data analysis perfor-
mance and can significantly reduce the attendant cost. The
contributions of this work are:

1) A smart application platform is developed to facilitate
big genomic data processing in clouds.

2) A knowledge-based data distribution mechanism is im-
plemented to parallelize big genomic data processing.

3) A scheduling algorithm is designed to better support
resource elasticity of genome analysis in cloud envi-
ronments.

4) Simulation experiments are conducted to examine the
benefits of running the GATK application using the
SCAN platform.

The remainder of this paper is structured as follows: in
Section II we describe the design and development of the
SCAN platform architecture and its key components, and
provide detailed information on SCAN’s smart algorithms.
In Section III-B the prototype implementation is discussed.
In Section IV we study SCAN’s performance in a simulated
cloud. In Section V related work is discussed before the
conclusion of the paper in Section VI.

II. DESIGN

Genome analysis normally involves a number of differ-
ent analysis applications, which may incorporate multiple
levels of biological information such as phenotype, geno-
type, expression profiles, proteomics, protein interaction,
metabolic analysis and physiological measurements, etc. The
main challenge addressed in the design of the SCAN is

that different stages of a particular analysis pipeline may
require substantially different amounts and types of input
data and computing resources. For example, mapping of
deep sequencing data to genome annotation via a relational
database such as ENSEMBL relies on the ability to perform
frequent joins across multiple tables containing millions of
rows, while computation of downstream statistics is often
dependent on repeated numerical calculations over permuted
data in order to provide a null distribution [4]. The SCAN
provides the required data and cloud computing resources
smartly in order to improve the performance and reduce the
cost of genome analysis.

A. Basic Requirements

In this section, we analyse basic requirements of the
design of the SCAN platform as follows:

1) Catering to diverse application requirements: SCAN
manages various bio-applications, each with different
computing resource requirements, and each dealing
with different kinds of data. For example, a sequence
aligner may process sequence data in FASTQ format
and may need many CPUs, whilst the GATK handles
aligned sequence data in BAM files and may need a
large amount of main memory [5], [6].

2) Allowing parallel and concurrent control: Different ap-
plications also support different degrees and modes of
parallelism (for example, local multithreading, coarse-
grained multi-process sharding and fine-grained dis-
tributed computing). Therefore it is important that
SCAN can compare the benefits of and coordinate
these different modes, including communicating with
the underlying cloud infrastructure to commission
appropriate resources.

3) Staging of data files: the SCAN has to process various
data files of different sizes. It is essential to provide a
method of manipulating or fetching the required data
for each application process. For example, for optimal
performance, the GATK analysis should operate on a
2GB BAM file; however, whole genome sequencing
data normally runs to over 100GB, which must there-
fore be sharded.

4) Maintaining a knowledge base: the SCAN needs to
assemble information about cost and performance of
different bio-applications within different cloud infras-
tructures in order to form an optimal execution plan.

B. SCAN Data Flow

Genome analysis may need to analyse large amounts of
Next Generation Sequencing (NGS) data in order to identify
the driver mutation of tumour samples, and then to associate
the mutation with protein functions within a cell signal
network. Biological processes are organised and controlled
by complex interactions between many individual compo-
nents, and thus inherently involve intricate networks. The

Gene alignment Gene variation detection

Cellprofiler

MaxQuant

Cytoscape

NGS Data Analysis

Cell Image Data Analysis

Protein Data Analysis

In
teg

rative n
etw

o
rk D

ata A
n

alysis

Illumina Hiseq 2500

Mass Spectrometry

Microscopy

Genotype2phenotype

Figure 1. SCAN Data Flow Digram.

properties of these networks underlie virtually all aspects of
cell function and can, for example, predict disease outcome
and responses to treatment.

The SCAN is thus designed to analyse either exome
data or Whole Genome Sequencing (WGS) data from the
Illumina HiSeq platform referring to some public genomic
or proteomic data. It may also analyse proteomic data and
high throughput imaging data together with the genomic
data [7]. Figure 1 shows the SCAN data flow digram and
the applications in details. We design the SCAN to work
with standard formats to enable interoperability with other
tools. For example, the read mapping produces sorted SAM
output and the variant caller takes sorted SAM input, and
generates a standard VCF file.

C. SCAN Ontology and Genomic Application Knowledge

Having information about applications is critical for effi-
ciently planning genome analysis. This information is used
for application data preparation, parameter setting, workflow
orchestration and cloud resource allocation. In order to
organise information to help the SCAN to “understand”
various biological and clinical applications, we define a
semantic model to represent heterogeneous information in
a meaningful way.

The SCAN semantic model is composed of a domain
ontology (DO), a cloud ontology (CO) and the SCAN linker.
The definition in BNF syntax is as follows:

Active Ontology ::=
’Ontology(’ [domain] ’)’
| ’Ontology(’[cloud]’)’
| ’SCAN(’{linker}’)’

Those ontologies provide an expressive information model to
describe genome analysis and the cloud domain. They enable
information to be logically self-organised and automatically
processed.

D. SCAN Reward Algorithm

We designed reward functions to motivate SCAN’s
scheduling decisions. We assume that a large number of
independent users are submitting analysis pipeline requests
to a cloud, and that they all offer reward on the same

terms (i.e. there are no users with more urgent work than
others willing to offer a premium for fast execution). We use
either the time-oriented reward scheme and the throughput-
oriented scheme. Any cloud manager can select a suitable
scheme for allocating resources based on user’s policy.

• Time-oriented Reward: Under the time-oriented reward
scheme, users offer a reward proportional to input data
size for completion of their whole analysis pipeline,
with a constant penalty per unit time the work is
delayed. Thus the reward R given for finishing an
analysis with input data size d in total time t is related
by constants Rmax and Rpenalty:

R(d, t) = d(Rmax − tRpenalty)

This scheme represents the case where the primary
undesirable factor is the time wasted by users waiting
for analysis pipelines to complete: they are paid pro-
portional to time, and so the penalty for delaying work
is similarly a linear function of time.

• Throughput-oriented Reward: Under the throughput-
oriented reward scheme, users offer a reward propor-
tional to the rate at which analysis requests are com-
pleted, and thus inversely proportional to the duration
of the complete pipeline execution. It can be given in
terms of input data size d and analysis time t in terms
of a scaling factor Rscale:

R(d, t) =
dRscale

t

This scheme represents the case where the user is more
concerned with relative speedup than with the total
time consumed for a particular run: whilst the time-
oriented scheme values any minute it can save equally,
the throughput-oriented scheme rewards according to
the proportion of runtime that was eliminated.

III. THE DEVELOPMENT OF SCAN

The SCAN is designed as an integrative application
platform which supports four types of data processes: i)
genomic data process; ii) proteomic data process; iii) cell
imaging data process; and iv) integrative data analysis. It
therefore employs a set of biological application tools for
those four types of data processes, including Burroughs-
Wheeler Aligner (BWA) for gene alignment, GATK for
gene variations detection, the Global Proteome Machine for
proteomic data analyses, MaxQuant, CellProfiler for cell
image analyses, and Cytoscape for omic data integration [8]–
[11]. The key objective of the SCAN platform is to match
the data and computing resources demanded by a variety of
genomic applications or by different volumes of cancer data
efficiently and economically.

 Data Broker Scheduler Workers

data type worker

/input/fasta/s1.fa 11 2,4,g1

/input/fasta/s2.fa 12 8,8,g3

/input/fasta/s3.fa 13 12,8,b1

/input/protein/m1.mgf 11 16,8,m1

….

 Genome GATK

 SCAN PlatformSCAN Platform

 Genome MuTect

 <!-- http://www.semanticweb.org/wxing/ontologies/
 scan-ontology#GATK1 -->
 <owl:NamedIndividual rdf:about="&scan-
ontology;GATK1">
 <scan-ontology:performance>good
 </scan-ontology:performance>
 <scan-ontology:inputFileSize>10
 </scan-ontology:inputFileSize>
 <scan-ontology:steps>1</scan-
ontology:steps>
 <scan-ontology:eTime>180</scan-
ontology:eTime>
 </owl:NamedIndividual>

 Genome GATK

Figure 2. Overview of SCAN Architecture.

A. SCAN Architecture

Considering all the requirements presented in Section
II-A, we present the SCAN as a smart application platform
(shown in Figure 2). It comprises three key components: a)
Data Broker, b) SCAN Scheduler, and c) SCAN Workers.
The Data Broker splits and distributes large datasets for
various applications, so that the SCAN is able to run
subtasks in parallel. The SCAN Scheduler maintains analytic
task queues and pools of SCAN workers that may be used
to execute those tasks or subtasks. Tasks are scheduled by
a ”reward” algorithm with the aim to maximise profit (the
difference between resource costs and user reward for work
completion). The SCAN Workers are varied in terms of their
application software stack (for example, operating systems
and installed applications available) and their hardware con-
figuration (for example, the number of (virtual) CPU cores
they are assigned or the amount of physical memory they
are permitted to use). In the following, we will discuss these
three components in more detail.

1) Data Broker: The Data Broker is designed to fragment
or merge large sets of input data for massive analytic tasks so
that the SCAN can parallelize genome analysis. The SCAN
can intelligently fragment the input data of each step of
analysis workflows based on the information provided in
a knowledge-base. For example, it can divide a large input
file into many small input files so that a big data process can
be executed by several parallel analysis processes, choosing
the degree of parallelism based on a user cost policy.

The data broker has two key components: an application
knowledge base to guide data preparation of each task, and
data sharders to fragment various genomics data into suitable
chunks. The knowledge-base is built by using semantic web
technology, i.e., ontology and the instances. There are three
key functions of the data broker are described as follows:

(i) The Creation of SCAN Knowledge-base: We have cre-
ated an OWL (Web Ontology Language) ontology that de-
scribes biological data and its associated bio-applications, re-

sources, capabilities and the relationships among them [12],
[13]. The ontology is based on the Gene Ontology (GO)
described in [14] and extends the GO to include de-
scriptions about biological data types and formats, bio-
applications, cloud middleware services, computing and
storage resources, networks, and usage policies. Besides
the ontology, we add various instances of tasks of omics
data analysis, including genome analysis, proteome analysis,
imaging analysis, and integrative analysis running in a cloud.
For example, the instances of genome analysis include
workflows like data variation detection analysis and miRNA
fusion detection workflows.

The knowledge-base is initially created by profiling some
of the most common genome applications. In this case,
there is no profiling information. We can just use history
information about a particular application as the start point,
then SCAN knowledge-base can update its knowledge ac-
cordingly. After that, the knowledge base will be expanded
by using information from logs of each task running on
the SCAN platform. For example, we profiled GATK per-
formance under different hardware configurations and with
different inputs [15]. The datasets include genome inputs of
different sizes, ranging from 1GByte to 9GBytes. We can
then conclude that total execution time linearly increases
with the input file size and that different GATK analysis
tools scale differently with thread count, generating differ-
ent parallelism recommendations depending on the reward
offered by the user. Based on these profiling results, we can
express the GATK input datasets in the SAN ontology in
RDF/OWL format as follows:
.....

<owl:NamedIndividual rdf:about="&scan-ontology;GATK1">
<rdf:type rdf:resource="&scan-ontology;Application"/>
<scan-ontology:inputFileSize>10
</scan-ontology:inputFileSize>
<scan-ontology:steps>1</scan-ontology:steps>
<scan-ontology:RAM>4</scan-ontology:RAM>
<scan-ontology:eTime>180</scan-ontology:eTime>
<scan-ontology:CPU>8</scan-ontology:CPU>

</owl:NamedIndividual>
.....

In order to enrich the knowledge base, The SCAN keeps
the log information of each task scheduled to run in a cloud.
The log information will be used to further populate the
SCAN knowledge-base. We show below an example of the
knowledge-base expansion when some GATK tasks are run
under the SCAN:
.....

<!-- http://www.semanticweb.org/wxing/ontologies
/scan-ontology#GATK1 -->

<owl:NamedIndividual rdf:about="&scan-ontology;GATK1">
<rdf:type rdf:resource="&scan-ontology;Application"/>

<scan-ontology:inputFileSize>10
</scan-ontology:inputFileSize>
<scan-ontology:steps>1</scan-ontology:steps>
<scan-ontology:RAM>4</scan-ontology:RAM>
<scan-ontology:eTime>180</scan-ontology:eTime>
<scan-ontology:CPU>8</scan-ontology:CPU>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/wxing/ontologies
/scan-ontology#GATK2 -->

<owl:NamedIndividual rdf:about="&scan-ontology;GATK2">
<rdf:type rdf:resource="&scan-ontology;Application"/>

<scan-ontology:CPU>8</scan-ontology:CPU>
<scan-ontology:steps>1</scan-ontology:steps>
<scan-ontology:RAM>4</scan-ontology:RAM>
<scan-ontology:eTime>200</scan-ontology:eTime>
<scan-ontology:inputFileSize>5
</scan-ontology:inputFileSize>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/wxing/ontologies
/scan-ontology#GATK3 -->

<owl:NamedIndividual rdf:about="&scan-ontology;GATK3">
<rdf:type rdf:resource="&scan-ontology;Application"/>

<scan-ontology:steps>1</scan-ontology:steps>
<scan-ontology:CPU>8</scan-ontology:CPU>
<scan-ontology:eTime>280</scan-ontology:eTime>
<scan-ontology:RAM>4</scan-ontology:RAM>
<scan-ontology:inputFileSize>20
</scan-ontology:inputFileSize>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/wxing/ontologies
/scan-ontology#GATK4 -->

<owl:NamedIndividual rdf:about="&scan-ontology;GATK4">
<rdf:type rdf:resource="&scan-ontology;Application"/>

<scan-ontology:eTime>80</scan-ontology:eTime>
<scan-ontology:steps>1</scan-ontology:steps>
<scan-ontology:CPU>8</scan-ontology:CPU>
<scan-ontology:inputFileSize>4
</scan-ontology:inputFileSize>
<scan-ontology:RAM>4</scan-ontology:RAM>

</owl:NamedIndividual>
</rdf:RDF>

(ii) Querying the SCAN Knowledge-base for Sharding
Data: The Data Broker will query the SCAN knowledge-
base to decide the suitable chunk size of input files of tasks
whenever there is a new GATK task in the SCAN platform.
It then will call Data Sharders to chunk (different types of)
genomic data into pieces accordingly and submit those tasks
to the Scheduler.

In general, the SCAN will be smarter to suggest the com-
bination of the most suitable input data size and available
cloud computing resources when more log information has
been collected from previous tasks executed on the platform.

The decision is based on a set of workflow execution con-
ditions, including the actual information needed (specified
as a SPARQL query), and other aspects like the availability
of the source [16]. For example, in our prototype we have
defined the class AlignedGenomicData that represents
inputs to the GATK pipeline. This class has a property CPU
that is requiredBy GATK workflows.

Since in our ontology we have defined over 10 differ-
ent genome analysis workflows (as instances of the class
GenomeAnalysis), the Data Broker sends a query to
select the most suitable one for deciding the size of a
input file. The query is done in SPARQL, and retrieves the
suggested values of those instances of GATK, along with
its CPU and RAM resource attributes. Below is a SPARQL

SCAN Client

S
chedule r

A
A
A

B
B

Worker
(class A)

Shared FS

Shared DB

Knowledge
base

Task
(class B)

Task
(class A)

Task
(class A)

Task
(class A)

Input BInput A

Cloud Infrastructure

Shardinger

Figure 3. The Key Components and the Implementation.

query for the GATK instances in the SCAN knowledge-base:

PREFIX SCAN: <http://www.semanticweb.org/wxing/ontologies
/scan-ontology#GATK>

FROM <scan-wxing.owl>
SELECT ?InputData
WHERE { ?s SCAN:inputFileSize "sharding"? .

OPTIONAL { ?x:resourceRequired "clouds" .
?y SCAN:computingResource ‘‘CPU" .
?z onG:computingResource ‘‘RAM’’ . }

The selected GATK instances are ranked according to the
values of their execution time and the size of input files.

(iii) Sharding Input Data for Genomic Tasks in a Cloud:
Genome data size for a particular analysis varies widely.
The SCAN is equipped with Data Sharders for each type
of genomic data, such as FASTQ and BAM files. They can,
for example, divide a 100GB FASTQ file into 25 4GB files,
and create 25 data analysis subtasks. On the other hand,
the SCAN can merge many small input files into one big
file, for example, for the GATK task called VariantsToVCF.
The SCAN knowledge-base will advise the appropriate shard
size.

2) SCAN Scheduler: The SCAN provides a scheduler
for deploying batch-oriented workloads, such as the GATK
pipeline, against an elastic cloud environment. It provides a
set of work queues and a worker pool that services each one.
As shown in Figure 3, the scheduler keeps track of available
workers and pending tasks, and assigns tasks to the workers.

The Scheduler accepts analytic tasks from users, exports
information to clouds and supports a variety of scaling
parameters that the cloud manager can adjust at runtime.
It also controls cloud resource hiring. For each work item
reaching the front of a task queue, and which is therefore
about to be assigned to a worker, the SCAN must decide:
should a worker (or workers, if process-level parallelism is
used) be hired from the elastic cloud to run it immediately,
or should it be delayed until an existing worker becomes
available?

To make decisions, the SCAN implements a cost function,
which maps the number of machines currently active and
their configuration to the cost per unit time of keeping them
running, and a reward function, which maps task latency and
task size onto a reward measured in the same units (latency
measures the time from a task entering the queue for the
first analysis stage to completing the last stage). The task’s
size is a format-specific concept, but generally reflects the
number of records of input data supplied.

The cost function consists of tiers, representing a class of
resources that can be hired at a given price. For example,
if the deployment belonged to an academic institution, they
might describe their institution’s private cloud as a tier of
resources at negligible cost, their University’s private cloud
as a tier with higher cost with availability bounded by the
available physical decisions are taken.

The reward function may express concepts such as a
deadline, where reward falls to zero as the results are useless
thereafter, and bonuses for rapid completion, where reward
slopes upwards before plateauing when execution is fast
enough that the customer is not willing to pay for more.

Denoting the reward function R(latency , records), and
the number of records in job j as recsj , we can then define
the delay cost DC of delaying queue Q by delay time units:

DC (delay) =
∑
j∈Q

R(ETT (j),

recsj)−R(ETT (j) + delay , recsj)

(1)

ETT (j) gives the Estimated Total Time for the job j
to run, given its progress so far and the occupancy of this
queue and those of future pipeline stages. This is the sum of
time already passed since the job started and the estimated
queueing and execution times for future pipeline stages.

We estimate execution time for pipeline stage i, denoted
EETi , using a linear function of the number of job input
records derived from profiling data. We also estimate the
time we expect a general job to spend in the queue for stage
i, EQTi . Writing the job j’s current stage Sj , we have:

ETT (j) = elapsed j +
∑
i=Sj

(EQT i + EET i(j)) (2)

3) SCAN Workers: SCAN Workers are responsible for ex-
ecuting tasks as instructed by the scheduler. The workers are
very simple entities: they are assigned SCAN tasks, which
they run until completion, and provide feedback concerning
their resource utilization to the scheduler. Each worker has
a software stack suitable for a particular application and
a certain hardware configuration. SCAN Workers can host
most genomic applications by using cloud virtualisation
technology. Currently we have implemented GATK, BWA,
and Maxquant workers for the SCAN platform.

B. SCAN Prototype Implementation

The current SCAN implementation realises the design
using the SCAN knowledge-base; a custom-built scheduler;
and existing Linux and Windows services for the workers,
CIFS for the shared filesystem and Apache Cassandra for
the database. The SCAN knowledge-base is built using
an OWL/RDF ontology and its instance store; SPARQL
is used to query the store. The scheduler is implemented
in Python, using the CherryPy web framework to process
HTTP requests. Its interface is realized using HTTP RPCs.
It maintains an in-memory pool of available workers and
a FIFO queue of pending tasks per class. Workers do not
need any custom SCAN software to provide their required
interface. They accept tasks using existing remote control
mechanisms, such as ssh.

Within the EU FP7 CELAR project [17], the SCAN
has been implemented in conjunction with CELAR cloud
middleware development [18]. The CELAR cloud is a fully
automated and highly customisable system for elastic provi-
sioning of resources in cloud computing platforms. It aims at
providing an elasticity layer for applications that need to be
able to take advantage of the elastic, pay-as-you-go resource
provisioning nature of cloud infrastructures in a transparent
and customizable manner. The SCAN interacts with two key
cloud components of the CELAR, which are the CELAR
Manager and the CELAR Decision Module. The CELAR
Manager is a cloud component to orchestrate and execute
the deployment of the applications in the cloud, and the
Decision Module takes automated control measures, based
on application behaviour and the user-defined requirements.

By employing CELAR middleware components, such as
the CELAR cloud manager and the decision making module,
the SCAN can query the analysis performance characteristics
and issue scaling commands to the underlying cloud infras-
tructure. However, the SCAN can function independent of
the CELAR. General speaking, the SCAN can work with
any kind of cloud platforms and various cluster systems.

IV. EVALUATION

To demonstrate the benefits of the SCAN platform for big
genome data analysis, we conduct simulations to compare
the performance and cost of GATK tasks running with
and without SCAN’s smart scaling and resource allocation
algorithms. In the current prototype implementation, we
exhibit SCAN to integrate two biological applications that
supports a SCAN analysis to draw the two applications’
results together. One of the applications uses the Broad Insti-
tute’s Genome Analysis Toolkit (GATK) to detect variations
between a given set of DNA reads (in BAM format) and
a reference genome. Its analysis takes place across seven
different phases with distinct resource requirements but iden-
tical software requirements. In this section we describe our
model of the GATK application and the scaling algorithms
in a cloud for our evaluation.

1) GATK Application: A typical genomic data process is
to determine whether a DNA sample taken from a patient
exhibits genetic mutations known to cause cancer, and if it
does, which specific variety of the disease. We employ the
GATK application which is typically used to build a pipeline
consisting of multiple stages. The first stage consumes the
user’s input data, whilst every other stage depends on the
full output of its predecessor. We consider a particular 7-
stage pipeline that is commonly used to diagnose genetic
mutations in input data compared to a known reference
genome: the user submits aligned DNA or RNA reads,
typically in Binary Aligned Map (BAM) format, and at the
end of the pipeline receives a list of suspected mutations
compared to the reference genome.

Many of the GATK tools used in this pipeline require
a great deal of I/O bandwidth, but they are ultimately
compute- or memory-bound rather than I/O-bound. A ge-
nomic sequence file can varied in size, from 100MB to
500GB, which will greatly affect the needs of computing and
memory resources. The SCAN makes the inputs of GATK
steps according to the suggestions from the knowledge base.
In our case, the inputs will be 2GB for each task. Most
(but not all) GATK tools can be accelerated by local multi-
threading: ordinarily this is manually controlled by the user,
but in this paper it will be controlled by our resource alloca-
tion algorithm. In both cases the degree of multi-threading
must be chosen when the stage starts execution, and cannot
be adjusted thereafter, but can differ from pipeline stage to
stage.

We model GATK pipeline stages with single-threaded
execution time that is a linear function of the size of the
first stage’s input data. Thus for each pipeline stage i we
can specify coefficients ai and bi such that execution time
Ei can be given in terms of input data size d:

Ei(d) = aid+ bi

We compute multi-threaded execution time assuming that
the single-threaded execution time for a particular stage may
be split by a constant factor ci into a sequential part and a
part which scales perfectly. Thus threaded execution time
using t threads Ti(t, d) relates to Ei(d) by:

Ti(t, d) = ci
Ei(d)

t
+ (1− ci)Ei(d)

Thus the maximum possible speedup achievable by adding
threads is limited in accordance with Amdahl’s law. The
values of ai, bi and ci were determined for each pipeline
stage by linear regression of offline profiling data. The
profile measured the time taken to analyse a variety of
input sizes and thread counts. We found these simple models
represented the profiling data very accurately.

A. Experimental Configuration

Most of cancer genome data centres are with a hybrid in-
frastructure, that is they have their own decimated resources,
and they will use public cloud resource when they need more
computing resources for some cases. We thus setup a hybrid
cloud for our evaluation which consist of two tiers: a private
tier (624 CPU cores and 64GB RAM per node) and a public
tier. Using cores at either tier has a constant cost per core per
unit time, with private cores being cheaper than public cores.
The private tier represents the owned compute resources
which are commonplace in scientific institutions with HPC
requirements, with the cost representing depreciation of the
owned machines or an internal incentive for fair sharing. The
public tier represents cores or machines hired from a public
cloud computing provider such as Amazon EC2, or perhaps
a national-level academic shared computing facility. Here
we assume that the private tier compute core is the same
(Ghz, processor model, etc) as public tier compute core in
our evaluation.

B. Evaluation Results

We ran a number of simulation sessions, varying the
parameters shown in Table I. Table II gives the fixed ai,
bi and ci parameters that determine the scalability of each
pipeline stage. Finally, Table III gives miscellaneous fixed
parameters (recall that the various R parameters influence the
reward given for completing a pipeline run in a given time,
as described in Section III-A2). The scalability factors were
derived from profiling of the real GATK with a variety of
thread counts and input data sizes; the other parameters were
selected by trial and error in order to exhibit a cross-section
of the system’s behaviour. In particular the arrival batch size
and job size parameters were chosen to produce significant
short-term workload variation, such that the scaling and
resource allocation algorithms would experience a wide
range of cluster utilisation during a given simulation run.

All our experiments measure how performance varies with
changing system workload by varying the mean job inter-
arrival interval. For context, a mean interval of 2.0 time units
represents a very busy system where much public resource
hiring is necessary to keep the task queue from growing
out of control, whilst a mean interval of 3.0 time units
corresponds to a quiet system where the private resource
tier is rarely if ever fully occupied. All measurements were
repeated 10 times, and all error bars represent a single
standard deviation either side of the mean.

We found that SCAN Scheduler can achieves a sound
compromise between the behaviour of the always-scale
and never-scale baselines when running with a constant
resource allocation policy (i.e. when every run uses the
same execution plan). Figure 4 shows an example of this
behaviour, where the predictive algorithm mimics the never-
scale baseline with a light workload and the always-scale
baseline with a heavy load. At intermediate loads it performs

Parameter Values
Resource allocation algorithm Greedy, long-term, long-term adaptive, best constant
Horizontal scaling algorithm Always-scale, never-scale, predictive scaling

Mean job inter-arrival interval 2.0, 2.1 ... 3.0 TUs
Task completion reward function Time-based, throughput-based
Public tier core cost (CUs / TU) 20, 50, 80, 110

Table I
VARIABLE SIMULATION PARAMETERS

Pipeline stage ai bi ci
1 0.35 5.38 0.89
2 2.70 -0.53 0.02
3 1.74 3.93 0.69
4 3.35 0.53 0.79
5 1.03 17.86 0.91
6 0.02 0.39 0.25
7 0.01 5.10 0.02

Table II
PER-PIPELINE-STAGE SCALABILITY FACTORS

Parameter Values
Simulation time (TUs) 10,000

Private tier core cost (CUs / TU) 5
Rmax (CUs) 400

Rpenalty (CUs) 15
Rscale (CUs / TU) 15,000

Possible instance sizes (cores) 1, 2, 4, 8, 16
Mean jobs per arrival event 3

Jobs per arrival variance 2
Mean job size (arbitrary units) 5

Job size variance 1

Table III
MISCELLANEOUS SIMULATION ATTRIBUTES FIXED ACROSS ALL RUNS

2.0 2.2 2.4 2.6 2.8 3.0
Mean inter-arrival interval (TUs)

300

200

100

0

100

200

300

400

500

600

M
e
a
n
 p

ro
fi
t

p
e
r

p
ip

e
lin

e
 r

u
n
 (

C
U

s)

Reward function: Time-based
Public-tier hire cost (CUs per TU): 50
Resource allocation algorithm: Best constant plan

Profit vs. mean arrival interval for various horizontal scaling functions

Horizontal scaling function

Predictive
Always-scale
Never-scale

Figure 4. Reward-to-time vs. cores for various horizontally-scaled,
heterogeneous simulation.

6 8 10 12 14 16 18 20 22 24

Total core-stages per pipeline run

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
w

a
rd

-t
o
-c

o
st

 r
a
ti

o

Figure 5. Reward-to-cost ratio vs. cores for horizontally-scaled, hetero-
geneous simulation.

marginally better than either baseline, although it remains
within a standard deviation of either.

Also we combined both dynamic horizontal scaling and
heterogeneous workers, again permitting different stages
to use different degrees of multithreading, but allowing
(simulated) CELAR to resize each of these pools as required.
We now pay the 30 second startup penalty whenever a
worker was previously assigned to a pool that uses a different
number of threads, as CELAR would need to shut it down,
adjust the number of VCPUs, and restart it for its new
role. Figure 5 shows the relationship between the number
of cores employed per pipeline run and the reward-to-
cost ratio achieved. This configuration achieves a ratio of
3.11, the best of all configurations, thanks to its ability to
support multithreaded pipeline stages without the rigidity of
statically assigning workers to phases.

We explored all permutations of resource allocation al-
gorithm, horizontal scaling algorithm, reward scheme and
workload, and found that our proposed algorithms are often
able to improve performance above their respective base-
lines, demonstrating that real-world workloads using the
GATK and similar analysis tools may benefit from intelligent
cluster scaling and pipeline stage sizing. We found that
the SCAN outperforms the best-constant baseline algorithm
in many circumstances, and that the SCAN’s predictive
horizontal scaling represents a useful compromise between
the two baseline schemes that always or never scale when
private resources are fully occupied.

V. RELATED WORK

In the life sciences area there are many systems available
that process genome data, primarily those are done through
various workflow systems. Some examples include Galaxy,

TransMart, Taverna, BioMart, and InforSense KDE [19]–
[23]. To the best of our knowledge, they all can hire public
cloud resources to satisfy their resource requirements, but
follow a simple hire-on-demand policy when doing so. None
of these systems have smart mechanisms to improve the
application performance and reduce the cost of big genome
analysis.

Galaxy is a web-based platform with many built-in
genome analytic workflows [19]. In particular, the Galaxy
CloudMan was developed as a software package to provide
a common interface to different cloud infrastructures. It
depends on the cloud infrastructure to improve performance
and cost effective for particular applications. TransMart
is a translational platform allowing the management and
exploration of clinical and omics data [20]. It supports
complicated data queries crossing domains by using multiple
relational databases, but does not provide any mechanism
to address the performance and cost-effective issues. Cloud
computing is simply employed to provide elastic computing
resource for back-end database systems.

String and Cytoscape are application platform for search-
ing and visualizing molecular function and/or interaction
networks and biological pathways and integrating these
networks with annotations, gene expression profiles and
other state data [24], [25]. Similarly, BRISK and the cBio
Cancer Genomics Portal focus mainly on the exploration
of omics data, and iDASH provides biomedical and be-
havioural researchers with access to data, software and a
high-performance computing environment [26]–[28]. None
of them address performance issues or reduce the cost of
required resources for genomic data analysis in clouds.

There are some works on scheduling strategies for cloud
environments [29]–[31]. In [29], authors proposed an opti-
mized scheduling algorithm to achieve the optimization or
sub-optimization for cloud scheduling. In this algorithm an
Improved Genetic Algorithm (IGA) is used for the auto-
mated scheduling policy. It is used to increase the utilization
rate of resources and speed. However, the majority of these
scheduling strategies are static in nature. They produce a
good schedule given the current state of resources in Clouds
or Grids and do not take into account changes in resource
availability. SCAN enables dynamic scheduling that is done
on-the-fly considering the current state of the system and
adaptive in application nature.

VI. CONCLUSION

Genome analysis needs to process large amounts of omic
data. An application platform must be smart enough to han-
dle those data requirements and facilitate the corresponding
processes. In this paper, we present the SCAN, a smart
application platform for big genomic data analysis in clouds.
We discuss the smart mechanisms of the SCAN, as well as
its key components. We conduct a simulation study which

shows that SCAN scheduler is able to outperform simple
baseline schemes in a wide variety of circumstances.

In the future, we intend to investigate how the SCAN
can better work with proteome analysis and drug discovery
applications. We also plan to adopt learning algorithms to
guide the Scheduler, and enhance the interaction between
the SCAN and Cloud middleware.

ACKNOWLEDGEMENT

This work was supported by the European Commission’s
CELAR (317790) FP7 project (FP7- ICT-2011-8). We thank
the Scientific Computing team and RNA Biology Group
at CRUK MI for their helpful comments. We would like
to thank CELAR partners, in particular, the Laboratory for
Internet Computing (LINC), University of Cyprus for their
excellent collaboration work on the CELAR.

REFERENCES

[1] P. A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard,
R. Wooster, N. Rahman, and M. R. Stratton, “A census
of human cancer genes,” Nature reviews. Cancer, vol. 4,
no. 3, p. 177183, March 2004. [Online]. Available:
http://europepmc.org/articles/PMC2665285

[2] F. W. Albert and L. Kruglyak, “The role of regulatory varia-
tion in complex traits and disease,” Nature reviews. Cancer,
vol. 16, no. 4, p. 197212, February 2015.

[3] A. Thompson, M. Abu, and D. Hanger, “Key issues in the
acquisition and analysis of qualitative and quantitative mass
spectrometry data for peptide-centric proteomic experiments,”
in Amino Acids, submitted.

[4] P. Flicek and et al., “Ensembl 2014,” Nucleic Acids Research,
vol. 42, no. Database-Issue, pp. 749–755, 2014. [Online].
Available: http://dx.doi.org/10.1093/nar/gkt1196

[5] P. Cock and et al., “The sanger fastq file format for
sequences with quality scores, and the solexa/illumina
fastq variants,” Nucleic Acids Research, vol. 38,
no. 6, pp. 1767–1771, 2010. [Online]. Available:
http://nar.oxfordjournals.org/content/38/6/1767.abstract

[6] H. Li and et al., “The sequence alignment map
format and samtools,” Bioinformatics, vol. 25, no. 16,
pp. 2078–2079, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.1093/bioinformatics/btp352

[7] C. van El and et al., “Whole-genome sequencing in health
care. recommendations of the european society of human
genetics,” European Journal of Human Genetics, vol. 21
Suppl 1, pp. S1–5, 2013.

[8] A. McKenna, M. Hanna, E. Banks, A. Sivachenko,
K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler,
S. Gabriel, M. Daly, and M. A. DePristo, “The Genome
Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data.” Genome research,
vol. 20, no. 9, pp. 1297–1303, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1101/gr.107524.110

[9] H. Li and R. Durbin, “Fast and accurate long-read alignment
with burrowswheeler transform,” Bioinformatics, vol. 26,
no. 5, p. 589595, January 2010.

[10] J. Cox and M. Mann, “Maxquant enables high peptide iden-
tification rates, individualized p.p.b.-range mass accuracies
and proteome-wide protein quantification,” Nature Biotech,
vol. 26, no. 12, p. 13671372, November 2008.

[11] A. Carpenter, T. Jones, M. Lamprecht, C. Clarke, I. Kang,
O. Friman, D. Guertin, J. Chang, R. Lindquist, J. Moffat,
P. Golland, and D. Sabatini, “Cellprofiler: image analysis
software for identifying and quantifying cell phenotypes,”
Genome Biology, vol. 7, no. 10, p. R100, 2006. [Online].
Available: http://genomebiology.com/2006/7/10/R100

[12] “Jena 2 Ontology API,” http://jena.sourceforge.net/ontology/.

[13] N. F. Noy, S. D. M. Sintek, R. W. F. M. Crubezy, and M. A.
Musen., “Creating semantic web contents with protege-2000,”
IEEE Intelligent Systems, vol. 16, pp. 60–71, 2001.

[14] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler,
J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T.
Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis,
S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald,
G. M. Rubin, and G. Sherlock, “Gene ontology: tool for
the unification of biology. The Gene Ontology Consortium.”
Nature genetics, vol. 25, no. 1, pp. 25–29, May 2000.
[Online]. Available: http://dx.doi.org/10.1038/75556

[15] C. Smowton, A. Balla, D. Antoniades, C. Miller, G. Pallis,
M. Dikaiakos, and W. Xing, “Analysing cancer genomics in
the elastic cloud,” in Proceedings of the CCGrid Workshop
on Clusters, Clouds and Grids for Life Sciences (to appear).
IEEE/ACM, 2015.

[16] E. Prud’hommeaux and A. Seaborne, SPARQL Query Lan-
guage for RDF, W3C Working Draft, July 2005.

[17] G. Copil, D. Moldovan, D.-H. Le, H.-L. Truong, S. Dustdar,
C. Sofokleous, N. Loulloudes, D. Trihinas, G. Pallis, M. D.
Dikaiakos, C. Sheridan, E. Floros, C. K. Loverdos, K. Star,
and W. Xing, “On controlling elasticity of cloud applications
in celar,” in Emerging Research in Cloud Distributed Com-
puting Systems, Advances in Systems Analysis, Software En-
gineering, and High Performance Computing (ASASEHPC)
Book Series, 2015.

[18] I. Giannakopoulos, N. Papailiou, C. Mantas, I. Konstantinou,
D. Tsoumakos, and N. Koziris, “CELAR: Automated Appli-
cation Elasticity Platform.” IEEE International Conference
on Big Data, 2014.

[19] J. Goecks, A. Nekrutenko, J. Taylor, and T. G.
Team, “Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational
research in the life sciences,” Genome Biology,
vol. 11, no. 8, p. R86, 2010. [Online]. Available:
http://genomebiology.com/2010/11/8/R86

[20] B. Athey, M. Braxenthaler, M. Haas, and Y. Guo, “transmart:
An open source and community-driven informatics and data
sharing platform for clinical and translational research.” AMIA
Joint Summits on Translational Science proceedings AMIA
Summit on Translational Science, vol. 2013, pp. 6–8, 2012.

[21] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock,
P. Li, and T. Oinn, “Taverna: a tool for building and running
workflows of services,” Nucleic Acids Res, pp. 729–732,
2006.

[22] D. Smedley, S. Haider, B. Ballester, R. Holland, D. London,
G. Thorisson, and A. Kasprzyk, “Biomart - biological queries
made easy,” BMC Genomics, vol. 10, no. 1, p. 22, 2009.
[Online]. Available: http://www.biomedcentral.com/1471-
2164/10/22

[23] Q. Lu, P. Hao, V. Curcin, W. He, Y.-Y. Li, Q.-M. Luo, Y.-K.
Guo, and Y.-X. Li, “Kde bioscience: Platform for bioinfor-
matics analysis workflows,” JOURNAL OF BIOMEDICAL
INFORMATICS, vol. 39, pp. 440–450, 2006. [Online].
Available: http://dx.doi.org/10.1016/j.jbi.2005.09.001

[24] D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic,
A. Roth, P. Minguez, T. Doerks, M. Stark, J. Muller, P. Bork,
L. J. Jensen, and C. v. Mering, “The string database in
2011: functional interaction networks of proteins, globally
integrated and scored,” Nucleic Acids Research, 2010.

[25] M. Cline, M. Smoot, E. Cerami, A. Kuchinsky, N. Landys,
C. Workman, R. Christmas, I. Avila-Campilo, M. Creech,
B. Gross, K. Hanspers, R. Isserlin, R. Kelley, S. Kill-
coyne, S. Lotia, S. Maere, J. Morris, K. Ono, V. Pavlovic,
A. Pico, A. Vailaya, P. Wang, A. Adler, B. Conklin, L. Hood,
M. Kuiper, C. Sander, I. Schmulevich, B. Schwikowski,
G. Warner, T. Ideker, and G. Bader, “Integration of biological
networks and gene expression data using cytoscape,” Nature
Protocols, vol. 2, no. 10, pp. 2366–2382, 2007.

[26] A. Tan, B. W. Tripp, and D. Daley, “Brisk - research-oriented
storage kit for biology-related data.” Bioinformatics, vol. 27,
no. 17, pp. 2422–2425, 2011.

[27] J. Gao, B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross,
S. O. Sumer, Y. Sun, A. Jacobsen, R. Sinha, E. Larsson,
E. Cerami, C. Sander, and N. Schultz, “Integrative analysis
of complex cancer genomics and clinical profiles using the
cbioportal,” Science Signaling, vol. 6, no. 269, pp. pl1–pl1,
2013.

[28] I. N. Sarkar, A. J. Butte, Y. A. Lussier, P. Tarczy-Hornoch,
and L. Ohno-Machado, “Translational bioinformatics: linking
knowledge across biological and clinical realms.” J Am Med
Inform Assoc, vol. 18, pp. 354–7, 2011 Jul-Aug 2011.

[29] H. Zhong, K. Tao, and X. Zhang, “An approach to opti-
mized resource scheduling algorithm for open-source cloud
systems,” in ChinaGrid Conference (ChinaGrid), 2010 Fifth
Annual, July 2010, pp. 124–129.

[30] L. Wang, S. U. Khan, D. Chen, J. Koodziej, R. Ranjan,
C. zhong Xu, and A. Zomaya, “Energy-aware parallel task
scheduling in a cluster,” Future Generation Computer Sys-
tems, vol. 29, no. 7, pp. 1661 – 1670, 2013.

[31] L. Wang, G. von Laszewski, J. Dayal, X. He, A. J. Younge,
and T. R. Furlani, “Towards thermal aware workload schedul-
ing in a data center,” in The 10th International Symposium on
Pervasive Systems, Algorithms, and Networks, ISPAN 2009,
Kaohsiung, Taiwan, December 14-16, 2009, 2009, pp. 116–
122.

