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Introduction

* Creative engineered architectural forms can be achieved when using
multiple circuit arrangements of reciprocally supported elements
(RSE).

* Appearance often similar to woven basket assemblies.

e Structural elements of various cross-sections and materials can be
used.



Applications

e Potential applications range from the construction sector to aid work
as RSE structures can be mobile and rapidly assembled.

* Economic advantage over the more traditional connection systems
where, for example, machined cast ball-joints connectors are
employed.



Elementary dome shapes for RSE transformation
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Typical Formian*
generated honeycomb
domes with frequency,
m=3, sweep angle, A=60
degrees and (a) n=6, (b)
n=7 and (c) n=8.

*Software developed at
the University of Surrey, UK

* Diamatic domes are another family of lattice domes along with the (a) Ribbed, (b) Schwedler and (c) Lamella type.
 Honeycomb diamatic domes frequently used in practice due to the avoidance of element cluttering near the crown.

* Convenient as RSE configuration processing greatly simplified.



RSE Transformation — Formian and Rhinoceros

(a) (b) (©)

Perspective views of (a) elementary dome, (b) rotation method transformation
and (c) RSE honeycomb dome using initial rotation angle of 15°.



Case Study — RSE Honeycomb Dome

e Study aim was to compare predicted behaviour with monitored
behaviour in the laboratory.

* Part 1 of the study was structural modelling.

* Part 2 involved manufacture, construction, loading and monitoring in
the laboratory.

* Experimental output would allow modelling calibration.



Transformation Optimisation

Dome construction

(i) 48.3mm dia. cylindrical Circular Hollow Section (CHS) tubes.

(ii) 12mm diameter bolts in 13.0 mm diameter clearance (oversized) holes.
(iii) Saddleback washers used with a minimum thickness of 0.85 mm for accurate seating and location.
(iv) Modified rotation method was used to achieve a 50mm (+) 2.5 mm or (-) 0.5 mm target eccentricity.

(v) RSE dome span and rise was determined as 3066 mm and 894 mm respectively.
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GSA analysis boundary supports node
numbering.

Loading positions indicated by [F1 - F2].
Displacement monitoring, [Uz1 - Uz4].

GSA analysis and lab von Mises stresses
monitoring locations, [vVM1 - vM3].

Module circuits numbered [C1 - C20].



Enlarged view

48.3.mm dia. CHS

1
1
1

48.3,mm dia. CHS

Typical closed-circuit module

Fixed

48.3 mm dia. CHS
48.3 mm dia. CHS

Translational spring stiffness, k;

12 mm dia. bolt (eccentricity) between Rotational spring stiffness, k;

CHS centroidal axes

Fixed 48.3 mm dia. CHS
at node 48.3 mm dia. CHS

Model 1. Model 2.

CHS element bolted connections



FEA connection models used to determine translational, k; and rotational, kg spring stiffnesses.

- xx___ ! vy | _____zz

Linear/ Stiffness Linear/ Stiffness Linear/ Stiffness
Type curve ref. L) curve ref. ) curve ref. Lol
(kNm/rad.) (kNm/rad.) (kNm/rad.)
Translational Linear 14364 Linear 10231 Linear 15184
Rotational Linear 29.6 Linear 26.9 Linear 266.7

Model 2



Structural Modelling
Boundary supports

* Objective to model the experimental support conditions.

(i) Minor geometric self-adjustments would take place within the dome
structure when initial loading commenced.

* A range of 8 No possible support leg conditions considered including:
(i) May be free to move laterally as they would not be mechanically fixed in

position,
(ii) Vertical z-direction restraint + horizontal axial stiffness, kx and ky applied
Connections

(i) Model 1 — All fixed both ends
(ii) Model 2 — All with kT and kR spring stiffness.



| Model | Bounday | Comnection _____

v Boundary Support Legs (S1 to S10) Connections (60)
1  All 10 nodes pinned Model 1: All fixed
2 ' : : :
5 nodes pmr.1ed (S10 n.274, S1 n. 262) | Model 1:
8 nodes horizontal rollers restrained vert. z-dir.
3 3 pinned (Sl.O n.274, S1 n.262, S.6 n.246). | Model 1:
7 nodes horizontal rollers restrained vert. z-dir.
4 10 nodes horizontal spring stiffnesses, kx & ky Model 1:

restrained vert. z-dir.
Model 2: All with Translational and

5 All 10 nod ' d
nodes pinne Rotational spring stiffnesses, k; & Ky

2 nodes pinned (S10 n.274, S1 n.262).

6 Model 2:
8 nodes horizontal rollers restrained vert. z-dir. ode

. 3 pl.nned (‘SlO n.274, S1 n.262,.56 n.246). | Model 2:
7 with horizontal rollers restrained vert. z-dir.

8 10 nodes horizontal spring stiffnesses, kx & ky Model 2:

restrained vert. z-dir.

Analysis Models



Linear Elastic Analysis

Arup Oasys GSA 8.7 (General Structural Analysis) software with 3-dimensional and
finite element capabilities used.

* Two property types defined
e 48.3 mm diameter 4.0 mm thick grade S355 CHSs
12 mm diameter grade M8.8 bolts used for connecting the CHSs together in closed triangulated circuits.

* Two property types defined the translational and rotational stiffnesses.
* Applied load range of 1 kN to 8 kN

* Varying boundary supports and connections models considered.

Output.

* Displacements, Ux, Uy and Uz
* Von Mises stresses,
cSVM = (Gxx2 + 3Txyz + 3szz)o'5
< o, (yield strength of material) monitored
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(Model 5) All supports pinned. All connections with spring stiffnesses.



RSE honeycomb dome being
constructed.

RSE honeycomb dome in test setup.

Rosette stacked strain gauge matrix orientation on
upper tube surfaces at monitoring locations.

Hydraulic ram loaded spreader beam and CHS tube
bearing assembly with LVDT set up for displacement
monitoring.
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Displacement
Monitoring
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VVon Mises monitoring locations
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Range of analysis models represent behaviour
- further Research required

Important factors in numerical modelling of RSE space structures

(i) The stiffness of the connection associated with CHSs.
(ii) CHSs incident angles.

(iii) Load distribution in connection elements
(iv) Effective loaded CHS width

(v) Boundary support stiffness
Study widened to determine stiffness of

(i) RSE CHS welded connections

(ii)) RSE CHS bolted connections
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x2’-axis

CHS local axes and angles of incidence

Translational stiffness
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Rotational stiffness
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Linear springs
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Conclusions
Initial Study

* Finite element connection models used to determine spring stiffness
used for global analysis.

e Unrealistic high values of stress apparent at connections with
assumed full fixity.

* Spring elements developed more representative stresses.

Further investigation identified

* Connection stiffness graphs for varying CHS incident angles
* Effective width of CHS

* Load distribution mechanics

* Welded and bolted connection stiffness differences
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