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Introduction

• Creative engineered architectural forms can be achieved when using
multiple circuit arrangements of reciprocally supported elements
(RSE).

• Appearance often similar to woven basket assemblies.

• Structural elements of various cross-sections and materials can be
used.



• Potential applications range from the construction sector to aid work
as RSE structures can be mobile and rapidly assembled.

• Economic advantage over the more traditional connection systems
where, for example, machined cast ball-joints connectors are
employed.

Applications
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Elementary dome shapes for RSE transformation 
• Diamatic domes are another family of lattice domes along with the (a) Ribbed, (b) Schwedler and (c) Lamella type. 
• Honeycomb diamatic domes frequently used in practice due to the avoidance of element cluttering near the crown. 
• Convenient as RSE configuration processing greatly simplified.

Typical Formian* 
generated honeycomb 
domes with frequency, 
m=3, sweep angle, A=60 
degrees and (a) n=6, (b) 
n=7 and (c) n=8.

*Software developed at 
the University of Surrey, UK



RSE Transformation – Formian and Rhinoceros

Perspective views of (a) elementary dome, (b) rotation method transformation 
and (c) RSE honeycomb dome using initial rotation angle of 150.

(a) (b) (c)



Case Study – RSE Honeycomb Dome

• Study aim was to compare predicted behaviour with monitored 
behaviour in the laboratory.

• Part 1 of the study was structural modelling. 

• Part 2 involved manufacture, construction, loading and monitoring in 
the laboratory.

• Experimental output would allow modelling calibration.



Transformation Optimisation
Dome construction

(i) 48.3mm dia. cylindrical Circular Hollow Section (CHS) tubes.

(ii) 12mm diameter bolts in 13.0 mm diameter clearance (oversized) holes.

(iii) Saddleback washers used with a minimum thickness of 0.85 mm for accurate seating and location.

(iv) Modified rotation method was used to achieve a 50mm (+) 2.5 mm or (-) 0.5 mm target eccentricity. 

(v) RSE dome span and rise was determined as 3066 mm and 894 mm respectively. 
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Eccentricity Optimisation

RSE Honeycomb dome plan. 
Boundary supports, [S1 - S10]. 
Elements types, [T1 - T7].
Bolted connections eccentricity, [e1 - e12].

Note: all sector zones [Z1 - Z5] identical with 
symmetry indicated by dotted lines.
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GSA analysis boundary supports node 
numbering. 

Loading positions indicated by [F1 - F2]. 

Displacement monitoring, [Uz1 - Uz4]. 

GSA analysis and lab von Mises stresses 
monitoring locations, [vM1 - vM3].

Module circuits numbered [C1 - C20].
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Model 1.                                                Model 2.

CHS element bolted connections

48.3 mm dia. CHS

12 mm dia. bolt (eccentricity) between 
CHS centroidal axes

Fixed 
at node

48.3 mm dia. CHS

Fixed 
at node

Typical closed-circuit module

48.3 mm dia. CHS

48.3 mm dia. CHS

Translational spring stiffness, kT
Rotational spring stiffness, kR

48.3 mm dia. CHS

48.3 mm dia. CHS

Enlarged view



FEA connection models used to determine translational, kT and rotational, kR spring stiffnesses.
x/xx y/yy z/zz

Spring Type
Linear/

curve ref.

Stiffness
(kN/m)

(kNm/rad.)

Linear/
curve ref.

Stiffness
(kN/m)

(kNm/rad.)

Linear/
curve ref.

Stiffness
(kN/m)

(kNm/rad.)
Property 1 Translational Linear 14364 Linear 10231 Linear 15184
Property 2 Rotational Linear 29.6 Linear 26.9 Linear 266.7

Model 2 



Structural Modelling
Boundary supports
• Objective to model the experimental support conditions.

(i) Minor geometric self-adjustments would take place within the dome 
structure when initial loading commenced.  

• A range of 8 No possible support leg conditions considered including: 
(i) May be free to move laterally as they would not be mechanically fixed in 
position,
(ii) Vertical z-direction restraint + horizontal axial stiffness, kx and ky applied  

Connections
(i) Model 1 – All fixed both ends
(ii) Model 2 – All with kT and kR spring stiffness. 



Model Boundary Connection
U vM Boundary Support Legs (S1 to S10) Connections (60)
1 1 All 10 nodes pinned Model 1: All fixed

2 2
2 nodes pinned (S10 n.274, S1 n.262). 
8 nodes horizontal rollers restrained vert. z-dir.

Model 1:

2a 3
3 pinned (S10 n.274, S1 n.262, S6 n.246). 
7 nodes horizontal rollers restrained vert. z-dir.

Model 1:

3 4
10 nodes horizontal spring stiffnesses, kx & ky
restrained vert. z-dir.

Model 1:

4 5 All 10 nodes pinned
Model 2: All with Translational and 
Rotational spring stiffnesses, kT & KR

2 6
2 nodes pinned (S10 n.274, S1 n.262). 
8 nodes horizontal rollers restrained vert. z-dir.

Model 2:

5a 7
3 pinned (S10 n.274, S1 n.262, S6 n.246). 
7 with horizontal rollers restrained vert. z-dir.

Model 2:

6 8
10 nodes horizontal spring stiffnesses, kx & ky
restrained vert. z-dir.

Model 2:

Analysis Models



Linear Elastic Analysis
Arup Oasys GSA 8.7 (General Structural Analysis) software with 3-dimensional and 
finite element capabilities used.
• Two property types defined 

• 48.3 mm diameter 4.0 mm thick grade S355 CHSs 
• 12 mm diameter grade M8.8 bolts used for connecting the CHSs together in closed triangulated circuits. 

• Two property types defined the translational and rotational stiffnesses. 

• Applied load range of 1 kN to 8 kN

• Varying boundary supports and connections models considered.

Output. 
• Displacements, Ux, Uy and Uz

• Von Mises stresses, 
σVM = (σxx

2 + 3τxy
2 + 3τxz

2)0.5       

≤ σy (yield strength of material) monitored



(Model 5) All supports pinned. All connections with spring stiffnesses.



RSE honeycomb dome being 
constructed.

RSE honeycomb dome in test setup. 

• Rosette stacked strain gauge matrix orientation on 
upper tube surfaces at monitoring locations. 

• Hydraulic ram loaded spreader beam and CHS tube 
bearing assembly with LVDT set up for displacement 
monitoring. 
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Displacement 
Monitoring
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Von Mises monitoring locations
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Range of analysis models represent behaviour 
- further Research required
Important factors in numerical modelling of RSE space structures

(i) The stiffness of the connection associated with CHSs.
(ii) CHSs incident angles.
(iii) Load distribution in connection elements
(iv) Effective loaded CHS width
(v) Boundary support stiffness

Study widened to determine stiffness of
(i) RSE CHS welded connections
(ii) RSE CHS bolted connections 



Bolted RSE connection with SBW and clearance 
(oversized) holes.

Welded RSE connection with SBW used for locating 
CHSs.

Definitions and assumptions CHSs at θ
degrees to each other

Fixed edge

Fixed edge

Fixed edge

Free edge

x1

x2

y1

y2

z
θx

θy
x1 y1

x2

y2

T2 (lower)

T1 (upper)

T1 and T2 effective width of 
loaded CHS = SBW dia. 

Spring stiffness: 
CHS and weld

Spring stiffness: Bolt 
in tension, CHS in 

compression



Fixed edge

Free edge
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Translational stiffness

x1’-axis

y1’-axis
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Translational stiffness – effective width FEA models



Rotational stiffness

CHS connection rotation stiffness

Fv @ y’-axis, -- Mz’

Fh @ y’-axis, -- Mx’

Fv @ z’-axis, -- My’

Local x’-axis

Eccentricity, e midpoint

Local y’-axis

Local z’-axis

y’-axis

z’-axis

Fv

x’-axis

Fh

y’-axis

z’-axis

x’-axis

y’-axis

z’-axis

Fv

x’-axis

My’ = (Fv x La) (kNm)

θ = tan-1(δlvdt/La x π/180) (radians)

kR = M/θ

Fv
La

δlvdt

θ



Elastic Translational stiffness, kTx, kTy, kTz

kTx kTy kTz
kT = F/δ 

(kN)/(m)

F

δx

F F

δy δz

Elastic Rotational stiffness, kRx, kRy, kRz

kRx kRy kRzkR = M/θ 
(kNm)/(Radians)

M

θx

M M

θy θz

Linear springs

Torsional springs



RSE welded/bolted connection elastic stiffness
Translational stiffness Rotational stiffness

x-axis y-axis z-axis x-axis y-axis z-axis
springs in springs in springs in kRx kRy kRz
parallel parallel series

Kx = k1 + k2 Ky = k1 + k2 1/Kz = 1/k1+1/k2

Kz = K1K2/k1 + k2

x1

x2

y1

y2

z

z

x’ -axis
x1

y’ -axis

z’ -axis

z1

y1

x2
y2

z2
kT1

kT2

CHS connection rotation stiffness

Fv @ y’-axis, -- Mz’ kRz = Mz’/θz’

Fh @ y’-axis, -- Mx’ kRx = Mx’/θx’

Fv @ z’-axis, -- My’ kRy = My’/θy’

CHS connection translational stiffness

kTz = Fz’/δz’

kTx = Fx’/δx’

kTy = Fy’/δy’



Conclusions 
Initial Study
• Finite element connection models used to determine spring stiffness 

used for global analysis. 
• Unrealistic high values of stress apparent at connections with 

assumed full fixity. 
• Spring elements developed more representative stresses. 
Further investigation identified
• Connection stiffness graphs for varying CHS incident angles
• Effective width of CHS
• Load distribution mechanics
• Welded and bolted connection stiffness differences
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