Toric geometry of Ricci-flat manifolds

Thomas Madsen University of West London

Based on joint work with Andrew Swann [MS19], Kael Dixon and Simon Salamon.

Outline

Multi-Hamiltonian torus actions and special holonomy

Toric symplectic geometry

$\left(N^{2 n}, \omega\right)$ compact symplectic with effective Hamiltonian action of $G=T^{n}$. Have associated moment map

$$
\mu: N \rightarrow \mathfrak{g}^{*} \cong \mathbb{R}^{n}
$$

which is invariant and for all $X \in \mathfrak{g}$

$$
\langle\mu, X\rangle d\langle\mu, X\rangle=\omega(\xi(X), \cdot)
$$

- If $b_{1}(N)=0$, then T^{n} a action preserving ω is Hamiltonian if and only if all orbits are isotropic.
- Codimension of generic orbit equals that of target space of μ.
- Stabiliser of any point is subtorus of $\operatorname{dim} n-\operatorname{rank} d \mu$.
- μ identifies orbit space, N / G, with a convex polytope.

Riemannian setting: Ricci-flat special holonomy

4 types of Ricci-flat geomtries appear on Berger's list of special holomomy groups. Each is defined by one or more closed differential forms:

Name	Holonomy group	Dimension	Forms degree
Calabi-Yau	$\operatorname{SU}(n)$	$2 n$	$2, n, n$
HyperKähler	$\mathrm{Sp}(n)$	$4 n$	$2,2,2$
G_{2}	G_{2}	7	3,4
$\mathrm{Spin}(7)$	$\mathrm{Spin}(7)$	8	4

A symplectic manifold is a "closed form" geometry. When admitting torus symmetry, moment map techniques can be used to construct many examples and obtain classifications.

What about above geometries?
Note due to Ricci-flatness, torus symmetry will force us to look at (complete) non-compact spaces.

Multi-Hamiltonian actions [MS13]

N with closed $\alpha \in \Omega^{p+1}(N)$ preserved by action of Abelian G.
Action is multi-Hamiltonian if there is invariant $\nu: N \rightarrow \Lambda^{p} \mathfrak{g}^{*}$
s.t. for all $X_{i} \in \mathfrak{g}$

$$
\left\langle\nu, X_{1} \wedge \cdots \wedge X_{p}\right\rangle d\left\langle\nu, X_{1} \wedge \cdots \wedge X_{p}\right\rangle=\alpha\left(\xi\left(X_{1}\right), \ldots, \xi\left(X_{p}\right), \cdot\right)
$$

Our interest is $G=T^{n}$, acting effectively:

- Take $n \geqslant p$.
- If $b_{1}(N)=0$, then T^{n}-action preserving α is multi-Hamiltonian if and only if α pulls back to zero on each orbit.

If we have k invariant closed forms $\alpha_{i} \in \Omega^{p_{i}+1}(N)$ with multi-moment maps ν_{i}, we form the product multi-moment map

$$
\nu=\left(\nu_{1}, \ldots, \nu_{k}\right): N \rightarrow \bigoplus_{i=1}^{k} \Lambda^{p_{i}} \mathfrak{g}^{*}
$$

Capturing orbit space with multi-moment maps

Let $N_{0} \subset N$ be the open dense set where the torus G acts freely and let $q=\operatorname{dim}\left(N_{0} / G\right)$ be the co-dimension of generic orbits.

An interesting case is when the multi-moment map

$$
\nu: N_{0} \rightarrow \mathbb{R}^{q}
$$

has full rank. Then ν locally exhibits N_{0} as a principal G-bundle over $\mathcal{U}=\nu\left(N_{0}\right) \subset \mathbb{R}^{q}$.
For the Ricci-flat special holonomy geometries, the above requires:

Type	$\operatorname{dim}(N)$	$\operatorname{deg} \alpha_{i}$	G	q
Calabi-Yau	$2 n$	$2, n, n$	T^{n-1}	$n+1$
HyperKähler	$4 n$	$2,2,2$	T^{n}	$3 n$
G_{2}	7	3,4	T^{3}	4
Spin(7)	8	4	T^{4}	4

Toric and multi-toric Calabi-Yau 3-folds

Calabi-Yau 3-folds

This is B^{6} with $\omega \in \Omega^{2}(B)$ and $\psi=\psi+i \widehat{\psi} \in \Omega^{3}(B, \mathbb{C})$ pointwise linearly equivalent to

$$
\omega_{0}=\frac{i}{2}\left(d_{1} \wedge d_{1}^{-}+d_{2} \wedge d^{-}{ }_{2}+d_{3} \wedge d^{-}{ }_{3}\right) \in \Lambda^{2}\left(\mathbb{C}^{3}\right)^{*}
$$

and

$$
\Psi_{0}=d_{1} \wedge d_{2} \wedge d_{3} \in \Lambda^{3}\left(\mathbb{C}^{3}\right)^{*}
$$

The $\mathrm{GL}(6, \mathbb{R})$ stabiliser of ω_{0} and Ψ_{0} is $\mathrm{SU}(3) \leqslant \mathrm{SO}(6)$. In particular, (ω, Ψ) determines Riemannian metric h via:

$$
\left.\left.-\frac{1}{3} h(X, Y) \omega^{3}=(X\lrcorner \omega\right) \wedge(Y\lrcorner \psi\right) \wedge \psi
$$

Holonomy of h is in $\mathrm{SU}(3) \Longleftrightarrow d \omega=0$ and $d \Psi=0$.

AC Calabi-Yau 3-folds

In what follows, we will asssume (B, ω, Ψ) is asymptotically conical (of rate $\rho<0$).

This means that outside a compact set $K \subset B$, we have a diffeomorphism $F:(0, \infty) \times \Sigma \rightarrow B \backslash K$ satisfying

$$
\left\|\nabla^{j}\left(F^{*} h-h_{C}\right)\right\|_{h_{C}}=\mathcal{O}\left(r^{\rho-j}\right),
$$

for all $j \geqslant 0$.
Here, $C(\Sigma)=(0, \infty) \times \Sigma$ is equipped with cone metric

$$
h_{C}=d r^{2}+r^{2} g_{\Sigma} .
$$

The link, Σ^{5} is a so-called Sasaki-Einstein manifold.

Toric CY 3-folds

In traditional sense, B is called toric if it comes with an effective T^{3}-action preserving ω and complex structure.

In paticular, we get a (usual) moment map:

$$
\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right): B^{6} \rightarrow\left(\mathfrak{t}^{3}\right)^{*} \cong \mathbb{R}^{3} .
$$

Lemma

A toric T^{3}-action is not multi-Hamiltonian for (ω, ψ). There is, however, subtorus T^{2} which preserves ψ and so is multi-Hamiltonian for the Calabi-Yau structure.

From the T^{2}-action, we have a moment map,

$$
\hat{\mu}: B \rightarrow\left(\mathfrak{t}^{2}\right)^{*} \cong \mathbb{R}^{2}
$$

which is the projection of μ onto $\left(t^{2}\right)^{*}$.

Toric diagrams and their duals

- 3-dimensional toric, conical Calabi-Yau geometries, $\left(C(\Sigma), \omega_{C}, \Psi_{C}\right)$, can be described by diagrams in a 2-dimensional lattice, the toric diagram.
- In order to get a corresponding AC picture, (B, ω, Ψ), we choose a triangulation of the corresponding graph.
- The dual graph of the triangulated toric diagram, is the image of the collection of singular T^{2} orbits under $\hat{\mu}$.

Toric G_{2}-manifolds

G_{2}-structures

M^{7} with $\varphi \in \Omega^{3}(M)$ pointwise linearly equivalent to

$$
\varphi_{0}=e^{123}-e^{1}\left(e^{45}+e^{67}\right)-e^{2}\left(e^{46}+e^{75}\right)-e^{3}\left(e^{47}+e^{56}\right) \in \Lambda^{3}\left(\mathbb{R}^{7}\right)^{*}
$$

$e^{i j k}=e^{i} \wedge e^{j} \wedge e^{k}$. The $\mathrm{GL}(7, \mathbb{R})$ stabiliser of φ_{0} is $\mathrm{G}_{2} \leqslant \mathrm{SO}(7)$.
It determines metric g and orientation vol g via

$$
\left.\left.6 g(X, Y) \operatorname{vol}_{g}=(X\lrcorner \varphi\right) \wedge(Y\lrcorner \varphi\right) \wedge \varphi .
$$

So we also have 4-form $* \varphi$.
For model form $\varphi_{0}, g_{0}=\left(e^{1}\right)^{2}+\cdots+\left(e^{7}\right)^{2}$, vol $_{0}=e^{1234567}$ and

$$
* \varphi_{0}=e^{4567}-e^{23}\left(e^{45}+e^{67}\right)-e^{31}\left(e^{46}+e^{75}\right)-e^{12}\left(e^{47}+e^{56}\right) .
$$

Holonomy of g is in $\mathrm{G}_{2} \Longleftrightarrow d \varphi=0$ and $d * \varphi=0$.

Toric G_{2}-manifolds [MS19]

Consider a G_{2}-manifold (M, φ) with effective T^{3} action that is multi-Hamiltonian for both φ and $* \varphi$.

Let U_{1}, U_{2}, U_{3} generate the torus action. So $\varphi\left(U_{1}, U_{2}, U_{3}\right)=0$ and multi-moment map $(\nu, \mu)=\left(\nu_{1}, \nu_{2}, \nu_{3}, \mu\right): M \rightarrow \mathbb{R}^{4}$ satisfies

$$
\begin{gathered}
d \nu_{1}=\varphi\left(U_{2}, U_{3}, \cdot\right), \quad d \nu_{2}=\varphi\left(U_{3}, U_{1} \cdot\right), \quad d \nu_{3}=\varphi\left(U_{1}, U_{2}, \cdot\right) \\
d \mu=* \varphi\left(U_{1} \wedge U_{2} \wedge U_{3}, \cdot\right) .
\end{gathered}
$$

At a point p, we can write

$$
\begin{gathered}
\varphi=e^{123}-e^{145}-e^{167}-e^{246}-e^{275}-e^{347}-e^{356} \\
* \varphi=e^{4567}-e^{23}\left(e^{45}+e^{67}\right)-e^{31}\left(e^{46}+e^{75}\right)-e^{12}\left(e^{47}+e^{56}\right) .
\end{gathered}
$$

Moreover, for $p \in M_{0}$, we can choose our G_{2}-basis s.t. $\operatorname{Span}\left\{U_{1}, U_{2}, U_{3}\right\}=\operatorname{Span}\left\{E_{5}, E_{6}, E_{7}\right\}$.

Hence, $(\nu, \mu): M_{0} \rightarrow \mathbb{R}^{4}$ has full rank and multi-moment map locally exhibits M_{0} as principal T^{3}-bundle over $\mathcal{U} \subset \mathbb{R}^{4}$.

Where action is free: Toric G_{2}

We have that M_{0} is the total space of a principal T^{3}-bundle with connection 1-forms $\theta_{1}, \theta_{2}, \theta_{3} \in \Omega^{1}\left(M_{0}\right)$ that satisfy

$$
\theta_{i}\left(U_{j}\right)=\delta_{i j}, \quad \theta_{i}(X)=0, \quad \text { for all } X \perp \operatorname{Span}\left\{U_{1}, U_{2}, U_{3}\right\} .
$$

On M_{0} we can define a positive definite symmetric 3×3-matrix of functions by:

$$
V=\left(g\left(U_{i}, U_{j}\right)\right)^{-1}
$$

Can then write toric G_{2}-structure in a way resembling Gibbons-Hawking ansatz for gravitational instantons:

$$
\begin{aligned}
& g=\frac{1}{\operatorname{det} V} \theta^{t} \operatorname{adj}(V) \theta+d \nu^{t} \operatorname{adj}(V) d \nu+\operatorname{det}(V) d \mu^{2} \\
& \varphi=-\operatorname{det}(V) d \nu_{123}+d \mu \wedge d \nu^{t} \operatorname{adj}(V) \theta+\underset{i j k}{S_{i j}} \theta_{i j} d \nu_{k} \\
& * \varphi=\theta_{123} d \mu+\frac{1}{2 \operatorname{det}(V)}\left(d \nu^{t} \operatorname{adj}(V) \theta\right)^{2}+\operatorname{det}(V) d \mu \wedge{\underset{i j k}{ } \theta_{i} \wedge d \nu_{j k}, ~}_{\text {}}
\end{aligned}
$$

Note that G_{2}-structures defined by the above formulae are generally not torsion-free, so holonomy reduction is not guaranteed.

Torsion-free condition amounts to following system of PDEs:
$V \in \Gamma\left(\mathcal{U}, S^{2}\left(\mathbb{R}^{3}\right)\right)$ is a positive definite solution to

$$
\sum_{i=1}^{3} \frac{\partial V_{i j}}{\partial \nu_{i}}=0 \quad \text { for each } j=1,2,3
$$

and

$$
\begin{equation*}
L(V)+Q(d V)=0 \tag{Elliptic}
\end{equation*}
$$

where

$$
L=\frac{\partial^{2}}{\partial \mu^{2}}+\sum_{i, j=1}^{3} V_{i j} \frac{\partial^{2}}{\partial \nu_{i} \partial \nu_{j}}
$$

and

$$
Q(d V)_{i j}=-\sum_{a, b=1}^{3} \frac{\partial V_{i a}}{\partial \nu_{b}} \frac{\partial V_{b j}}{\partial \nu_{a}}
$$

Can produce solutions for special ansätze but these are generally incomplete.

Global local coordinates

Theorem ([MS19])

For toric G_{2}-manifolds the multi-moment map induces a local homeomorphism $M / G \rightarrow \mathbb{R}^{4}$.

For complete examples to be constructed below, multi-moment maps provide natural global identification of the orbit space with \mathbb{R}^{4}.

Note difference from (compact) symplectic case. Above, orbit space is manifold (without corners).

What is the equivalent of a Delzant polytope in this setting?

Combinatorial data: Image of singular locus

Recall that for toric G_{2}, we have:

$$
\begin{aligned}
d \nu_{1}=\varphi\left(U_{2}, U_{3}, \cdot\right), \quad d \nu_{2} & =\varphi\left(U_{3}, U_{1} \cdot\right), \quad d \nu_{3}=\varphi\left(U_{1}, U_{2}, \cdot\right) \\
\text { and } & d \mu
\end{aligned}=* \varphi\left(U_{1} \wedge U_{2} \wedge U_{3}, \cdot\right) .
$$

If, say, U_{3} vanishes on a collection of singular orbits, then ν_{1}, ν_{2} and μ are constant on that collection and we get a line segment parameterised by ν_{3}.

In general, we get the following:

- S^{1} stabilisers correspond to lines in $\mathbb{R}^{3} \times\{\mu=$ const $\} \subset \mathbb{R}^{4}$ of rational slope.
- T^{2} stabilisers correspond to points in $\mathbb{R}^{3} \times\{\mu=$ const $\} \subset \mathbb{R}^{4}$, with 3 incoming vertices.
- "Zero tension" condition on slopes at each vertex.

There are no fixed points and no exceptional orbits.

Producing toric ALC G_{2}-manifolds

Constructing examples

Theorem ([FHN21])

Let (B, ω, Ω) be an $A C$ Calabi-Yau 3-fold and $M \rightarrow B$ a (non-trivial) circle bundle such that $c_{1}(B) \cup[\omega]=0 \in H^{4}(B)$. Then there exists a 1 -parameter family, φ_{ϵ}, of parallel G_{2}-structures on M.

Each $\left(M, \varphi_{\epsilon}\right)$ constructed in this way has holonomy equal to G_{2}.

Proposition

If (B, ω, Ω) is toric, then so is each $\left(M, \varphi_{\epsilon}\right)$.
Key is that the multi-toric T^{2}-action on B lifts to a commuting action on M. Expressing φ_{ϵ} as a series expansion, one can check that the resulting T^{3}-action is multi-Hamiltonian for each φ_{ϵ}.

Corollary

There are infinitely many distinct families of toric G_{2}-manifolds.

Trivalent graphs

Given an AC Calabi-Yau (B, ω, Ψ) and a circle bundle M over it, the infomation needed to compute

$$
\begin{equation*}
c_{1}(B) \cup[\omega] \tag{1}
\end{equation*}
$$

is encoded in the toric diagram. We have to compute integrals of the form

$$
\int_{E} F \wedge \omega,
$$

where $F \in \Omega^{2}(B ; \mathbb{Z})$ is a representative of c_{1} and E a compact divisor of B. This amounts to computing triple intersections between divisors.

If (1) vanishes in $H^{4}(B)$, similar computations allow us to construct the trivalent muli-moment graph by "lifting" the planar graph of $\hat{\mu}: B \rightarrow\left(\mathfrak{t}^{2}\right)^{*}$ (dual of the toric diagram).
Then, (1) is equivalent to saying that a loop in the planar graph remains a loop when lifted to the trivalent graph.

New complete examples

Quadrilaterals, known examples [FHN21, AFNS21, Fos21]

Up to $\mathrm{GL}(2, \mathbb{Z})$ equivalence, there are exactly 2 relevant toric quadrilateral diagrams with 1 compact divisor of relevance to our construction:

Note the toric diagram on the right admits another triangulation.
Both of the above give rise to infinitely many different toric G_{2}-manifolds.

Lifted symmetric quadrilateral: $M_{m, n}$ family

Lifted skew quadrilateral: Bundle over resolved $C\left(Y^{2,1}\right)$

$$
\begin{gathered}
c_{1} \cup[\omega]=0 \Longleftrightarrow-a p+b p+a q=0 \\
a>b>0 \text { and } p, q \in \mathbb{Z}
\end{gathered}
$$

Pentagon

Up to $\mathrm{GL}(2, \mathbb{Z})$ equivalence, there is only 1 relevant toric pentagon diagrams with 1 compact divisor of relevance to our construction:

Note another triangulation is possible.

Lifted graph, pentagon: New family of examples

$$
\begin{gathered}
c_{1} \cup[\omega]=0 \Longleftrightarrow-a p+b p+a q-b q+c q+b r=0 \\
b>a>0, c>b-a \text { and } p, q, r \in \mathbb{Z} .
\end{gathered}
$$

Hexagon: New family of examples

Up to $\mathrm{GL}(2, \mathbb{Z})$ equivalence, there is only 1 relevant toric hexagon diagrams with 1 compact divisor of relevance to our construction:

Bundle over resolved cone of $L^{1,5,2}$

$c_{1} \cup[\omega]=0 \Longleftrightarrow b p+a q+2 b q+c q+b r=0 \quad$ and $\quad a p-c r=0$ $b,-c>0$ and $a>|c|$.

Selected references

B. S. Acharya, L. Foscolo, M. Najjar, and E. E. Svanes, New G_{2}-conifolds in M-theory and their field theory interpretation, J. High Energy Phys. 2021 (2021), no. 5, 32, Id/No 250.
R. Foscolo, M. Haskins, and J. Nordström, Complete noncompact G_{2}-manifolds from asymptotically conical Calabi-Yau 3-folds, Duke Math. J. 170 (2021), no. 15, 3323-3416.

- Lorenzo Foscolo, Complete noncompact $\operatorname{Spin}(7)$ manifolds from self-dual Einstein 4-orbifolds, Geom. Topol. 25 (2021), no. 1, 339-408. MR 4226232
囯 T. B. Madsen and A. Swann, Closed forms and multi-moment maps, Geom. Dedicata 165 (2013), 25-52.
? , Toric geometry of G_{2}-manifolds, Geom. Topol. 23 (2019), no. 7, 3459-3500.

