
               

Blockchain Security Encryption to Preserve Data  
Privacy and Integrity in Cloud Environment 

 
1st Abel Yeboah-Ofori                             1st Sayed Kashif Sadat                                   2nd Iman Darvishi 

          School of Computing and Eng                  School of Computing and Eng                   School of Computing and Eng       
           University of West London                      University of West London                        University of West London                     
                United Kingdom                        United Kingdom                           United Kingdom 
           Abel.yeboah-ofori@uwl.ac.uk                21524360@student.uwl.ac.uk                          Iman.darvishi@uwl.ac.uk                   

Abstract--Blockchain security issues in relation to encryption 
for data privacy and integrity in cloud computing have become 
challenging due to the decentralized and peer-to-peer systems 
for securing data storage and transfer in smart contracts.  
Further, Blockchain technology continues revolutionizing how 
we handle data, from improving transparency to enhancing 
security. However, various instances of data breaches, piracy, 
and hacking attacks have compromised the safety measures 
employed by these providers. The paper aims to explore 
Blockchain technology and how encryption algorithms are 
used to leverage security properties to uphold data privacy and 
integrity in a cloud environment to enhance security. The 
novelty contribution of the paper is threefold. First, we explore 
existing blockchain attacks, vulnerabilities, and their impact on 
the cloud computing environment supported by numerous 
cloud services that enable clients to store and share data online. 
Secondly, we used an encryption approach to detect data 
security by combining AES encryption, cloud storage, and 
Ethereum smart contracts in cloud AWS S3. Finally, we 
recommend control mechanisms to improve blockchain 
security in the cloud environment. The paper results show that 
AES algorithms can be used in blockchain smart contracts to 
enhance security, privacy, and integrity to ensure secure data 
in transit and at rest.  
 
Keywords—Blockchain Security, Encryption, Data Privacy, 
Integrity, Cloud, AWS 
 

I.INTRODUCTION 
 
The blockchain technology and security issues for a 
decentralized and peer-to-peer system for secure data storage 
and transfer have gained significant attention since Satoshi 
Nakamoto's white paper on Bitcoin [1]. Data is becoming an 
increasingly important asset as we navigate the digital era. 
Due to the ubiquitous nature of the internet, data is stored and 
shared via cloud services, which have become the primary 
medium for exchanging and storing information. This 
evolution, however, has resulted in an increasing concern 
over data security and privacy. Security measures currently 
employed by cloud service providers are vulnerable to data 
breaches, piracy, and cyberattacks caused by various security 
issues. Moreover, Traditional security solutions, which rely 
on centralization, are no longer sufficient to protect against 
cyber-attacks and breaches. Innovative solutions are needed 
to bolster their security to ensure complete protection of 
sensitive information in these systems. Blockchain 
technology, with its decentralized and secure nature, has the 
potential to address these challenges by providing a new 
approach to data privacy and integrity in the cloud 
environment. The following proposal will analyze the use of 
blockchain-based security encryption to provide data 
integrity, ensuring that data has not been tampered with or 
altered. Additionally, due to the secure nature of this 
technology, many different applications for blockchain 
technology are being utilized today, including cloud 

computing, banking, the Internet of Things, big data, 
healthcare, etc. One of the key features of the blockchain is 
that it is structured as a digital log file that is held in the form 
of linked groups called blocks. There is a cryptographic link 
between each block and its predecessor. Due to the 
cryptographic nature of blockchain systems, many security 
experts speculate that they are resilient enough to withstand 
continuous hacking and security threats [2]. Furthermore, 
Our paper explores an innovative approach to encryption and 
cloud storage that integrates AES encryption with Ethereum 
smart contracts and cloud storage. Combining these two 
technologies makes it possible to secure data during transit 
and storage and provide a transparent record of data access 
and modification that is tamper-resistant and transparent. 
According to our analysis, a cloud-based data management 
model that creates an immutable log of activities prevents 
unauthorized access to the data and enhances trust in cloud-
based data storage. Furthermore,  some of the key challenges 
associated with blockchain security in the cloud environment 
cannot be ignored, including endpoints, scalability, criminal 
activities, third parties, and a variety of attacks on blockchain 
systems, including the 51% attack, a vulnerability in 
blockchain technology where attackers or groups can gain 
control of over 50% of the blockchain of a network. We aim 
to create a system where data is safe and transparently 
verifiable, increasing user confidence in cloud services. The 
objectives of the paper are as follows: 
• To demonstrate the capabilities of blockchain technology 

in enhancing the security and privacy of cloud 
computing services 

• to provide a method that securely stores data before stor-
ing it in the cloud using AES encryption. This encryption 
will assist in safeguarding the data while it is in use and 
at rest, reducing the possibility of unauthorized access or 
data breaches. 

• the creation of an Ethereum smart contract that can be 
used to keep track of data exchange activity logs. The 
smart contract will store crucial metadata such as data 
access, alterations, and the users involved to provide an 
unchangeable and transparent record of events. 

• Describe the optimal approach for implementing 
blockchain-based data privacy using smart contracts and 
encryption techniques. 

• To show the viability and usefulness of this strategy by a 
real-world implementation that involves storing 
encrypted data on a cloud platform like AWS S3 and 
keeping track of relevant logs on the Ethereum 
blockchain. 

By achieving these objectives, we aim to pave the way for 
new security standards that leverage the power of blockchain 
technology and robust cryptographic methods to create a 
more secure and trustworthy environment for cloud storage 

mailto:Iman.darvishi@uwl.ac.uk


and data exchange by leveraging the power of blockchain 
technology. 
 

i. How do blockchain technology's trustless system and 
cryptographic security contribute to its effectiveness in 
protecting against security and privacy breaches? 

ii. What are the vulnerabilities and countermeasures 
associated with the blockchain environment? 

iii. inefficiency and vulnerability of centralized security 
solutions in distributed applications. 

 
II. RELATED WORKS 

 
This section discusses related works and state of the art in 

Blockchain, a proposed decentralized and trusted cloud data 
provenance architecture using blockchain technology.  
Regarding architecture using blockchain technology, [4] 
suggests that using blockchain for data origin management 
can result in records that cannot be altered, increase the 
transparency of data accountability in the cloud, and improve 
the privacy and accessibility of the origin data. The authors 
proposed blockchain-based data provenance architecture 
(ProvChain) for cloud storage applications that provides data 
operations assurance while enhancing privacy and 
availability. ProvChain records operation history as 
provenance data and anchors it to a blockchain transaction. 
However, state-of-the-art cloud-based provenance services 
are vulnerable to accidental corruption or malicious forgery 
of provenance data.[4]. Further, [5] proposed a solution 
called "cloud@blockchain" that utilizes blockchain 
technology to enhance the security and privacy of cloud 
computing services. The authors design two functions: 
anonymous file sharing and inspections for illegally uploaded 
files to demonstrate the capabilities of their solution by 
comparing the performance of their hybrid blockchain with 
cache, a pure blockchain, and a traditional database in 
accessing data, and find that the hybrid blockchain 
significantly outperforms the other two options. The results 
show that using blockchain as a platform for secure cloud 
computing services can provide improved privacy and 
protection against cyber-attacks. However, the anonymous 
file-sharing mechanism and inspection feature for illegally 
uploaded files also address specific concerns related to data 
sharing and infringement on cloud computing platforms [5],. 
Furthermore, [6] proposed blockchain-based approaches for 
several security services, including authentication, 
confidentiality, privacy, access control list, data and resource 
provenance, and integrity assurance, which are critical for the 
current distributed applications. A certificate authority was 
considered considering the large amount of data being 
processed over the network in cloud computing. However, 
the services are prone to attacks on the centralized controller 
due to scalability, privacy, anonymity, and time-consuming 
[6]. Moreover, [8] proposed a Homomorphic encryption 
scheme and Byzantine Fault Tolerance consensus to ensure 
data integrity and decrease the cloud service provider's 
absolute control over data. The authors proposed a master 
hash value of databases instead of AES, generated by service 
providers after computations, that are preserved on Bitcoin or 
Ethereum blockchain networks for immutability. However, 
the paper needs more empirical evidence from real-world 
implementation and testing to verify the theoretical 
framework [8]. Regarding blockchain-based data protection 

system for medical records is explored. [7] proposed a 
reliable storage method that ensures stored data's 
primitiveness and verifiability while preserving user privacy. 
The technique is based on the blockchain framework that 
uses cryptography algorithms to preserve data during data 
submission, manipulation, query, and verification. However, 
the framework proposed is conceptual and needs to provide 
more information on practical implementation [7]. 

 Further, [19] proposed the application of blockchain, 
which integrate blockchain technology and stores data in 
encrypted chunks on hospital websites to enhance data 
security, trustworthiness, efficiency, and real-time system for 
storing patient reports in a cloud environment. The proposed 
system divides patient reports into chunks, encrypts these 
chunks using the AES, and stores them in secure AWS S3 
buckets. The authors highlight that their proposed system 
aligns with the Health Insurance Portability and 
Accountability Act (HIPAA) rules and can enhance trust 
between doctors and patients. However, the paper did not 
address user acceptance issues, an important factor when 
introducing new technology. Not exploring potential barriers 
and strategies to increase user adoption could enrich future 
studies [19]. Furthermore,[9] published a comprehensive 
analysis of the vulnerabilities and countermeasures 
associated with blockchain technology and threats that can be 
deliberate or accidental [9]. Moreover, [12] proposed 
preserving data security in a cloud environment using an 
adaptive homomorphic blockchain technique that focuses on 
the challenges of securing data in cloud storage and 
maintaining efficiency in the encryption and decryption 
process. The authors propose a novel Ring Character Hash 
(RCH) with Ring Elliptical Curve Cryptography (RECC) 
Homomorphic model for simultaneously encrypting and 
decrypting large files. Related to cloud computing security, 
blockchain technology, cryptographic methods, and 
homomorphic encryption, highlighting the significance of 
blockchain-based encryption in securing cloud computing 
and the role of blockchain technology in enhancing security 
levels [19].  

III. APPROACH 
 
This section discusses the approach used for our 

implementations by implementing a blockchain, AES 
encryption, and cloud storage environment, including AWS 
and Ethereum.  

We implemented the AES algorithm using an open-
source cryptographic library and PyCharm IDE to build and 
test our encryption and decryption methods; we utilized 
PyCharm, a professional Python-integrated programming 
environment. PyCharm IDE was chosen for its excellent 
coding assistance, debugging features, and comprehensive 
Python programming tools. 

• Amazon Web Services (AWS): The encrypted data was then 
uploaded to Amazon S3, a scalable object storage service 
offered by AWS. This platform was chosen for its high 
durability, availability, and comprehensive security and 
compliance capabilities. 

• Ethereum Blockchain: We used Ethereum as our blockchain 
platform. Ethereum offers a decentralized platform that runs 
smart contracts, applications that run exactly as programmed 
without any possibility of downtime, censorship, fraud, or 
third-party interference. 



• Remix IDE: To write and deploy our smart contract, we 
used Remix IDE, a powerful open-source tool that 
allows developing, testing, deploying, and interacting 
with smart contracts. 
 

A. Our procedures included the following steps: 
• Data Encryption: We first encrypted our data using AES 

encryption, converting plaintext data into cipher text, 
thus ensuring it was unreadable without the correct 
decryption key. 

• Data Upload: The encrypted data was manually uploaded 
to AWS S3, securely stored, and made accessible to 
authorized users. 

• Smart Contract Deployment: We wrote and deployed a 
smart contract on the Ethereum blockchain using the 
Remix IDE. This contract facilitated the logging of data-
related activities onto the blockchain. 

• Metadata and Logging: Every time an operation was 
performed on the data, metadata about the operation and 
activity logs were written onto the blockchain via the 
smart contract, providing a transparent and tamper-
resistant record of data access and modifications. 

• Testing and Verification: We conducted rigorous testing 
throughout the process to ensure the functionality and 
security of our system. We also demonstrated the 
feasibility and advantages of our proposed system. 

 
B. Data analysis  

This study aimed to analyze the proposed system's 
effectiveness, with particular attention to the AES encryption 
process, the Ethereum blockchain smart contract, and the use 
of the AWS S3 cloud platform. We evaluated the encryption 
and decryption times to understand how quickly the AES 
algorithm can encrypt and decrypt data for varying data sizes. 
Additionally, we tested the efficiency and feasibility of our 
blockchain-based approach by analyzing the gas cost of the 
smart contract per transaction, the transaction time, and the 
accuracy of the logged data based on the Smart Contracts. 
Furthermore, Our analysis of the cloud platform consisted of 
verifying that encrypted data had been uploaded successfully, 
evaluating access controls, and analyzing retrieval times for 
various data types on the platform. 

 
IV. IMPLEMENTATION AND PROCESS 

 
We have comprehensively summarized the steps to 

execute the thesis topic, "Blockchain-based security 
encryption to preserve data privacy and integrity in  
Cloud Environment". With the help of this implementation, 
it will be possible to keep the information stored securely in 
the cloud environment, free from unauthorized access or 
modification, and protected against data tampering. This has 
been achieved by combining the robustness of blockchain 
technology with the strength of AES encryption to provide an 
effective solution and use the Amazon S3 bucket. It is 
important to note that the implementation process comprises 
several interconnected steps, each of which plays an 
important role in realizing the project’s overall objective. As 
a result of carefully following the steps outlined below, a 
comprehensive system can be created that not only address 
the concerns related to the privacy and integrity of sensitive 
data in the cloud environment but also maintains proof of 
transparency and a tamper-proof record of encryption 

operations in the cloud. After the encryption process, the 
encrypted file is saved on the local file system. Below is the 
sequence diagram, which shows the implementation process 
of our paper. 

 
Fig. 1. Overall Implementation Process for Secure Data Storage and 

Log Management. 
 
In the sequence diagram, we can see interactions between 

the user, the local system, the AWS S3 bucket, and the 
Ethereum smart contract as secure data storage and log 
management are implemented. The sequence of events 
depicted in the “Fig. 1” may be outlined using the following 
steps: 

• The user initiates the encryption process on the local system 
by running the AES encryption script. The data file is 
encrypted, and the key is securely stored. 

• The user manually uploads the encrypted data file to the 
AWS S3 bucket, ensuring appropriate access control policies 
are in place to prevent unauthorized access. 

• Next, the user calls the storeMetadata function in the 
Ethereum smart contract to store the file metadata, including 
data hash, encryption key hash, storage location, data owner, 
and file name. 

• To store log details, the user calls the 
writeLogsOnBlockchain function, providing information 
such as the user ID, log data, log time, document name, 
access user ID, and log permission. 

• When users need to retrieve file metadata, they call the 
getFileMetadata function, which returns the data hash, 
encryption key hash, storage location, data owner, and file 
name associated with the provided data ID. 

• To access logs, the user calls the getLogsFromBlockchain 
function using their user ID. The smart contract returns a list 
of logs associated with the user. 

• If users need to delete a log entry, they call the delete Log 
function with their user ID and the document name. The 
smart contract removes the log entry from the list of logs. 

To access the encrypted data, the user must download the 
encrypted file from the AWS S3 bucket and run the AES 
decryption script on their local machine, providing the 



encryption key. Understanding how the various system parts 
interact and contribute to the system's management of log 
files and safe data storage improves as we follow the 
sequence of events in the diagram. This diagram's objective 
is to make it easier for readers to comprehend the project's 
implementation process quickly. 
 

A. AES Encryption and Decryption 
This project involved the development of a Python script 

that encrypts and decrypts files using the Advanced 
Encryption Standard (AES) algorithm. Using this script, a 
random 32-byte encryption key will be generated and used to 
encrypt the input file in Cipher Block Chaining (CBC) mode 
using the random encryption key. Furthermore, It is also 
possible to decrypt the encrypted file using the encryption 
key stored in the script.  In addition, the Python script 
performs AES encryption and decryption using the 
PyCryptodome library in conjunction with hashlib, which 
generates data hashes and encryption keys.  

 

Fig. 2. AES encryption/decryption algorithm in Python. 
 
After executing the function related to the 
encryption/decryption algorithm using Python, illustrated in 
Figure 2, we can obtain the hashes of the data and the 
encryption keys used to encrypt the file. In our paper, these 
values play a crucial role, as they are subsequently stored on 
the blockchain through a smart contract which is a crucial 
part of our research. Through this approach, sensitive 
information related to encrypted files and the encryption keys 
associated with the encrypted files is securely and 
transparently managed. 
 

Fig. 3. Encrypting a file 
 
When a user enters '1' into our program, the AES encryption 
protocol kicks into action, morphing the readable file into an 
encrypted format. This process also yields a unique data hash 
and an encryption key. The data hash is like a fingerprint for 
the encrypted data, while the encryption key is a vital tool 
that unlocks the original content from its encrypted form. It 
is crucial to store this encryption key for future decryption 
safely. With it, readable data is available. Thus, the dual 
presence of encryption and decryption in our AES process 
ensures data privacy and integrity. 
 

 
Fig. 4. After encrypting the document. 
 

For the decryption process, we retrieve the data hash and 
encryption key hash from the blockchain, which were 
previously stored using our smart contract. By obtaining 
these crucial pieces of information, we can securely access 
and decrypt the encrypted files, ensuring the integrity and 
confidentiality of the data. This approach highlights the 
seamless integration of blockchain technology and AES 
encryption in managing and protecting sensitive information. 

 

 
Fig. 5. Decryption of the encrypted fil

 
 
 
 
 

1)  Uploading Encrypted Data to AWS S3: 
Implementing Secure Cloud Storage 
Once the data is encrypted using the AES algorithm. The 
next step in putting the findings into practice is to encrypt 
the data and then transfer it securely to a cloud storage 



provider like Amazon Web Services' Simple Storage 
provider (S3). For storing and retrieving data via the 
Internet, AWS offers S3, a scalable, secure, and highly 
accessible storage option. As a result, it is the best option 
for online encryption file storage. 
The following steps need to be followed to upload the 
encrypted data to AWS S3: 

2) Set up an AWS S3 bucket: First, create a new S3 
bucket through the AWS Management Console. Further, 
keep data storage requirements in mind and Pick a unique 
name and an appropriate region for your bucket. Finally, 
configure the bucket with appropriate access control 
restrictions to prevent unauthorized access to the 
encrypted data. 

3) Upload encrypted data: Once the S3 bucket is set 
up, you must navigate to the AWS Management Console 

to access the S3 service, enabling you to upload 
encrypted data. Upon opening the bucket you created, 
click on the "Upload" button to start uploading your files. 
In the file picker dialog, select the encrypted data file 
stored locally on your computer. Ensure the correct 
metadata (e.g., content type) is set during uploading. 
Once the file is uploaded, you can view it in the S3 
bucket. 

4) Fine-tune access control: Properly configuring 
the access control policies for the S3 bucket containing 
the encrypted data is of utmost importance. Make sure 
only authorized users can read and write to the bucket. 
Consider using AWS Identity and Access Management 
(IAM) to create custom roles and permissions for users 
requiring data access. 

 
 
Click this button to 
create a Bucket in S3. 
 
 
This is the encrypted 
file we have uploaded 
to Amazone S3. 
 
 
 
 

 
Fig. 6. (Amazone S3 Bucket creation) 

 
B. Smart Contract Development: 

 Developing the smart contract is one of the most important 
parts of the thesis implementation process. With the 
Solidity programming language, the smart contract acts as 
a decentralized ledger, storing file metadata and logs on the 
Ethereum blockchain and thus serves as a decentralized 
ledger. The Solidity contract contains several elements, 
such as data structures, mappings, events, and functions, all 
written in Solidity. Data structures include UserDetails, 
Logs, and FileMetadata, while mappings associate user and 
data IDs with their corresponding details. The several 
components that make up the smart contract are described 
below. 
 

C. Smart contract for secure log management and file 
metadata storage on the blockchain  

The LogsStorage smart contract is a decentralized 
system for securely storing and managing file metadata and 
logs. It comprises three primary data structures: 
UserDetails, Log, and FileMetadata. 
• UserDetails contains logs for a specific user. 
• Log contains information about documents, such as 

their names, contents, timestamps, permissions, and 
user access information. 

• FileMetadata stores details about an encrypted file, 
including the hash, the encryption key hash, the 
storage location, the owner, and the file name. 

Figure 7 shows how we deploy the smart contract and the   
next step after writing and compiling it in Remix IDE.  

 
 

 

 
Fig. 7. Secure Log Management and File Metadata Storage on 

Blockchain 



Sending a contract to the blockchain is the process of 
"deploying" it, shown in Figure 8 below, thereby turning 
it into a blockchain-based instance. As this procedure in-
cludes completing network transactions, gas (a tiny 
quantity of the cryptocurrency Ether used on the 
Ethereum blockchain) is needed.  

 
Fig. 8.  Results After Deploying a Smart Contract 
 

Furthermore, the smart contract uses two mappings - 
User IDs and Data IDs - to associate user IDs and data 
IDs with the respective information. Additionally, the 
smart contract incorporates various functions to facilitate 
its operations: 

i. storeMetadata function: Enables users to save file 
metadata to the blockchain. 

ii. getFileMetadata function: Retrieves the stored 
metadata. 
iii. writeLogsOnBlockchain function: Writes logs to 

the blockchain, accepting parameters like userID, 
logData, logTime, documentName, accessUserId, and 
logPermission. UserDetails data structure stores the logs 
for each user. 

iv. getLogsFromBlockchain function: Facilitates the 
retrieval of logs. It returns a formatted string containing 
all logs for the given user ID or a "Log not found" 
message if no logs are found. 

v. deleteLog function: Allows users to remove a log 
associated with a specific user ID and document name. It 
iterates through the logs, finds the log with the matching 
document name, removes it from the array, and returns a 
message indicating whether the deletion was successful 
or if the log was not found. 

 
Fig. 9. After deploying the LogStrorage smart contract 
 

D. Storing and retrieving the metadata 
In our contract, the StoreMetadata function writes 

file metadata into the blockchain. Metadata encompasses 
the data hash, encryption key hash, storage location, data 
owner, and file name. It is saved on the blockchain to 
provide a tamper-proof data record. We input this 
metadata using the Remix IDE, shown in Figure 10 be-
low. This function will then store the metadata onto the 
Ethereum blockchain, offering a strong, immutable rec-
ord of your file's details.  

 

 
Fig. 10.  Storing the data into the smart contract 
 
The next step involves utilizing the getFileMetadata 

function in our LogsStorage contract to fetch file metadata 
from the blockchain. By entering a unique dataID, as shown 
in Figure 11, this function retrieves corresponding metadata 
details such as dataHash, encryptionKeyHash, 
storageLocation, dataOwner, and fileName. This step helps 
ensure data integrity by confirming that metadata aligns 
with originally stored information.   

Fig 11: Retrieving the metadata 



 
E. Result analysis of the implementation 

After implementing the proposed system, we analysed 
the results to evaluate our solution's effectiveness in 
maintaining data privacy and integrity within a cloud 
environment. During the analysis, the following aspects 
were considered: 
• Data encryption and decryption: Data is successfully 

encrypted using the AES encryption algorithm, making 
it unreadable without the correct decryption key. The 
data was returned to its original, readable form by 
applying the appropriate key to the decryption process. 
This showed that our encryption and decryption 
methods effectively safeguarded the data and protected 
its confidentiality. 

• Cloud Storage Security: The encrypted data was stored 
securely on the AWS S3 bucket, which provided 
multiple layers of protection to maintain data privacy. 
Individuals with permission could read and download 
the encrypted files, limiting access to the kept material. 
This proves our solution's cloud storage aspect 
effectively prevented unauthorized data access. 

• Smart Contract Functionality: Our Ethereum smart 
contract, deployed using Remix IDE, performed as 

intended. It recorded metadata and logged all data-related 
activities on the blockchain, creating a transparent and 
tamper-resistant data access and modifications record. This 
not only facilitated auditing and tracking of data usage but 
also enhanced overall data integrity. 

• Blockchain Transparency and Immutability: The Ethereum 
blockchain provides a transparent and immutable ledger of 
all data-related activities. This aspect of our system played 
a crucial role in ensuring data integrity, as it made it 
possible to verify the authenticity of the data and trace any 
unauthorized access or modifications. 

• Performance and Scalability: Our proposed system 
demonstrated acceptable performance levels, with data 
encryption, decryption, and logging processes being 
executed efficiently. Additionally, the system showed 
potential for scalability, as the underlying technologies 
(AES, AWS S3, and Ethereum smart contract) are designed 
to accommodate a growing number of users and increasing 
amounts of data.  
Moreover, a summary of the threats and vulnerabilities 
associated with Blockchain and their countermeasures can 
be found in the following Table. 

 
TABLE 1. Threat and Vulnerabilities with Countermeasures 

 
Threats and Vulnerabilities: Countermeasures: 

1). Losing a private key in the event of a Blockchain 
transaction: 
The private key gives you sole control over your transaction, 
thus the prime target for cyber attackers 

Incorporates salt values in each operational profile as a standard sequence. 
The private key must spread over multiple assets.  
It must be synchronized during the regeneration of the private key to execute 
a Bitcoin transaction (Rehman et al., 2018, cited in [21]).  

2). Weakened cryptographic primitives: 
Bitcoin and other cryptocurrencies rely on cryptographic 
primitives to ensure security and proper operation. Such 
primitives often become less effective over time because of 
advancements in cryptanalysis and the processing capacity 
of attackers. Therefore, over time, the cryptographic 
foundations of Bitcoin will gradually become largely, if not 
entirely, compromised (Giechaskiel, 2016, cited in Hassan 
et al., 2020) [9]. 

Using the Coinbase transaction to launch a pre-image attack on the mining 
header target will be more challenging. 

• It is advised that users avoid recycling their Bitcoin addresses. 
• To migrate from outdated addresses, new address types should be established 

utilizing improved hashing and signature techniques. 
• Instead of employing layered hashes, users can strengthen defense-in-depth 

by combining the primitive’s Address Hash and Main Hash. 
• A hard fork would be an excellent way to fix a weak primary hash primitive 

since it would restructure the headers and transactions without relying on 
outdated primitives (Hassan et al., 2020 cited in [9]). 

3). Double spending: Digital cash systems may be prone to 
the issue of double-spending, which occurs when a single 
digital token can be used to make multiple purchases. 
- If a beneficiary conspires with the sender to return the 
deposit if he decides to equivocate and double spend, there 
is the possibility of a collision attack against the non-
equivocation contract proposed by Hassan et al. (Ruffing, 
2015, cited in Hassan et al., 2020, [9]). 

• Use an accountable assertion algorithm. Using the time-locked Bitcoin 
deposit the sender creates, any sender who equivocates or double spends will 
be penalized  

• Apply timestamp server as a reliable solution to detect kind of attack. The 
Timestamp server takes a hash of a block of items to be time-stamped and 
widely publishes it. A timestamp proves that data existed at a certain point 
(Kaushik et al., 2017, cited in [20]). 

4). 51% attack: A 51% attack, also known as a majority 
attack, occurs when an individual or group controls more 
than half of the computing power on a blockchain network. 
This attack allows the attacker to manipulate the network by 
controlling most of the mining power, which can be used to 
double spending, block transactions, and more. 

• The technique of randomly selecting mining groups, put forth [2], aims to 
decrease the computational power and protect against 51% attacks. Studies 
have shown that by increasing the number of groups to two or more, the 
chances of an attacker successfully uncovering the next block are greatly re-
duced [2]. 

5). Crypto-jacking or drive-by mining: This type of attack 
involves the unauthorized use of an individual's device to 
mine for cryptocurrency without their knowledge or permis-
sion. This can occur on various devices, including comput-
ers, smartphones, tablets, and servers." 

• As a solution to detect this type of attack, the author suggests using a tech-
nique called Minesweeper which keeps track of the CPU cache by examining 
the cryptographic elements present in the code used for crypto-jacking. 

6). Sybil attack: This type of attack aims to compromise the 
credibility of a peer-to-peer network by creating false 
identities. Attackers create fake identities and use them to 
manipulate the network's reputation system. 

• Timing-based inference attacks, DoS attacks, and the Sybil attack can be 
defended against simultaneously with a two-party decentralized mixing 
protocol. Various consensus algorithms can prevent this attack in blockchain 
environments, including Proof of Work (POW) and Proof of Stack (PWS). 



 
V. CONCLUSION 

This paper’s journey has shown how blockchain tech-
nology can bolster cloud security. We explored how decen-
tralization, immutability, and transparency principles can 
enhance data privacy and integrity in the cloud. Our study 
demonstrated that integrating AES encryption, cloud stor-
age, and Ethereum smart contracts could preserve the con-
fidentiality and integrity of data. The encouraging results 
highlight that AES encryption and decryption procedures 
efficiently secure the data, while AWS S3 provides a robust 
cloud storage environment. Simultaneously, our Ethereum 
smart contract provides a transparent and unchangeable 
record of data access and updates. However, some limita-
tions need acknowledgment. The seamless integration of 
AWS, Ethereum, and AES encryption poses inherent chal-
lenges, and vulnerabilities in these platforms may compro-
mise the system's security. The system's effectiveness also 
heavily depends on users' proper key management.  
 

 
 
And external factors such as network conditions and ju-

risdictional data privacy laws. 
Our findings have significant implications, contributing 

to the ongoing conversation about data privacy and protec-
tion and emphasizing how blockchain technology can en-
hance data security in cloud environments. While timely 
and relevant in our increasing reliance on cloud services, 
this study is but a stepping stone towards a more secure data 
handling approach in cloud environments. Notwithstanding 
the promising outcomes, the journey is far from over. Fu-
ture work should focus on mitigating the current limita-
tions, optimizing the system's speed, enhancing scalability, 
and bolstering security. This study acts as a springboard, 
opening up new research directions at the intersection of 
blockchain technology and cloud security. Therefore, this 
project should be considered an important initial step to-
wards a more robust and user-friendly system for data pri-
vacy and integrity in the cloud.

 
REFERENCES 

[1] Taylor, P.J., Dargahi, T., Dehghantanha, A., Parizi, R.M. and Choo, 
K.-K.R. (2019). A systematic literature review of blockchain cyber 
security. Digital Communications and Networks, 6(2). 
doi:10.1016/j.dcan.2019.01.005. 

[2] Hasanova, H., Baek, U.J., Shin, M.G., Cho, K. and Kim, M.S., 
2019. A survey on blockchain cybersecurity vulnerabilities and 
possible countermeasures. International Journal of Network 
Management, 29(2), p.e2060. 

[3] Varshney, T., Sharma, N., Kaushik, I. and Bhushan, B. 
(2019). Authentication amp; Encryption Based Security Services in 
Blockchain Technology. [online] IEEE Xplore. 
doi:10.1109/ICCCIS48478.2019.8974500. 

[4] Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K. and Njilla, 
L. (2017). ProvChain: A Blockchain-Based Data Provenance Ar-
chitecture in Cloud Environment with Enhanced Privacy and Avail-
ability. 2017 17th IEEE/ACM International Symposium on Cluster, 
Cloud and Grid Computing (CCGRID). doi:10.1109/ccgrid.2017.8. 

[5] Tsai, W.-Y., Chou, T.-C., Chen, J.-L., Ma, Y.-W. and Huang, C.-J. 
(2020). Blockchain as a Platform for Secure Cloud Computing Ser-
vices. [online] IEEE Xplore. 
doi:10.23919/ICACT48636.2020.9061435. 

[6] Salman, T., Zolanvari, M., Erbad, A., Jain, R. and Samaka, M. 
(2019). Security Services Using Blockchains: A State of the Art 
Survey. IEEE Communications Surveys & Tutorials, 21(1), 
pp.858–880. doi:10.1109/comst.2018.2863956. 

[7] Li, H., Zhu, L., Shen, M., Gao, F., Tao, X. and Liu, S. (2018). 
Blockchain-Based Data Preservation System for Medical 
Data. Journal of Medical Systems, 42(8). doi:10.1007/s10916-018-
0997-3. 

[8] Awadallah, R., Samsudin, A., Teh, J.S. and Almazrooie, M. (2021). 
An Integrated Architecture for Maintaining Security in Cloud Com-
puting Based on Blockchain. IEEE Access, 9, pp.69513–69526. Doi 
https://doi.org/10.1109/access.2021.3077123. 

 
[9] Hassan, A., Mohd, Z., Mas'ud, Shah, W., Faisal, S., Ahmad, R., 

Ariffin, A. and Yunos, Z. (2020). A Systematic Literature Review 
on the Security and Privacy of the Blockchain and 
Cryptocurrency. Journal of Cyber Security, [online] 2(1), pp.1–17. 
Available at: 
https://www.oiccert.org/en/journal/pdf/2/1/211.pdf#:~:text=In%20
general%2C%20the%20main%20objective%20of%20this%20syst
ematic [Accessed 29 Nov. 2022]. 

[10] Creswell, J.W. (2014). Research design: qualitative, quantitative, 
and mixed methods approaches. Sage publications. 
doi:10.4135/9781483375663. (Accessed: 01-20-2023) 

[11] McLeod, S., 2019. Qualitative vs. Quantitative Research: Methods 
& Data Analysis. Available at: 
https://www.simplypsychology.org/qualitative-
quantitative.html.(Accessed: 01-25-2023) 

[12] Sharma, P., Jindal, R. and Borah, M.D. (2022). Blockchain-based 
cloud storage system with CP-ABE-based access control and revo-
cation process. The Journal of Supercomputing. Doi 
https://doi.org/10.1007/s11227-021-04179-4. 

[13] Jyoti, A. and Chauhan, R.K. (2022). A blockchain and smart con-
tract-based data provenance collection and storing in a cloud envi-
ronment. Wireless Networks. Doi https://doi.org/10.1007/s11276-
022-02924-y. 

[14] Wang, S., Wang, X., and Zhang, Y. (2019). A Secure Cloud Storage 
Framework With Access Control Based on Blockchain. IEEE Ac-
cess, 7, pp.112713–112725. Doi https://doi.org/10.1109/ac-
cess.2019.2929205. 

[15] Kumar, M. and Singh, A.K. (2020). Distributed Intrusion Detection 
System using Blockchain and Cloud Computing Infrastructure. 
[online] IEEE Xplore. 
Doi:https://doi.org/10.1109/ICOEI48184.2020.9142954. 

[16] Devmane, V., Lande, B.K., Joglekar, J. and Hiran, D. (2022). Pre-
serving Data Security in Cloud Environment Using an Adaptive 
Homomorphic Blockchain Technique. Arabian Journal for Science 
and Engineering, 47(8), pp.10381–10394. Doi 
https://doi.org/10.1007/s13369-021-06347-3. 

[17] Ravishankar, B., Kulkarni, P. and Vishnudas, M.V. (2020). Block-
chain-based Database to Ensure Data Integrity in Cloud Compu-
ting Environments. [online] IEEE Xplore. Doi 
https://doi.org/10.23919/ICOMBI48604.2020.9203500. 

[18] S. Joseph Gabriel and P. Sengottuvelan (2021). An Enhanced 
Blockchain Technology with AES Encryption Security System for 
Healthcare System. Doi:https://doi.org/10.1109/ico-
sec51865.2021.9591956. 

[19] Yadav, D., Shinde, A., Nair, A., Patil, Y. and Kanchan, S. 
(2020). Enhancing Data Security in Cloud Using Blockchain. 
[online] IEEE Xplore. 
Doi:https://doi.org/10.1109/ICICCS48265.2020.9121109. 

 
[20]    Kaushik, A., Choudhary, A., Ektare, C., Thomas, D. and Akram, S. 

(2017). Blockchain — Literature survey. [online] IEEE Xplore. 
doi:10.1109/RTEICT.2017.8256979. 

 
[21]    Rehman, H. ur, Khan, U.A., Nazir, M. and Mustafa, K. (2018). 

Strengthening the bitcoin safety: a graded span based key partition-
ing mechanism. International Journal of Information Technology. 
doi:10.1007/s41870-018-0252-7.

 


