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Abstract 11 

Finding a cost-effective, efficient and environmentally friendly technique for removal of 12 

mercury ion (Hg2+) in water and wastewater can be a challenge task. This paper presents a 13 

novel and efficient adsorbent known as the Graphene oxide-Cu2SnS3-Polyaniline (GO-CTS-14 

PANI) nanocomposite, which was synthesised and utilised to eliminate mercury ions (Hg2+) 15 

from water samples. The soft–soft interaction between Hg2+ and sulfur atoms besides chelating 16 

interaction between -N and Hg2+ and also electrostatic interaction are the main mechanisms for 17 

Hg2+ adsorption onto the GO-CTS-PANI adsorbent. Various characterisation techniques, 18 

including Fourier transform infrared spectrophotometry (FT-IR), Field Emission Scanning 19 

Electron Microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Elemental 20 

Mapping analysis, and X-ray diffraction analysis (XRD), were employed to analyse the 21 

adsorbent. The Box-Behnken method, utilising Design Expert Version 7.0.0, was employed to 22 

optimise the crucial factors influencing the adsorption process, such as pH, adsorbent quantity, 23 

and contact time. The results indicated that the most efficient adsorption occurred at pH 6.5, 24 
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with 12 mg of GO-CTS-PANI adsorbent, and a 30-minute contact time, achieving a maximum 25 

removal rate of 95% for 50 mg/L Hg2+ ions. The study also explored the isotherm and kinetics 26 

of the adsorption process, revealing that adsorption took place in sequential layers (Freundlich 27 

isotherm) and was followed by a physical interaction between the adsorbent and the adsorbate. 28 

The pseudo second-order kinetic equation proved to be a suitable model for interpreting the 29 

kinetic data. Furthermore, Response Surface Methodology (RSM) analysis indicated that pH 30 

was the most influential parameter in enhancing adsorption efficiency.  In addition to traditional 31 

models, this study employed artificial intelligence methods, such as the Random Forest 32 

algorithm, to enhance the prediction of adsorption process efficiency. The findings 33 

demonstrated that the Random Forest algorithm exhibited high accuracy, achieving a 34 

correlation coefficient of 0.98. Overall, this research underscores the potential of the GO-CTS-35 

PANI composite for effectively removing Hg2+ ions from water resources. 36 

 Keywords: Adsorption, Artificial Intelligence, Graphene oxide-Cu2SnS3-PANI, Mercury ion, 37 

Response Surface Methodology  38 

Introduction 39 

In the present era, addressing heavy metal pollution poses a significant challenge to 40 

environmental preservation (Briffa et al., 2020). One such hazardous metal is mercury ion 41 

(Hg2+), which exhibits toxicity even at low concentrations, leading to detrimental impacts on 42 

various bodily systems, including the nervous, digestive, immune, respiratory, and renal 43 

systems (Raj and Maiti 2019; Rice et al., 2014). The presence of Hg2+ in the environment is 44 

primarily attributed to human activities such as gold mining, alloy manufacturing, smelting, 45 

electricity and pesticide production, paint manufacturing, and waste incineration (Tchounwou 46 

et al., 2003; Mbanga et al., 2019; Streets et al., 2011). It infiltrates water resources through 47 

processes like atmospheric deposition, surface runoff, and direct discharge from industries and 48 

sewage treatment facilities. Once in water, Hg2+ can be converted into methylmercury by 49 
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bacteria, a highly toxic form of the element. Methylmercury accumulates in the food chain, 50 

particularly in aquatic organisms like fish, resulting in biomagnification and posing a health 51 

risk to humans when consumed (Global Mercury Assessment 2018; Yu et al., 2016). According 52 

to the recent Global Mercury Assessment, approximately 2000-2500 tonnes of mercury are 53 

released into the atmosphere, water, and soil each year (Global Mercury Assessment 2018). 54 

Consequently, the removal of Hg2+ from environmental water samples is of paramount 55 

importance. 56 

Various techniques, including adsorption (Yu et al., 2016; Santana et al., 2016), membrane 57 

filtration (Albatrni et al., 2021; Yan et al., 2021), ion exchange (Han et al., 2020), and 58 

coagulation (Vasudevan et al., 2012), have been employed for this purpose. Among these, 59 

adsorption is the most commonly used method due to its inherent advantages, including the 60 

ease of preparing synthetic and natural adsorbents, relatively low cost, and high removal 61 

efficiency (Saadati et al., 2023; Rezazadeh et al., 2022; Wei et al., 2018; Li et al., 2014; Lei et 62 

al., 2014). 63 

Graphene oxide (GO) is an oxidised form of graphene featuring oxygen-based functional 64 

groups that render it hydrophilic and readily dispersible in aqueous solutions. Its surface can 65 

be chemically or physically modified with various functional groups, making it suitable for a 66 

range of applications, including water treatment (Arshad et al., 2019; Amini-Fazl et al., 2021). 67 

Ternary Cu2SnS3 (CTS) is an environmentally friendly material with optoelectronic properties, 68 

well-suited for photoelectrochemical applications (Jathar et al., 2021). It also contains readily 69 

available elements, making it a cost-effective material (Berg et al., 2012). Furthermore, the 70 

presence of sulfur atoms (soft base) in CTS makes it an effective adsorbent for toxic soft heavy 71 

metals like Hg2+ (Velempini and Pillay 2019). Thus, the main purpose of the proposed method 72 

is to synthesise and characterise of GO-CTS-PANI nanocomposite to be used as an adsorbent 73 

that would maximise the efficiency of the removal of Hg2+ ions from water sample. This can 74 
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be achieved by synthesising CTS nanoplates and then its characterisation to modify GO 75 

followed by modification with PANI. Since CTS nanoplates have Sulphur atoms in its 76 

structure, it could be served as a suitable adsorbent for the removal of Hg2+ as a very toxic ion.  77 

Hence, this study first aims to synthesise GO nanosheets using the Hummer method and modify 78 

them with CTS nanoplates and polyaniline (PANI) to create the GO-CTS-PANI 79 

nanocomposite. The synthesised adsorbent undergoes thorough characterisation using various 80 

techniques, including Fourier transform infrared spectrophotometry (FT-IR), Field Emission 81 

Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), 82 

Elemental Mapping analysis, and X-ray diffraction analysis (XRD). To determine the optimal 83 

conditions for achieving the maximum removal percentage (RP), the Box-Behnken 84 

experimental design is employed, and various isotherm and kinetic models are assessed and 85 

interpreted. Finally, both the Box-Behnken method and Random Forest algorithms are utilised 86 

for optimising and predicting the performance of the adsorption system, respectively. 87 

Methodology 88 
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This study is divided to different parts including experimental and numerical efforts which are 89 

demonstrated in Figure 1. According to the scheme, it can be found that experimental practices 90 

containing the characterisations and adsorption application process. Likewise, the numerical 91 

parts including classical computations for adsorption mechanism analysis, optimisation by 92 

Response Surface Methodology, and Machine Learning calculations.  93 

Figure 1. The research roadmap of this study.  94 

Instruments 95 

FE-SEM, EDX, and Elemental Mapping Analysis were conducted using a BRNO-Mira3 LMU 96 

device manufactured by TESCAN in the Czech Republic. FT-IR analysis was performed with 97 

an AVATAR 370 spectrometer from the US, and XRD analysis utilized a D8-Advance Bruker 98 

Cu Kα1 instrument, also from the US. To determine the concentration of Hg2+, a cold vapor 99 

generation atomic absorption spectrometer (CV-AAS, Perkin Elmer Analyst 700, USA) 100 

equipped with a Hg hollow cathode lamp emitting at 253.7 nm was employed. pH adjustments 101 

were made with a Metrohm 827 pH-meter from Switzerland, and the separation of the 102 
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adsorbent from the solution was accomplished using an Andreas Hettich D72 centrifuge 103 

instrument from Germany. 104 

Reagents 105 

The following reagents and chemicals were used in the experiment: Mercury nitrate 106 

monohydrate (Merck, Germany) to prepare a 1000 mg L-1 Hg2+ solution, Graphite, 107 

Cu(NO3)2.3H2O, SnCl2.2H2O, thiourea, aniline, ammonium persulfate, H2SO4 (98.0%), 108 

KMnO4 (99.0%), H2O2 (30%), sodium borohydride (NaBH4, 99.0%) and HNO3 (65.0%). All 109 

of these chemicals and reagents were also provided by Merck (Germany).  110 

Synthesis of GO-CTS-PANI nano-composite 111 

 Synthesis of GO and CTS nanoplates 112 

GO was synthesised using the Hummers method as described in Figure 2 (Rezazadeh et al., 113 

2022b). On the other hand, CTS was synthesised according to the following procedure:  0.241 114 

g Cu(NO3)2.3H2O  and 0.114 g SnCl2.2H2O were dissolved in 50 ml  deionised water. Then 115 

0.114 g thiourea was added to the mixture which causes to the formation of milky mixture. It 116 

was then stirred for 30 minutes and autoclaved at 180°C for 8 hours in a 100 mL Teflon-lined 117 

stainless-steel autoclave. The resulting CTS nanoplates washed with deionised water three 118 

times and dried overnight at 70 °C (Wang et al., 2017). 119 

 120 

Figure 2. Synthetic route of GO in this study 121 
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Synthesise of GO-CTS nanocomposite 122 

To prepare the GO-CTS nanocomposite; 0.5 g of the synthesised GO in 100 ml deionised water 123 

(mixture 1) and 0.15g of CTS nanoplates in 50ml deionised water (mixture 2) were separately 124 

ultrasonicated for 45 minutes to obtain uniform mixtures. By addition of mixture 2 into the 125 

mixture 1, it was stirred for 6 hours at 400 rpm. The synthesised GO-CTS nanocomposite 126 

washed with deionised water three times and dried at 60 °C overnight. 127 

Synthesise of GO-CTS-PANI nanocomposite 128 

In a solution containing 0.5 g of GO-CTS in 100 ml deionised water, 500 µL of aniline (in its 129 

monomeric form) was introduced and stirred for a duration of 10 minutes. Following this, 10 130 

mL of a 1% ammonium persulfate solution was gradually incorporated into the mixture and 131 

stirred for a total of 10 h at 400 rpm. The resulting composite, known as GO-CTS-PANI 132 

nanocomposite, underwent multiple washes with deionized water and was subsequently dried 133 

overnight at 60 °C. 134 

Removal procedure 135 

In a test solution with an initial Hg2+ concentration of 50 mg L-1 at a pH of 6.5, 15 mg of GO-136 

CTS-PANI was introduced, and the blend was agitated for a duration of 45 minutes. 137 

Subsequent to centrifugation for 5 min at 5000 rpm, the final concentration of Hg2+ at 138 

equilibrium was determined using CV-AAS. The removal percentage (RP) and the adsorption 139 

capacity (qe) were computed utilizing Equation (1) and (2), respectively. 140 

RP = (𝐶𝐶0− 𝐶𝐶𝑒𝑒)
𝐶𝐶𝑂𝑂

  ×100     (1) 141 

qe = (𝐶𝐶0− 𝐶𝐶𝑒𝑒)×𝑉𝑉
𝑚𝑚

            (2) 142 

where Ce and C0 = equilibrium and initial concentration of Hg2+ in mg per litre, respectively. 143 

V= Sample volume in Lit, m= Adsorbent dosage in grams. 144 

 145 
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Optimisation process 146 

In order to enhance the efficiency of the experiment, a Box-Behnken design was utilized 147 

through Design Expert Version 7.0.0. The Box-Behnken design belongs to response surface 148 

methodology, which constructs a second-order polynomial equation to depict the connection 149 

between the influencing factors and the response variable. These influencing factors, 150 

encompassing pH, the quantity of adsorbent (M), and contact duration, were modified across 151 

three levels, resulting in a total of 15 experimental trials. The mathematical model derived from 152 

the Box-Behnken design is represented by Equation 3, as detailed in the work of Eftekhari et 153 

al. (2020). 154 

Y = β0 + β1X1 + β2X2 + β3X3 + β11X12 + β22X22 + β33X32 + β12X1X2 + β13X1X3 + 155 

β23X2X3           (3) 156 

Herein, Y represents the response variable, β0 is the constant coefficient, β1-β3 are the linear 157 

coefficients and β11, β22, and β33 are the quadratic coefficients. Moreover, β12, β13, and β23 158 

are the interaction coefficients. 159 

In the optimisation process, the model performance is examined by desirability functions based 160 

on the most important features. The function involves transforming multiple response variables 161 

into a single scalar value between 0 and 1, where a value of 1 indicates the optimal condition 162 

for all response variables, and a value of 0 indicates the worst condition. The desirability 163 

function can be described as the result of multiplying individual desirability functions, with 164 

each individual function signifying the degree of desirability for a specific response variable. 165 

The allocation of weights for these functions is determined by considering the relative 166 

significance of each response variable in relation to the overall performance of the system, as 167 

outlined in the work by Eftekhari et al. (2020). 168 

Classical computations  169 
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The two-parameter isothermal equations represent mathematical formulas used to describe how 170 

adsorption capacity behaves under constant temperature conditions. Meanwhile, the three-171 

parameter isothermal equations share similarities with the two-parameter equations but 172 

introduce an additional parameter to better capture the characteristics of the adsorption process 173 

(Eftekhari et al., 2020). Initially, the data is analysed using the two-parameter isotherm 174 

equations. If both the Langmuir and Freundlich models demonstrate similar performance, then 175 

the three-parameter equations are employed to precisely predict the adsorption mechanism 176 

(Eftekhari et al., 2020). In this research, both two-parameter models (Dubinin-Radushkevich, 177 

Temkin, Langmuir, and Freundlich) and three-parameter models (Toth, Khan, and Sips) are 178 

utilized to assess the adsorption mechanism. Furthermore, to evaluate the dynamic behavior of 179 

the adsorption process, several kinetic equations are applied (Eftekhari et al., 2020). 180 

Machine Learning calculations  181 

In this current research, the Random Forest (RF) algorithm was employed to predict the 182 

removal percentage based on various influential factors, including pH, the quantity of 183 

adsorbent, and contact time. The RF algorithm is a machine learning technique that creates 184 

numerous decision trees during the training phase and outputs either the mode of the classes 185 

(for classification tasks) or the mean prediction (for regression tasks) from the individual trees. 186 

In this specific study, the RF algorithm was trained using a dataset comprising known removal 187 

percentages and their corresponding influential factors. Additionally, to ensure the accuracy 188 

and robustness of the model, the optimal K-fold value was fine-tuned (Eftekhari et al., 2021). 189 

The K-fold technique is a method for validating a model, involving the division of the dataset 190 

into K equally sized subsets or folds. The model is trained on K-1 folds and tested on the 191 

remaining fold, with this process repeated K times. The model's performance is then averaged 192 

across the K folds to provide an estimate of its accuracy. In this study, the optimal K value was 193 
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determined by adjusting the parameter through a grid search approach (Eftekhari et al., 2021). 194 

The mathematical representation of the RF algorithm can be found in Equation 4. 195 

Given a training set T = {(x1,y1), (x2,y2),..., (xn,yn)}      (4) 196 

In the context of this equation where "xi" represents the influential factors and "yi" stands for 197 

the corresponding removal percentage, the RF algorithm generates a diverse set of decision 198 

trees denoted as "Ti" by employing bootstrap aggregating, commonly referred to as "bagging," 199 

on the training dataset "T" (Eftekhari et al., 2021). The result produced by the RF algorithm 200 

corresponds to the class that emerges as the mode among the classes (for classification tasks) 201 

or the mean prediction (for regression tasks) from the individual decision trees. All 202 

computational tasks and model training were carried out using WEKA 3.9. 203 

Results and Discussion 204 

Characterisation of CTS nanoplates and GO-CTS-PANI composite 205 

The CTS nanoplates were synthesised and characterised using XRD, FESEM, and EDX 206 

analysis. FESEM images of the synthesised CTS nanoplates are shown in Figure 3, while the 207 

EDX spectrum presented in Figure 4 confirms the high purity of CTS nanoplates with peaks 208 

corresponding to Cu (0.93 and 8.04 keV), Sn (3.44 keV) and S (2.31 keV). XRD patterns of 209 

the synthesised CTS nanoplates are illustrated in Figure 5, which shows major diffraction 210 

peaks appearing at 2Ɵ = 28.5∘, 32.8∘, 47.5∘, 56.4∘ and 68.6∘. These peaks correspond to (111), 211 

(200), (220), (311) and (400) of CTS (JCPDS no. 89-2877), indicating the CTS nanoplates 212 

possess a cubic phase (Zaman and Poolla 2020). 213 
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     214 

                                               (a)                                                                                    (b) 215 

 216 

(c) 217 

Figure 3. FESEM images of CTS nanoplates (a-c) 218 
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 219 
Figure 4. EDX analysis of CTS nanoplates 220 

 221 

 222 
Figure 5. XRD spectrum of CTS nanoplates 223 

 224 
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Figure 6 presents FESEM images of GO-CTS-PANI composite, which indicates that GO 225 

nanosheets are occupied by CTS nanoplates and PANI. EDX analysis of the composite in 226 

Figure 7 also shows the presence of N and O groups at 0.39 and 0.52 eV, respectively, which 227 

are attributed to PANI and GO in the synthesised composite.  228 

 229 

                                               (a)                                                                                    (b) 230 

 231 

(c) 232 

Figure 6. FESEM images of GO-CTS-PANI nanocomposite 233 
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 234 
Figure 7. EDX analysis of GO-CTS-PANI composite 235 

The GO-CTS-PANI composite was analysed using XRD in Figure 8. The analysis revealed 236 

clear appearance of the main peaks of CTS nanoplates in the spectrum. In addition, two peaks 237 

of GO at 2Ɵ = 11.6∘ and 42.5° correspond to (001) and (101), respectively (Shabani-238 

Nooshabadi and Zahedi 2019) while a broad peak at 2Ɵ=20° corresponds to (100) and 239 

attributed to PANI (Liu et al., 2018).  240 

 241 

 242 
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 243 

 244 
Figure 8. XRD spectrum of GO-CTS-PANI nanocomposite 245 

MAP analysis was conducted on GO-CTS-PANI nanocomposite, and the results (Figure 9a-246 

e) revealed that C (7a), Cu (7b), N(7c), O(7d), S(7e) and Sn (7f) are the main components of 247 

the synthesised GO-CTS-PANI nanocomposite.  248 

 
(a) 
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(b) 

 
(c) 

(d) 
 

(e) 

 
(f) 

 
(g) 

Figure 9. MAP elemental analysis of GO-CTS-PANI; distribution of mapping zone in SEM image (a) C 249 

(b), Cu (c), N(d), O(e), S(f) and Sn (g) (a-f images). 250 
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Finally, the FT-IR spectra of GO-CTS-PANI composite and CTS nanoplates are presented in 251 

Figure 10. The CTS spectrum shows a sharp peak at 500-750 cm-1 that is related to the 252 

vibration of Cu-S, Sn-S bonds. The band at 1630 cm-1 is due to the O-H bending of water 253 

molecules and a peak appeared at 1130 cm-1 could be attributed to the stretching vibration of 254 

C-N band of thiourea in the structure of CTS nanoplates. The FT-IR spectrum of GO-CTS-255 

PANI shows the peaks at 3300 cm-1 (stretching of N-H, O–H), 1050 cm-1 (C–O of hydroxyl 256 

group), 1730 cm-1 (C=O) and 1650 cm-1 (C=C). Moreover, the intense peak of Cu-S and Sn-S 257 

(at 500-750 cm-1) in CTS nanoplates is reduced after modification by GO-PANI. 258 

 259 

 260 

Figure 10. FT-IR spectrum of the synthesised CTS nanoplates and GO-CTS-PANI 261 

 262 

Optimisation of parameters 263 

To optimise effective features including pH, adsorbent amount (M), and contact time, Box-264 

Behnken method was applied using Design Expert Version 7.0.0 for 50 mg L-1 Hg2+ ion. The 265 
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range of each parameter in the Design of Experiments (DOE) as well as the statistical analysis 266 

outcomes of experiments are presented in Table 1. The responses obtained from the 267 

experiments are distributed between 36% and 95%. Also, the model follows polynomial and 268 

quadratic equation for fitting effective features as per removal percentage of Hg2+. Likewise, 269 

according to Table 1, it can be concluded that there is spread distribution of Hg2+ ion 270 

purification from water samples in different conditions of adsorption operation process. 271 

Therefore, finding the optimum condition will be valuable in viewpoints of water treatment 272 

efficiency.  273 

Table 1. The limitations of DOE in this study 274 

Facto
r Name Un

its Type Low 
Actual 

High 
Actual 

Low 
Coded 

High 
Coded Mean Std. Dev.  

A pH  Num
eric 2 7 -1 1 4.5 1.714986  

B M mg Num
eric 5 15 -1 1 10 3.429972  

C Contact 
time 

mi
n 

Num
eric 10 50 -1 1 30 13.71989  

Resp
onse Name Un

its Obs Analys
is 

Minim
um 

Maxi
mum Mean Std. 

Dev. 

Ratio 
(max/min

) 

Mode
l 

Y1 RP % 17 Polyno
mial 36 95 59.470

59 17.9 2.58 Quadr
atic 

 275 

Table 2 displays various statistical metrics, including Standard Deviation, R-Squared, Adjusted 276 

R-Squared, Predicted R-Squared, and Press, for four distinct models: linear, 2FI, quadratic, and 277 

cubic. As indicated by the information in Table 2, the quadratic model (as described in Equation 278 

3) exhibits superior performance, with an R-Squared value of 0.99 and a Predicted R-Squared 279 

value of 0.94, outperforming the other models. Nevertheless, it's worth noting that the Predicted 280 

R-Squared value can be further enhanced by incorporating machine learning computations. 281 

 282 

 283 
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Table 2. The curve fitting regression outcomes in different mathematical models. 284 

Source Std. 
Dev. 

R-
Squared 

Adjusted 
R-

Squared 

Predicted 
R-Squared PRESS  

Linear 7.412232 0.869001 0.838771 0.741765587 1407.955  

2FI 8.351559 0.872074 0.795318 0.409168432 3221.353  

Quadratic 2.339108 0.992975 0.983944 0.942684058 312.5 Suggested 
Cubic 2.280351 0.996185 0.98474    

 285 

RP = -3.38-2.36* pH+5.82*M + 1.07* Contact time+0.14* pH * M+ 0.015* pH * Contact 286 

time+ 7.5E-003* M * Contact time+ 1.12* pH2-0.29* M2-0.018* Contact time2 287 

     (3) 288 

The Analysis of Variance (ANOVA) results presented in Table 3 demonstrates that the 289 

designed model (Equation 1) is significant with a P-value <0.0001 and the error value in 290 

prediction (lack of fit) is insignificant indicating the validity of the equation. Among the three 291 

parameters (pH, M, and contact time), pH has the smallest P-value (<0.0001) and largest F-292 

value (842.19). Between the other two factors, the mass of adsorbent has more importance (P-293 

value = 0.0039) that the contact time (P-value = 0.0462). 294 

Table 3. The results of ANOVA practices in this study 295 

Source Sum of 
Squares 

Mean 
Square F-Value P-value  

Model 5413.9 601.54 109.9436 < 0.0001 significant 
A-pH 4608 4608 842.1932 < 0.0001  

B-M 98 98 17.91123 0.0039  

C-Contact time 32 32 5.848564 0.0462  

AB 12.25 12.25 2.238903 0.1782  

AC 2.25 2.25 0.411227 0.5418  

BC 2.25 2.25 0.411 0.5418  

A^2 207.79 207.79 37.97 0.0005  

B^2 235.26 235.26 42.99 0.0003  

C^2 235.26 235.26 42.99 0.0003  

Residual 38.3 5.47    

Lack of Fit 17.5 5.83 1.12 0.4395 not significant 
Pure Error 20.8 5.2    

Cor Total 5452.2     



20 
 

The statistical distribution of results is presented in Figure 11 (Normal% probability via 296 

internally studentised residuals). Based on the results the normality of experimental outputs of 297 

the DOE were found to be normal all the data are located within the normal diagram according 298 

to the declared scheme. A normally distributed dataset implies that the mean and standard 299 

deviation of the data are well-defined, which can aid in the design and optimisation of the 300 

system. Additionally, engineers can use this information to make informed decisions about the 301 

system, such as setting appropriate tolerances for manufacturing processes or determining the 302 

expected variability in system performance. Overall, the normality of the experimental outputs 303 

is a useful piece of information for engineers to consider when analysing and designing 304 

systems. Figure 12(a-c) shows the outcomes of the dual sensitive evaluation of effective 305 

experimental factors for adsorption of Hg2+ onto GO-CTS-PANI. Figure 12a demonstrates the 306 

influence of pH and amount of adsorbent on the recovery percentage of Hg2+.  307 

The findings suggest that elevating the pH level results in an augmentation of the removal 308 

percentage (RP) of Hg2+, reaching its peak effectiveness at around pH 6.5-7. This notable 309 

enhancement in RP as pH increases is likely attributed to the deprotonation of functional groups 310 

like carboxyl, sulfur, and N-H on the adsorbent, enhancing their interaction with Hg2+ 311 

(Anirudhan et al., 2015; Gao et al., 2021). Conversely, the lower RP of Hg2+ in acidic solutions 312 

(pH<5) is linked to the protonation of S-atoms in CTS nanoplates, protonation of hydroxyl 313 

groups, incomplete dissociation of carboxylic acid groups (which have pKa values around 5) 314 

on GO, and protonation of -NH groups on PANI, leading to electrostatic repulsion between 315 

Hg2+ ions. Within the pH range of 6–7, Hg2+ predominantly exists as Hg (OH)2 (approximately 316 

79%) and HgOH+ (approximately 10%) (Anirudhan and Shainy 2015). According to the 317 

Pearson rule, interactions are more favourable between hard acids and hard bases, and soft 318 

acids and soft bases (Santhana Krishna Kumar et al., 2013). Additionally, considering that 319 

neutral molecules are softer acids compared to metal cations, the interaction between Hg2+ 320 
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species becomes more favourable at higher pH values. Regarding the influence of the 321 

parameter "M" on RP, an increase in "M" enhances the RP of Hg2+ because it provides more 322 

available active sites for interaction with the analyte. However, a further increase in the "M" 323 

parameter eventually diminishes the RP, primarily due to the aggregation of the adsorbent 324 

(Eftekhari et al., 2020). Figures 12b and 12c depict the effects of contact time, "M," and pH 325 

on the RP of Hg2+, with the results showing that an extended contact time leads to an improved 326 

RP of Hg2+. Figure 13 shows the EDX spectrum of GO-CTS-PANI adsorbent after adsorption 327 

of Hg2+ that shows a peak of the adsorbed Hg2+ at 9.9 keV. The obtained results clearly shows 328 

that Hg2+ ions effectively adsorbed onto the GO-CTS-PANI adsorbent. 329 

 330 

 331 
Figure 11. The normal distribution of experimental outcomes in this study  332 
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 338 
(c) 339 

Figure 12. The sensitive analysis of the studied parameters on RP of Hg2+ (50 mg L-1) (a-c).  340 

 341 

 342 

 343 

 344 
Figure 13. EDX analysis of GO-CTS-PANI after adsorption of Hg2+ ions. 345 
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 346 

After conducting sensitive analysis and mathematical modelling using Box-Behnken model, 347 

the optimal values of the effective factors are computed. The results (Table 4) show that the 348 

maximum performance (removal percentage as RP) for removing Hg2+ from water samples 349 

using GO-CTS-PANI is 95%, indicating the best operational efficiency. Therefore, the optimal 350 

performance can be obtained based on optimal features of pH of 6.5, M=12 mg and contact 351 

time of 30 min. These effective features are also depicted in Figure 14 based on the desirability. 352 

The contours in the figure show that the maximum desirability for predicting the optimal 353 

conditions is achieved with high levels of pH and intermediate values of M.  354 

 355 

Table 4. The optimal suggestions of effective features based on RP% in this study. 356 

pH M (mg) Contact time 
(minutes) 

RP (%) Desirability 

6.59 10.39 40.59 97 1.000 

6.56 10.42 39.18 97.6633 1.000 

6.50 12.07 30.38 98.3089 1.000 

 357 

 358 
Figure 14. The contours of desirability fluctuations  359 
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Adsorption mechanism 360 

Figure 15 shows the mechanism of Hg2+ adsorption onto the GO-CTS-PANI adsorbent. The 361 

figure shows that there are three main interactions between adsorbent and Hg2+ ions, which 362 

include: (1)- electrostatic interaction between dissociated carboxylic acid groups of GO and 363 

HgOH+ ions (Awad et al., 2020) (2)- soft–soft interaction between Hg2+ and sulfur atoms of 364 

CTS (Anirudhan et al., 2015; Gao et al., 2021; Santhana Krishna Kumar et al., 2013) and (3)- 365 

chelating interaction between N and Hg2+ (Zeng et al., 2019). 366 

 367 

 368 
Figure 15. Adsorption mechanism of Hg2+ on to the GO-CTS-PANI 369 

 370 

Adsorption isotherm 371 

To evaluate the adsorption mechanism and determine the dominance of Freundlich and 372 

Langmuir isotherms, two-parameter, and three-parameter equations (mentioned in Figure 16) 373 

were applied. In the first step, two-parameter calculations are analysed as shown in Figure 16. 374 
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The outcomes indicate that the regression coefficient of both isotherms was over 0.95 and the 375 

precise determination of the mechanism is simply not possible. Based on two-parameter 376 

relationships, the maximum absorption capacity (Qmax), Langmuir coefficient (Kads), Kf and n 377 

were estimated as 232.5 mg g-1, 6.76 L mg-1, 32.95 and 1.75, respectively. However, 378 

considering the three-parameter Sips, Khan and Toth isotherms (R2 more than 0.99) and 379 

modelling them in Curve Expert Professional software, it was revealed that the exponential 380 

coefficients of the models did not converge to 1. Consequently, the Freundlich isotherm was 381 

found to be superior (Eftekhari et al., 2020; Eftekhari et al., 2021). It was observed that Hg2+ 382 

ions were adsorbed onto GO-CTS-PANI in some sequential layers and 0<1/n<1 indicating a 383 

favourable adsorption process. Figure 17 shows that in Temkin model, b<8 KJ mol-1, and 384 

according to the Dubinin-Radushkevich (D-R) equations, E<8 KJ mol-1. Therefore, the 385 

adsorption of Hg2+ ions onto GO-CTS-PANI is physically in nature. The D-R isotherm model 386 

was used to calculate the Qm and K factors which were found to be 102 mg g-1 and 2E-07, 387 

correspondingly (Eftekhari et al., 2020).   388 

 389 
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 390 
Figure 16. The computational model of Hg2+ adsorption onto GO-CTS-PANI. 391 

 392 
Figure 17. The physical, chemical, or intra-particle mechanism of Hg2+ adsorption onto GO-CTS-PANI. 393 

 394 
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Adsorption kinetic 395 

Figures 18 and 19 demonstrate the results of Hg2+ kinetic adsorption onto GO-CTS-PANI 396 

using four models: Pseudo-First-Order (PFO), Pseudo-Second-Order (PSO), Intra-particle, and 397 

Elovich. Based on the data presented in Figure 18, the PSO model produced a more desirable 398 

R2 value and a smaller difference between experimental and calculated qe values compared to 399 

the PFO model. Therefore, it can be concluded that the adsorption of Hg2+ onto the GO-CTS-400 

PANI follows by the pseudo second order model with a rate of k2=0.02 mg g-1 min-1 (R2=0.95) 401 

(Eftekhari et al., 2020; Eftekhari et al., 2021).  402 

 403 

Figure 18. The outputs of kinetic reaction order and coefficient calculations in this study 404 

 405 

Figure 19 shows that it is evident that the kinetic behaviour of Hg2+ adsorption onto GO-CTS-406 

PANI can be described by both Intra-particle (R2=0.98) and Elovich (R2=0.94) models. The 407 

Intra-particle kinetic curve has intercept of C=-20.6 indicating that both integrated intra-408 

particle and mass transfer mechanisms play a significant role in the adsorption process 409 
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(Eftekhari et al., 2020). Moreover, the Elovich model suggests that GO-CTS-PANI has a 410 

heterogeneous surface which is consistent with the results of isothermal assessments.  411 

 412 

 413 

Figure 19. The outcomes of Elovich and Intra-particle kinetic models in the investigation. 414 

 415 

Machine learning 416 

This study also utilised machine learning practices for two purposes: (1) to improve the 417 

accuracy of prediction parameters and (2) to establish an intelligent infrastructure for online 418 

investigation of purification systems using the adsorption method. The distribution of data used 419 

in the machine learning process, carried out using the RF method is illustrated in Figure 20.  420 
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 421 
Figure 20. The distribution of data used for the machine learning modelling in this study. 422 

 423 

Figure 21 displays the performance of the RF algorithm at different K-Folds Cross-Validation 424 

(KFCV) during training and testing process of the data. By adjusting the number of folds, the 425 

proportion of testing and training data can be determined. The correlation coefficient (Figure 426 

21a) and root mean square error (Figure 21b) both indicate that the correlation coefficient 427 

generally increases as the number of folds increases but with some fluctuations in different 428 

steps. conversely, the behaviour of root mean square error is similar to correlation coefficient 429 

but in reverse. Therefore, the best condition is achieved at K=12 and the details are summarised 430 

in Table 5. It is worth noting that by applying the RF algorithm, the prediction performance is 431 

improved, and operation of the adsorption process can be managed automatically without the 432 

need for further examinations or other mathematical computations.  433 
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 434 
(a) 435 

 436 

(b) 437 

Figure 21. The effects of the number of K-folds on (a) correlation coefficient and (b) root mean square 438 

error 439 

Table 5. The statistical indicators of the RF algorithm performance for K=12 440 

Correlation coefficient 98.2% 

Mean absolute error    6.16 

Root mean square error 7.25 

RAE 38.7% 

RRSE 38.26% 
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Figure 22 show the scatterplot between observed and predicted values of the removal 441 

percentage (RP). It shows that the prediction process achieved high accuracy, providing 442 

evidence of the high validity of the RF algorithm for optimising the adsorption of Hg2+ ions 443 

onto GO-CTS-PANI nanocomposite. The development of a Decision Support Ssystem (DSS) 444 

for the prediction of Hg2+ purification from water resources by adsorption process is an 445 

important achievement, and the statistical outputs of the system are highly encouraging.  446 

The system employs the RF algorithm and takes into account critical input variables, including 447 

contact time, the quantity of adsorbent, and pH. The notably high correlation coefficient of 448 

98.2% signifies a robust positive connection between the input variables and the outcome 449 

variable, which, in this instance, pertains to the extent of Hg2+ removal. This strong correlation 450 

coefficient indicates that the input variables possess substantial predictive power regarding the 451 

outcome variable, a crucial characteristic of a dependable Decision Support System (DSS). 452 

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) represent two common 453 

metrics for gauging the accuracy of a prediction model. MAE reflects the average absolute 454 

disparity between predicted and actual values, while RMSE signifies the square root of the 455 

average squared difference between predicted and actual values. In this scenario, the MAE of 456 

6.16 and the RMSE of 7.25 indicate that the DSS's predictions closely align with the actual 457 

values. These low values underscore the high precision and reliability of the system's 458 

predictions, a vital aspect for effective decision-making. 459 

Furthermore, Relative Absolute Error (RAE) and Root Relative Square Error (RRSE) serve as 460 

supplementary metrics for assessing prediction model accuracy. RAE quantifies the average 461 

absolute discrepancy between predicted values and actual values, normalized by the average 462 

actual value, while RRSE denotes the square root of the average squared difference between 463 

predicted values and actual values, also normalized by the average actual value. In this context, 464 

the RAE of 38.7% and the RRSE of 38.26% are relatively elevated. This implies that there 465 
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exists some degree of error in the DSS's predictions. Nevertheless, it is essential to note that 466 

these values still fall within an acceptable range and do not diminish the overall reliability of 467 

the system. 468 

 469 

Figure 22. The scatter plot between predicted and actual values of RP% in RF algorithm (K=12) 470 

 471 

 Test of Reusability  472 

To evaluate the potential for reusing GO-CTS-PANI, we conducted five cycles of adsorption 473 

and desorption, employing a 0.1 mol L-1 HCl (hydrochloric acid) solution for desorption. As 474 

depicted in Figure 23, following three rounds of utilizing the GO-CTS-PANI adsorbent, we 475 

observed only a marginal 6% decrease in removal percentage (RP). Nevertheless, in subsequent 476 

cycles, a more substantial reduction in RP became evident. Based on these observations, it can 477 

be inferred that GO-CTS-PANI remains effective for up to three cycles without a noteworthy 478 

decline in RP. 479 

 480 

 481 
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 482 

 483 

 484 

Figure 23. Results of the reusability of GO-CTS-PANI nanocomposite 485 

 486 

Comparison with other studies  487 

Table 6 provides a comparison between the newly developed GO-CTS-PANI composite in this 488 

study and other adsorbents employed for Hg2+ removal. The findings clearly illustrate that this 489 

novel adsorbent exhibits a remarkable adsorption capacity for Hg2+ within a short timeframe. 490 

Furthermore, as it can be effectively reused for at least three cycles without a significant 491 

reduction in removal percentage, the GO-CTS-PANI composite can be considered a highly 492 

efficient adsorbent. According to the data in Table 6, it is evident that the GO-CTS-PANI 493 

composite outperforms other adsorbents, such as palm shell activated carbon modified with 494 

ionic liquids, in terms of adsorption capacity. This enhanced performance of the GO-CTS-495 

PANI composite can be attributed to its advantageous functional groups, including the sulfur 496 

atoms found in CTS nanoplates, the presence of nitrogen atoms in PANI, and the electrostatic 497 
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interactions between the carboxylic acid groups of GO and Hg2+ ions. Consequently, these 498 

results strongly suggest that GO-CTS-PANI holds substantial promise as a material for 499 

effectively removing mercury from aqueous solutions. 500 

Table 6. Comparison between GO-CTS-PANI and other adsorbents for Hg2+ removal 501 

Adsorbent Adsorption capacity (mg g-1) Reference 
2-mercaptobenzamide modified 
itaconic acid-grafted-magnetite 
nanocellulose composite 

240.0 (Anirudhan and 
Shainy 2015) 

Palm shell activated carbon 
impregnated with task-specific 
ionic-liquids 

83.3 (Abu Ismaiel et 
al., 2013) 

Polyamine modified reduced 
graphene oxide 63.8-59.9 (Yap et al., 

2020) 
Magnetic carbon nanotube 172.8 (Homayoon et 

al., 2017) 

Mercapto-modified bentonite 19.3 (Sahan et al., 
2018) 

Mercaptobenzothiazole modified 
cellulose 204.1 (Krishna Kumar 

et al., 2013) 
GO-CTS-PANI 232.5 This study 

 502 

Conclusions 503 

The GO-CTS-PANI composite proved effective as an adsorbent for eliminating Hg2+ from 504 

water samples. The optimal conditions, resulting in a 95% removal rate for 50 mg L-1 Hg2+, 505 

were determined as follows: pH= 6.5, 12 mg of GO-CTS-PANI adsorbent, and a 30-minute 506 

contact period, employing the Box-Behnken method. The adsorption process exhibited a 507 

multilayer adsorption mechanism with physical interactions on the surface, as evident from 508 

conventional calculations. Kinetic analysis revealed that the adsorption reaction adhered to the 509 

PSO equation. Sensitivity analysis identified pH as the most influential factor impacting the 510 

adsorption process. Both RSM and machine learning techniques, specifically the RF method, 511 

proved effective for optimizing the adsorption process and predicting its efficiency, 512 

respectively. Furthermore, the GO-CTS-PANI nanocomposite demonstrated its reusability 513 

through five cycles of adsorption/desorption, with merely a 6% reduction in removal efficiency 514 

observed after three cycles. Ultimately, this study underscores the exceptional efficiency and 515 
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reusability of the GO-CTS-PANI composite as an adsorbent for Hg2+ removal, showcasing its 516 

potential for future applications in water purification. 517 
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