
UWL REPOSITORY

repository.uwl.ac.uk

Sound matching using synthesizer ensembles

Roma, Gerard (2024) Sound matching using synthesizer ensembles. In: Digital audio effects

conference 2024, 3-7 Sept 2024, Guildford, UK.

This is a University of West London scholarly output.

Contact open.research@uwl.ac.uk if you have any queries.

Alternative formats: If you require this document in an alternative format, please contact:

open.access@uwl.ac.uk

Copyright: [CC.BY.NC license]

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

SOUND MATCHING USING SYNTHESIZER ENSEMBLES

Gerard Roma

School of Computing and Engineering
University of West London

London, UK
gerard.roma@uwl.ac.uk

ABSTRACT

Sound matching allows users to automatically approximate exist-
ing sounds using a synthesizer. Previous work has mostly focused
on algorithms for automatically programming an existing synthe-
sizer. This paper proposes a system for selecting between differ-
ent synthesizer designs, each one with a corresponding automatic
programmer. An implementation that allows designing ensembles
based on a template is demonstrated. Several experiments are pre-
sented using a simple subtractive synthesis design. Using an en-
semble of synthesizer-programmer pairs is shown to provide better
matching than a single programmer trained for an equivalent inte-
grated synthesizer. Scaling to hundreds of synthesizers is shown
to improve match quality.

1. INTRODUCTION

Software synthesizers are widely used in computer-based music
production. In this context, sound matching can be described as a
mode of interaction with a software synthesizer where the user pro-
vides an example of a target sound, and the system automatically
provides a set of parameters that will make the synthesizer approx-
imate the target. Real-world interaction with sound synthesizers is
rarely this simple: it can be seen as a two-way process where the
user may have some goal but can also discover interesting sounds
in the process by tweaking parameters, even if blindly. Regard-
less, given the complexity of some synthesizers, sound matching
can help find configurations that would otherwise be missed.

Sound matching is an application of automatic synthesizer pro-
gramming, which more generally describes software systems able
to automatically find synthesizer parameters. The origins of sound
matching can be traced back to the research on the synthesis of
musical instrument sounds using frequency modulation (FM) syn-
thesis [1], which is notoriously hard to program.

After the development of FM, research on sound synthesis
mostly focused on computational models, such as physical models
and spectral models, that would make it easier to reproduce and
control known sounds [2]. Spectral modelling allowed automating
additive synthesis using spectral analysis, which could eventually
replace the need for sound matching techniques, however, it has
mostly been applied to the transformation of digital sound sam-
ples. Along with the use of samples, software synthesizers based
on classic techniques, such as wavetable synthesis, FM or digi-
tal simulation of subtractive synthesis (AKA analogue modelling)
remain popular in music production.

Copyright: © 2024 Gerard Roma. This is an open-access article distributed under the

terms of the Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, adaptation, and reproduction in any medium, provided

the original author and source are credited.

In recent years, sound matching has continued to gain atten-
tion in music technology research. Most recent approaches have
focused on software-based FM synthesizers [3, 4] or otherwise
commercially available plug-ins that are treated as a black box.

This paper proposes a different approach to sound matching.
Instead of finding how to program an existing synthesizer, the fo-
cus is on how to reproduce the sound presented by the user. In
sound matching research, this is often known as matching out-of-
domain sounds in the sense that the target sound may not have been
originally produced by a particular synthesizer. One prominent in-
centive for matching an arbitrary sample with a synthesizer is that a
synthesizer allows further tweaking (even if blindly) and obtaining
many possible variations of the sound, which can be more useful
for music and audio production than a single sample. However,
since a given synthesizer cannot reproduce all possible sounds,
having more than one synthesizer could increase the possibilities
for matching arbitrary samples. This paper presents an initial study
for such ensemble-based sound matching. Each synthesizer con-
figuration is used to train a neural network which is used to map
an existing sound to a set of synthesizer parameters. An ensemble
of paired synthesizers and programmers is then used to match the
target sound.

The paper is organized as follows: the next section reviews
existing literature on sound matching. Section 3 describes the pro-
posed approach based on synthesizer ensembles. In Section 4, an
implementation using SuperCollider is described. The proposed
approach is validated through several experiments in Section 5,
which are discussed in Section 6. Section 7 outlines future work.

2. RELATED WORK

Synthesizer programming techniques can be divided into search-
based and modelling-based [3]. In the first case, the algorithm
tries to find a suitable parameter set for a target sound by searching
the space of sounds of a synthesizer. This is typically done using
genetic algorithms (GA) [1, 3, 5, 6, 7]. Search-based approaches
are inherently limited for interactive applications due to the time it
takes to assess each candidate as part of the search process. In the
case of real-time synthesis, the generation of each candidate takes
the same time as its duration, so in all the search typically lasts at
least several minutes.

Modelling-based approaches typically consist of pre-trained
models, such as neural networks [3, 4, 8]. In this case, the model
is trained to learn a mapping between a synthesized sound and
the set of parameters that the synthesizer used to generate it. Most
works focus on the parameter space of existing software synthesiz-
ers available as plug-ins. In many cases, the training sets are col-
lected from real-world preset databases. Systems based on existing
synthesizers are also limited in that the synthesizer programmer is

DAFx.1

https://dafx24.surrey.ac.uk
mailto:gerard.roma@uwl.ac.uk
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

focused on the space of sounds produced by a particular synthe-
sizer and synthesis technique. In the literature, these are typically
referred to as in-domain sounds, whereas out-of-domain sounds
are sounds produced by other means [5]. Focusing on existing syn-
thesizers, significant progress has been made by using generative
modelling, which allows interpolation of presets and navigation of
the parameter space based on perceptual dimensions [9, 10].

One important problem of modelling-based approaches is that
optimization is based on a loss function evaluated on the param-
eter space. In other words, the system tries to learn the mapping
from sound to parameters by minimizing the difference between
the predicted parameters and the real parameters of training exam-
ples. However, the distance in parameters is not the same as the
perceptual difference between sounds. Some works have explored
using differentiable DSP (DDSP) [11] to overcome this limitation,
by designing synthesizers that can be incorporated in the neural
network model. This allows models to directly optimize the spec-
tral distance between the target and the predicted sound [12, 13].
In a way, DDSP can be seen as a deep-learning version of spec-
tral modelling synthesis [14]. Thus, these systems tend to learn
the temporal evolution of parameters, such as the frequencies of
oscillators, which are implemented in hybrid additive-subtractive
synthesizers. In addition, the synthesizers are implemented using
differentiable machine learning routines. This means that at the
moment practical applications are limited since such synthesizers
do not correspond to commonly available implementations.

Given that the range of sounds that each synthesizer can pro-
duce is limited, some works have looked at matching sounds using
more than one synthesizer design. The system in [6] used genetic
programming to evolve different signal processing graphs, imple-
mented as Pure Data patches. More recently, the VAE-based ap-
proach in [9] has been extended to more than one synthesizer by
using multiple decoders targeting several commercial synthesiz-
ers from a shared latent space [15]. The present work similarly
explores matching with multiple synthesizers but following a dif-
ferent approach. Rather than evolving patches using genetic pro-
gramming, a repertoire of designs is generated beforehand. Then
for each design, a separate programmer model is trained. There
is no shared latent space, although a global classifier is used to
choose the most suitable synthesizer and programmer.

3. MATCHING WITH SYNTHESIZER ENSEMBLES

A synthesizer can be seen as a patch that connects different mod-
ules, such as oscillators, envelope generators and filters. Given
the infinite possibilities offered by modular synthesis, designers of
classic analogue synthesizers created more limited configurations
that allowed switching between a few module types. Software syn-
thesizers could similarly offer infinite routing possibilities, as do
Music-N-like computer music systems such as Max, Pure Data or
SuperCollider [16]. However, popular software synthesizers usu-
ally replicate the analogue style and offer a limited set of configu-
rations. While many different synthesis techniques are available in
the digital domain, analog modelling (i.e. simulation of subtractive
synthesis) remains a popular and well-understood paradigm.

For the purpose of this study, a ‘synthesizer’ is defined as a
specific patch with specific modules. Given a fixed structure, many
possible synthesizers can be defined. Thus, synthesizer ensembles
can be generated using structural templates. As an example, the
template used for this study is shown in Figure 1. Here, oscillators
could have different waveforms, including also white noise, and

Figure 1: Subtractive synthesizer template.

modulators could be low-frequency oscillators (also with differ-
ent waveforms) or envelope generators. Different types of filters
(e.g. low-pass, high-pass) can also be used. The ‘amplifier’ is just
a gain control that allows using a modulator to control the am-
plitude. A particular choice of oscillators, modulators and filters
will instantiate the template into a specific synthesizer. Each syn-
thesizer will produce a different range of sounds and also offer a
different set of parameters depending on the choice of modules.
This is unlike common commercial synthesizers where different
patches may be available in the same interface. In that case, some
parameters, such as the choice of oscillator, will be discrete and
result in significantly different sounds.

While the example in Figure 1 is a common subtractive synthe-
sizer configuration, many more are obviously possible, including
different types of synthesis. An ‘ensemble’ can thus be defined as
a number of concrete synthesizers, each with a set of parameters
and a sound space. An ensemble can be produced by a single or
multiple templates, and thus ensembles could be created by com-
bining a variety of synthesis techniques.

For the purpose of sound matching, a synthesizer can be de-
scribed as a function that maps a set of parameters to an audio
excerpt. Conversely, a synthesizer programmer maps from an au-
dio excerpt (often parametrized as a feature matrix) to a set of pa-
rameters. In the case of a synthesizer ensemble, each synthesizer
is associated with a specific programmer and vice versa. In this
study, programmers are implemented as neural network regression
models, which are trained using random samples of the synthesizer
parameter space.

Given a target audio sample and an ensemble of synthesizer-
programmer pairs, the problem is then selecting a suitable pair
from the ensemble. In this paper three approaches are investigated:

• Select Best: The best synthesizer is selected by evaluating
all the programmers with the target sound, synthesizing a
new sound with the resulting parameters, and comparing it
with the target sound. The model that produces the sound
closest to the target is selected. This can be seen as a brute-
force approach, as all the programmers need to be evaluated
and all results compared with the target.

• Predict Same: A classifier is trained with the same data as
the programmers, and learns to predict which synthesizer
generated which sample. The target sample is assumed to
have been generated by one of the synthesizers (which is
not the case for out-of-domain samples). The selected syn-
thesizer is then the one predicted to have generated the tar-
get.

• Predict Best: For predicting with out-of-domain sounds,
this approach uses an extra dataset of out-of-domain sounds,

DAFx.2

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

which has not been used for training. For each sound, the
best-performing synthesizer-programmer is chosen as per
the Select Best approach. A classifier is then trained to pre-
dict which synthesizer would produce the best match for the
target sound, regardless of whether it has been generated by
one of the synthesiers.

It can be expected that, given simple synthesizers such as the
ones generated by the subtractive synthesis template described above,
the larger the ensemble the better the possibilities to obtain a sound
similar to the target.

4. IMPLEMENTATION

In order to test the proposed approach, a system for automatic gen-
eration of synthesizers from a given template was implemented us-
ing the SuperCollider language [17] (the software, along with the
code for experiments, can be accessed at https://github.
com/g-roma/SoundMatchEnsemble). Each of the modules
in Figure 1 can be implemented using a number of unit generators
(UGens).

Since the language offers a large number of UGens, this sys-
tem could result in many possible synthesizers. For the purpose
of this study, the choice was restricted to UGens shown in Table
1. Here, LFTri is a triangle LFO, VarSaw is a Sawtooth oscillator
with a variable duty cycle, and DC is a constant number (no modu-
lator). The filter can be either a low-pass, band-pass or a high-pass
resonant filter. Following previous work (e.g. [3, 4]) the pitch is
fixed to a single note for all synthesizers (C4 note). Each UGen /
module offers different parameters, so each particular synthesizer
will potentially have a different number of parameters. The pa-
rameters are shown in Table 2. For this template, OSC 1 is an
oscillator with variable pulse width control, which is modulated
by MOD 1. MOD 2 controls either the frequency (Saw) or the
amplitude (WhiteNoise) of OSC 2. The envelope for EnvGen is
always specified as an ADSR envelope.

Module UGens
OSC 1 Pulse, VarSaw
OSC 2 Saw, WhiteNoise

MOD 1-4 LFTri, EnvGen, DC
FILTER RLPF, RHPF, BPF

Table 1: UGens used for template-based generation

UGen Parameters
Pulse, VarSaw Modulation amount, Pulse width

Saw, Noise Modulation amount
LFTri Frequency

EnvGen Attack, Decay, Sustain, Release
RLPF, RHPF, BPF Cutoff, Modulation amount, 1 / Q

Mixer Source 1 / 2 balance

Table 2: Parameters for each UGen and module

Each synthesizer is identified by a 7-digit string where each
digit indicates the UGen used for each module of the template.
For example, the synthesizer with ID 1120010 is shown in Figure
2, along with all the resulting parameters.

Figure 2: Synthesizer instance with 13 parameters

Synthesizer instances are controlled by arrays of parameters
normalized to the 0-1 range. In the software framework, each in-
stance is an object that can generate a random set of parameters
(i.e. it knows the specific number of parameters for this synth),
and also produce a sound given an input set of parameters. Param-
eters are internally mapped to pre-defined ranges and curves for
each UGen.

Programmers and classifiers are implemented in Python using
the Pytorch library [18]. For training each programmer, a set of
random parameter sets are generated with a synthesizer instance,
and the corresponding sounds are recorded to audio files and con-
verted to a matrix of Mel Frequency Cepstral Coefficients (MFCC)
using librosa [19].

5. EXPERIMENTS

The proposed approach was validated through three experiments.
First, different network architectures were compared as individ-
ual synthesizer programmers. A second experiment compared a
‘monolithic’ synthesizer incorporating module choices as param-
eters with an equivalent ensemble of 12 simple synthesizers. Fi-
nally, a third experiment investigated scaling to larger ensembles.

In all experiments, synthesizer instances were used to generate
4-second recordings, with envelopes sustained for 3 seconds, at a
48Khz sample rate. MFCCs were obtained with the default librosa
settings, which generated matrices of 20 coefficients by 376 frames
(each frame was generated by a 10ms hop).

Target and predicted audio samples were compared using the
MFCC distance used in [3, 4], defined as:

MFCCD(S, T) =
1

C

∑
c

√
1

N

∑
n

(Sc,n − Tc,n)2, (1)

where C (indexed by c) is the number of MFCC coefficients,
and N (indexed by n) is the number of frames. S and T are source
and target MFCC matrices. This metric has been found to be easy
to interpret, with values around 10-15 or less considered to be close
matches [3, 4].

Training used 5000 examples for each network with 10% used
for validation and 10% for testing. Validation was used for early
stopping. All models were trained for a maximum of 100 epochs.
Examples were obtained by random sampling of the parameters
of the corresponding synthesizer. Training was performed by an
Adam optimizer [20] using mean square error (MSE) loss over the
parameters.

DAFx.3

https://github.com/g-roma/SoundMatchEnsemble
https://github.com/g-roma/SoundMatchEnsemble

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

5.1. Individual programmers

Several neural network architectures were compared for learning
the mapping from MFCC to synthesizer parameters for an individ-
ual synthesizer. The experiment was run for two synthesizers: one
relatively simple (13 parameters, ID 1022210) and one more com-
plex (24 parameters, ID 1111111). The following architectures
were compared:

• Multi-Layer Perceptron (MLP) with LeakyRELU activa-
tions

• Convolutional neural network (CNN) with LeakyRELU ac-
tivations

• Bi-directional Long short-term memory network (BiLSTM)

All networks were configured empirically to maximize perfor-
mance while keeping comparable training times. Performance was
measured by the average parameters MSE distance and the aver-
age MFCC distance on the test set (in-domain sounds). The results
were averaged over 10 runs.

Results are shown in Table 3, including the time taken to train
each model for 5000 examples on an Apple M2 Pro GPU. Prelim-
inary experiments showed that both MLP and CNN models could
obtain good results for the (more difficult) complex synthesizer by
increasing the capacity while using early stopping as regulariza-
tion. For the MLP this resulted in worse performance for the basic
synthesizer, while the CNN model showed overall good perfor-
mance and shorter training times, so it was selected for subsequent
experiments. An analysis of the results for the 24-parameter syn-
thesizer showed that the resulting sounds typically replicated the
spectral content of the target, but often failed to precisely repro-
duce the amplitude envelope. An example match is shown in Fig-
ure 3. This synthesizer included a mixture of a pulse oscillator and
white noise. The automatic programmer was able to replicate the
mixture of both and part of the attack and release behaviours but
failed to reproduce all the nuances of the amplitude envelope. For
randomly generated in-domain sounds, the MFCC distance was a
good predictor of match quality, but there were still noticeable dif-
ferences for values below 10. This can be attributed partly to the
randomness of the dataset, as there is no sound design that can
guide the perception.

5.2. Monolithic vs ensemble

A second experiment compared a ‘monolithic synthesizer’ with a
small equivalent ensemble. The monolithic synthesizer was gener-
ated similarly to the method described in Section 3, but with some
parameters that could switch between different modules (OSC 1
and 2, FILTER). The rest of the modules were set to predefined
values (LFTri for MOD 1, DC for MOD 2, EnvGen for MOD 3
and 4). The choice was made so that the number of parameters
was fixed in any case, giving a total of 19. Parameters for choos-
ing the oscillators and filter were normalized from 0 to 1 and inter-
nally quantized. The monolithic synthesizer was compared to the
equivalent ensemble of 12 synthesizers, one for each configuration
(2 oscillators × 2 oscillators × 3 filters).

For choosing the ensemble synthesizer, the methods described
in Section 3 were compared. Evaluating all models and picking the
best result (Select Best), using a classifier trained with in-domain
samples (Predict Same) or using a classifier trained with out-of-
domain samples (Predict Best). For the classifier-based methods,
the CNN model from Section 5.1 was repurposed as a classifier

Figure 3: Example of in-domain match

and trained with the ensemble examples. The classifier achieved a
multi-class accuracy of 85% for Predict same and 69% for Predict
best.

The different methods were compared using MFCC distance
with out-of-domain samples. The samples were obtained from the
NSynth dataset [21], selecting all the samples with the same pitch
used in the synthesizers (C4). The training subset of this dataset
(4000 samples for C4) was used to train the classifier for the Pre-
dict Best approach, whereas the validation set (174 samples for the
same note) was used to evaluate al the methods.

Figure 4: MFCCD distributions for out-of-domain samples

Figure 4 shows the distributions of the MFCCD metric for all
the methods. Boxes show the quartiles of the data, while whiskers
show the whole distribution range except for outliers. All groups
were shown to be significantly different through a Wilcoxon signed-
rank test (p < 0.01). The results show that the ensemble method

DAFx.4

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

13 parameters synth 24 parameters synth
Network MSE (param) MFCCD Training time (s) MSE (param) MFCCD Training time (s)

MLP 0.1 6.57 231 0.06 11.8 265
CNN 0.05 4.3 120 0.07 11.5 118

BiLSTM 0.07 9.9 295 0.08 16.2 317

Table 3: Comparison of network architectures

can obtain better results for matching out-of domain sounds as
compared to an equivalent integrated synthesizer. Following the
Select Best approach, Predict Best was shown to perform signifi-
cantly better than Predict Same approach, which in turn was sig-
nificantly better than the monolithic synthesizer.

Figure 5: Example of out-of-domain match

5.3. Scaling to larger numbers

For testing the potential for scaling to larger ensembles, all the
possible synthesizers for the implementation in Section 4 were
generated, using always an envelope for amplitude modulation.
This resulted in 324 synthesizer - programmer pairs. Ensembles
of increasing sizes were sampled randomly to test the effect of the
ensemble size, using the Select Best method with the same out-of-
domain samples as in the previous experiment. Evaluation of other
selection methods for larger scales was left for further work. Re-
sults are shown in Figure 6. Error bars show 95% confidence inter-
vals for the distribution of MFCC distance. The distance decreases
monotonically, which supports the hypothesis that larger numbers
of synthesizers can help obtain better matches, while obviously in-
creasing the computational cost. Figure 7 shows the distribution of
MFCC distance when using the full ensemble of 324 synthesizers.
Most of the examples (79%) were matched below a value of 15.

For out-of-domain samples, the distance was subjectively found
to correlate better with perception than with in-domain sounds.
However, the quality of the match strongly depended on how fea-
sible it was for the simple subtractive synthesis design to replicate
the acoustic properties fo the out-of-domain sound. An example
is shown in Figure 5. Here, an acoustic guitar sound was matched
with the subtractive synthesizer. Like in the case of in-domain

sounds, the synthesizer was able to replicate the harmonic struc-
ture, and some of the amplitude envelope. Yet, since the ADSR
controls were designed to be independent and add up to 4 sec-
onds (e.g. the maximum decay time was 1 second), the synthesizer
could not perfectly replicate the acoustic decay envelope.

Figure 6: MFCCD distributions for out-of-domain samples for
ensembles of increasing size

6. DISCUSSION

The experiments show that good results, in terms of MFCC dis-
tance, can be obtained with simple synthesizer designs both for
in-domain and out-of-domain samples. Used as ensembles, these
designs can perform better than equivalent integrated designs for
sound matching. From subjective listening, the MFCC distance
proved to be a useful metric for assessing the quality of matches.
However, for the single-note sounds in the NSynth dataset, this
distance mostly emphasized similarities in spectral content, while
errors in the envelope and modulations were often not reflected.
This may be due both to the frame-based nature of the distance
and the logarithmic amplitude of MFCCs. This is compounded
by the difficulty of matching out-of-domain sounds, which may
have complex envelopes, with an ADSR envelope generator, as
observed also in [13].

With respect to the network architecture, during training, it
seemed clear that good results could be obtained with different ar-
chitectures. Short training times were treated as a priority in order
to investigate the use of large ensembles with potentially hundreds
of programmers. Using random sampling of parameters allows

DAFx.5

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

Figure 7: MFCCD distribution for out-of-domain samples using
324 synths ensemble

creating datasets of arbitrary size, which could be used to create
better models, while at the same time is probably more challeng-
ing than using real-world presets as commonly done in recent work
[4, 9, 10].

Concerning ensemble-based matching, the best results were
obtained by evaluating all the programmers in the ensemble and
selecting best-matching sample from the ensemble. This approach
could be used in practical applications but would require more time
for rendering each sound than the classification-based approaches.
Unlike in GA-based approaches, where samples are generated at
each iteration, here they only need to be generated once, which
can be done in parallel for real-time synthesis of many examples.
However, for larger ensembles, this approach could become a bot-
tleneck.

The proposed template-based system can be used flexibly to
generate many kinds of synthesizers. A general limitation of the
ensemble approach is that, given a target sound, the user would be
presented with a potentially different interface each time. Given
that the goal is to be able to modify the sounds recreated by the
synthesizer, this assumes a certain familiarity with synthesis con-
cepts, such as subtractive synthesis modules, rather than an exper-
tise with a given synthesizer. This is an opportunity for designing
novel user interfaces where some elements are retained and some
are varied.

Beyond the limitations of the system itself, the study is limited
in different ways. Compared with targeting commercial synthe-
sizers, the proposed system requires many design decisions. For
example, early versions of the system used with random param-
eter sampling tended to produce many more modulations than is
common in real-world usage. Also, random modulators had to
be discarded, as they would produce a different sound each time,
which impaired the evaluation based on MFCC distance.

7. CONCLUSIONS AND FUTURE WORK

This paper has presented a method for sound matching using cus-
tom synthesizers generated from templates. The system is imple-
mented using SuperCollider and Python, and is available as open-
source software. The experiments have shown the potential for
sound matching using the NSynth dataset.

Given the possibilities offered by template-based generation,
this study has only scratched the surface. More work is needed in
a number of directions.

First, the study has only evaluated the different classification-
based selection techniques for a small ensemble. Therefore, future
work will focus on the selection procedure at larger scales.

A second important direction is studying mixtures of differ-
ent synthesis techniques. This could allow using sound matching
with broader ranges of out-of-domain sounds, eventually allowing
systems that provide interesting results for virtually any kind of
sound.

Finally, the selection of synthesizers with different parameters
for the matching use case will likely pose some interesting chal-
lenges with respect to the user interface. At the same time, imple-
menting the system in a playable interface could introduce further
requirements for selecting the synthesizer (for example focusing
on versatility). In general, the usability of the proposed approach
should be investigated in a user study.

8. ACKNOWLEDGMENTS

This work has received support from the Learning and Develop-
ment scheme at University of West London.

9. REFERENCES

[1] Andrew Horner, James Beauchamp, and Lippold Haken,
“Machine tongues XVI: Genetic algorithms and their appli-
cation to fm matching synthesis,” Computer Music Journal,
vol. 17, no. 4, pp. 17–29, 1993.

[2] Julius O Smith III, “Viewpoints on the history of digital syn-
thesis,” in Proceedings of the International Computer Music
Conference. ICMA, 1991, pp. 1–1.

[3] Matthew John Yee-King, Leon Fedden, and Mark d’Inverno,
“Automatic programming of VST sound synthesizers using
deep networks and other techniques,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 2, no.
2, pp. 150–159, 2018.

[4] Zui Chen, Yansen Jing, Shengcheng Yuan, Yifei Xu, Jian
Wu, and Hang Zhao, “Sound2synth: Interpreting sound
via fm synthesizer parameters estimation,” arXiv preprint
arXiv:2205.03043, 2022.

[5] Naotake Masuda and Daisuke Saito, “Quality diversity for
synthesizer sound matching,” in 2021 24th International
Conference on Digital Audio Effects (DAFx). IEEE, 2021,
pp. 300–307.

[6] Matthieu Macret and Philippe Pasquier, “Automatic design
of sound synthesizers as pure data patches using coevolu-
tionary mixed-typed cartesian genetic programming,” in Pro-
ceedings of the 2014 Annual Conference on Genetic and Evo-
lutionary Computation, 2014, pp. 309–316.

DAFx.6

Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

[7] Yuyo Lai, Shyh-Kang Jeng, Der-Tzung Liu, and Yo-Chung
Liu, “Automated optimization of parameters for FM sound
synthesis with genetic algorithms,” in International Work-
shop on Computer Music and Audio Technology. Citeseer,
2006, p. 205.

[8] Oren Barkan and David Tsiris, “Deep synthesizer parame-
ter estimation,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 3887–3891.

[9] Philippe Esling, Naotake Masuda, Adrien Bardet, Romeo
Despres, Axel Chemla, et al., “Universal audio synthesizer
control with normalizing flows,” in International Conference
on Digital Audio Effects (DAFx 2019), 2019.

[10] Gwendal Le Vaillant, Thierry Dutoit, and Sébastien
Dekeyser, “Improving synthesizer programming from varia-
tional autoencoders latent space,” in 2021 24th International
Conference on Digital Audio Effects (DAFx), 2021, pp. 276–
283.

[11] Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam
Roberts, “Ddsp: Differentiable digital signal processing,”
arXiv preprint arXiv:2001.04643, 2020.

[12] Naotake Masuda and Daisuke Saito, “Synthesizer sound
matching with differentiable dsp.,” in ISMIR, 2021, pp. 428–
434.

[13] Naotake Masuda and Daisuke Saito, “Improving semi-
supervised differentiable synthesizer sound matching for
practical applications,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 31, pp. 863–875,
2023.

[14] Xavier Serra and Julius Smith, “Spectral modeling synthesis:
A sound analysis/synthesis system based on a deterministic

plus stochastic decomposition,” Computer Music Journal,
vol. 14, no. 4, pp. 12–24, 1990.

[15] Daniel Faronbi, Iran Roman, and Juan Pablo Bello, “Explor-
ing approaches to multi-task automatic synthesizer program-
ming,” in ICASSP 2023-2023 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2023, pp. 1–5.

[16] Victor Lazzarini, “The development of computer music pro-
gramming systems,” Journal of New Music Research, vol.
42, no. 1, pp. 97–110, 2013.

[17] James McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Computer Music Journal, vol. 26,
no. 4, pp. 61–68, 2002.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,”
Advances in neural information processing systems, vol. 32,
2019.

[19] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis,
Matt McVicar, Eric Battenberg, and Oriol Nieto, “librosa:
Audio and music signal analysis in python.,” in SciPy, 2015,
pp. 18–24.

[20] Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[21] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Diele-
man, Mohammad Norouzi, Douglas Eck, and Karen Si-
monyan, “Neural audio synthesis of musical notes with
wavenet autoencoders,” in International Conference on Ma-
chine Learning. PMLR, 2017, pp. 1068–1077.

DAFx.7

	1 Introduction
	2 Related work
	3 Matching with synthesizer ensembles
	4 Implementation
	5 Experiments
	5.1 Individual programmers
	5.2 Monolithic vs ensemble
	5.3 Scaling to larger numbers

	6 Discussion
	7 Conclusions and future work
	8 Acknowledgments
	9 References

