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Multi-Hamiltonian torus actions

and special holonomy



Toric symplectic geometry

(N2n, ω) compact symplectic with effective Hamiltonian action of G = T n.

Have associated moment map

µ : N → g∗ ∼= Rn

which is invariant and for all X ∈ g

⟨µ,X ⟩d⟨µ,X ⟩ = ω(ξ(X ), ·).

� If b1(N) = 0, then T n a action preserving ω is Hamiltonian if and

only if all orbits are isotropic.

� Codimension of generic orbit equals that of target space of µ.

� Stabiliser of any point is subtorus of dim n − rank dµ.

� µ identifies orbit space, N/G , with a convex polytope.

3



Riemannian setting: Ricci-flat special holonomy

4 types of Ricci-flat geomtries appear on Berger’s list of special holomomy

groups. Each is defined by one or more closed differential forms:

Name Holonomy group Dimension Forms degree

Calabi-Yau SU(n) 2n 2, n, n

HyperKähler Sp(n) 4n 2, 2, 2

G2 G2 7 3, 4

Spin(7) Spin(7) 8 4

A symplectic manifold is a ”closed form” geometry. When admitting torus

symmetry, moment map techniques can be used to construct many

examples and obtain classifications.

What about above geometries?

Note due to Ricci-flatness, torus symmetry will force us to look at

(complete) non-compact spaces.
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Multi-Hamiltonian actions [MS13]

N with closed α ∈ Ωp+1(N) preserved by action of Abelian G .

Action is multi-Hamiltonian if there is invariant ν : N → Λp g∗

s.t. for all Xi ∈ g

⟨ν,X1 ∧ · · · ∧ Xp⟩d⟨ν,X1 ∧ · · · ∧ Xp⟩ = α(ξ(X1), . . . , ξ(Xp), · ).

Our interest is G = T n, acting effectively:

� Take n ⩾ p.

� If b1(N) = 0, then T n-action preserving α is multi-Hamiltonian if and

only if α pulls back to zero on each orbit.

If we have k invariant closed forms αi ∈ Ωpi+1(N) with multi-moment

maps νi , we form the product multi-moment map

ν = (ν1, . . . , νk) : N →
k⊕

i=1

Λpi g∗ .
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Capturing orbit space with multi-moment maps

Let N0 ⊂ N be the open dense set where the torus G acts freely and let

q = dim(N0/G ) be the co-dimension of generic orbits.

An interesting case is when the multi-moment map

ν : N0 → Rq

has full rank. Then ν locally exhibits N0 as a principal G -bundle over

U = ν(N0) ⊂ Rq.

For the Ricci-flat special holonomy geometries, the above requires:

Type dim(N) degαi G q

Calabi-Yau 2n 2, n, n T n−1 n + 1

HyperKähler 4n 2, 2, 2 T n 3n

G2 7 3, 4 T 3 4

Spin(7) 8 4 T 4 4
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Toric and multi-toric Calabi-Yau

3-folds



C al a bi- Y a u 3 -f ol d s

T his is B 6 wit h ω ∈ Ω 2 (B ) a n d Ψ = ψ + iψ ∈ Ω 3 (B , C ) p oi nt wis e li n e arl y

e q ui v al e nt t o

ω 0 =
i

2
(d  1 ∧ d  ̄ 1 + d  2 ∧ d  ̄ 2 + d  3 ∧ d  ̄ 3 ) ∈ Λ 2 (C 3 ) ∗

a n d

Ψ 0 = d  1 ∧ d  2 ∧ d  3 ∈ Λ 3 (C 3 ) ∗ .

T h e G L( 6 , R ) st a bilis er of ω 0 a n d Ψ 0 is S U( 3) ⩽ S O( 6). I n p arti c ul ar,

(ω, Ψ) d et er mi n es Ri e m a n ni a n m etri c h vi a:

−
1

3
h (X , Y ) ω 3 = (X ⌟ ω ) ∧ (Y ⌟ ψ ) ∧ ψ.

H ol o n o m y of h is i n S U( 3) ⇐ ⇒ d ω = 0 a n d d Ψ = 0.
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AC Calabi-Yau 3-folds

In what follows, we will asssume (B, ω,Ψ) is asymptotically conical (of

rate ρ < 0).

This means that outside a compact set K ⊂ B , we have a diffeomorphism

F : (0,∞)× Σ → B \ K satisfying

∥∇j(F ∗h − hC )∥hC = O(rρ−j),

for all j ⩾ 0.

Here, C (Σ) = (0,∞)× Σ is equipped with cone metric

hC = dr2 + r2gΣ.

The link, Σ5 is a so-called Sasaki-Einstein manifold.
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Toric CY 3-folds

In traditional sense, B is called toric if it comes with an effective

T 3-action preserving ω and complex structure.

In paticular, we get a (usual) moment map:

µ = (µ1, µ2, µ3) : B6 → (t3)∗ ∼= R3.

Lemma

A toric T 3-action is not multi-Hamiltonian for (ω,Ψ). There is, however,

subtorus T 2 which preserves Ψ and so is multi-Hamiltonian for the

Calabi-Yau structure.

From the T 2-action, we have a moment map,

µ̂ : B → (t2)∗ ∼= R2,

which is the projection of µ onto (t2)∗.
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Toric diagrams and their duals

� 3-dimensional toric, conical Calabi-Yau geometries, (C (Σ), ωC ,ΨC ),

can be described by diagrams in a 2-dimensional lattice, the toric

diagram.

� In order to get a corresponding AC picture, (B, ω,Ψ), we choose a

triangulation of the corresponding graph.

� The dual graph of the triangulated toric diagram, is the image of the

collection of singular T 2 orbits under µ̂.
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Toric G2-manifolds



G2-structures

M7 with φ ∈ Ω3(M) pointwise linearly equivalent to

φ0 = e123 − e1(e45 + e67)− e2(e46 + e75)− e3(e47 + e56) ∈ Λ3(R7)∗

e ijk = e i ∧ e j ∧ ek . The GL(7,R) stabiliser of φ0 is G2 ⩽ SO(7).

It determines metric g and orientation volg via

6g(X ,Y ) volg = (X ⌟ φ) ∧ (Y ⌟ φ) ∧ φ.

So we also have 4-form ∗φ.

For model form φ0, g0 = (e1)2 + · · ·+ (e7)2, vol0 = e1234567 and

∗φ0 = e4567 − e23(e45 + e67)− e31(e46 + e75)− e12(e47 + e56).

Holonomy of g is in G2 ⇐⇒ dφ = 0 and d ∗φ = 0.
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Toric G2-manifolds [MS19]

Consider a G2-manifold (M, φ) with effective T 3 action that is

multi-Hamiltonian for both φ and ∗φ.

Let U1,U2,U3 generate the torus action. So φ(U1,U2,U3) = 0 and

multi-moment map (ν, µ) = (ν1, ν2, ν3, µ) : M → R4 satisfies

dν1 = φ(U2,U3, ·), dν2 = φ(U3,U1·), dν3 = φ(U1,U2, ·)
dµ = ∗φ(U1 ∧ U2 ∧ U3, ·).

At a point p, we can write

φ = e123 − e145 − e167 − e246 − e275 − e347 − e356

∗φ = e4567 − e23(e45 + e67)− e31(e46 + e75)− e12(e47 + e56).

Moreover, for p ∈ M0, we can choose our G2-basis s.t.

Span{U1,U2,U3} = Span{E5,E6,E7}.

Hence, (ν, µ) : M0 → R4 has full rank and multi-moment map locally

exhibits M0 as principal T 3-bundle over U ⊂ R4.
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Where action is free: Toric G2

We have that M0 is the total space of a principal T 3-bundle with

connection 1-forms θ1, θ2, θ3 ∈ Ω1(M0) that satisfy

θi (Uj) = δij , θi (X ) = 0, for all X ⊥ Span{U1,U2,U3}.

On M0 we can define a positive definite symmetric 3 × 3-matrix of

functions by:

V = (g(Ui ,Uj))
−1.

Can then write toric G2-structure in a way resembling Gibbons-Hawking

ansatz for gravitational instantons:

g = 1
detV θ

t adj(V )θ + dνt adj(V )dν + det(V )dµ2

φ = − det(V )dν123 + dµ ∧ dνt adj(V )θ +S
ijk

θij ∧ dνk

∗φ = θ123dµ+ 1
2 det(V )

(
dνt adj(V )θ

)2
+ det(V )dµ ∧S

ijk

θi ∧ dνjk

Note that G2-structures defined by the above formulae are generally not

torsion-free, so holonomy reduction is not guaranteed.
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Torsion-free condition amounts to following system of PDEs:

V ∈ Γ(U , S2(R3)) is a positive definite solution to

3∑
i=1

∂Vij

∂νi
= 0 for each j = 1, 2, 3 (Divergence-free)

and

L(V ) + Q(dV ) = 0 (Elliptic)

where

L =
∂2

∂µ2
+

3∑
i,j=1

Vij
∂2

∂νi∂νj

and

Q(dV )ij = −
3∑

a,b=1

∂Via

∂νb

∂Vbj

∂νa
.

Can produce solutions for special ansätze but these are generally

incomplete.
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Global local coordinates

Theorem ([MS19])

For toric G2-manifolds the multi-moment map induces a local

homeomorphism M/G → R4.

For complete examples to be constructed below, multi-moment maps

provide natural global identification of the orbit space with R4.

Note difference from (compact) symplectic case. Above, orbit space is

manifold (without corners).

What is the equivalent of a Delzant polytope in this setting?
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Combinatorial data: Image of singular locus

Recall that for toric G2, we have:

dν1 = φ(U2,U3, ·), dν2 = φ(U3,U1·), dν3 = φ(U1,U2, ·)
and dµ = ∗φ(U1 ∧ U2 ∧ U3, ·).

If, say, U3 vanishes on a collection of singular orbits, then ν1, ν2 and µ are

constant on that collection and we get a line segment parameterised by ν3.

In general, we get the following:

� S1 stabilisers correspond to lines in R3 × {µ = const} ⊂ R4 of

rational slope.

� T 2 stabilisers correspond to points in R3 × {µ = const} ⊂ R4, with 3

incoming vertices.

� ”Zero tension” condition on slopes at each vertex.

There are no fixed points and no exceptional orbits.
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Producing toric ALC G2-manifolds



Constructing examples

Theorem ([FHN21])

Let (B, ω,Ω) be an AC Calabi-Yau 3-fold and M → B a (non-trivial)

circle bundle such that c1(B) ∪ [ω] = 0 ∈ H4(B). Then there exists a

1-parameter family, φϵ, of parallel G2-structures on M.

Each (M, φϵ) constructed in this way has holonomy equal to G2.

Proposition

If (B, ω,Ω) is toric, then so is each (M, φϵ).

Key is that the multi-toric T 2-action on B lifts to a commuting action on

M. Expressing φϵ as a series expansion, one can check that the resulting

T 3-action is multi-Hamiltonian for each φϵ.

Corollary

There are infinitely many distinct families of toric G2-manifolds.
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Trivalent graphs

Given an AC Calabi-Yau (B, ω,Ψ) and a circle bundle M over it, the

infomation needed to compute

c1(B) ∪ [ω] (1)

is encoded in the toric diagram. We have to compute integrals of the form∫
E

F ∧ ω,

where F ∈ Ω2(B;Z) is a representative of c1 and E a compact divisor of

B. This amounts to computing triple intersections between divisors.

If (1) vanishes in H4(B), similar computations allow us to construct the

trivalent muli-moment graph by ”lifting” the planar graph of µ̂ : B → (t2)∗

(dual of the toric diagram).

Then, (1) is equivalent to saying that a loop in the planar graph remains a

loop when lifted to the trivalent graph.
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New complete examples



Quadrilaterals, known examples [FHN21, AFNS21, Fos21]

Up to GL(2,Z) equivalence, there are exactly 2 relevant toric quadrilateral

diagrams with 1 compact divisor of relevance to our construction:

Note the toric diagram on the right admits another triangulation.

Both of the above give rise to infinitely many different toric G2-manifolds.
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Lifted symmetric quadrilateral: Mm,n family

c1 ∪ [ω] = 0 ⇐⇒ bp + aq = 0

a, b > 0 and p, q ∈ Z. 20



Lifted skew quadrilateral: Bundle over resolved C (Y 2,1)

c1 ∪ [ω] = 0 ⇐⇒ −ap + bp + aq = 0

a > b > 0 and p, q ∈ Z.
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Pentagon

Up to GL(2,Z) equivalence, there is only 1 relevant toric pentagon

diagrams with 1 compact divisor of relevance to our construction:

Note another triangulation is possible.
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Lifted graph, pentagon: New family of examples

c1 ∪ [ω] = 0 ⇐⇒ −ap + bp + aq − bq + cq + br = 0

b > a > 0, c > b − a and p, q, r ∈ Z.
23



Hexagon: New family of examples

Up to GL(2,Z) equivalence, there is only 1 relevant toric hexagon

diagrams with 1 compact divisor of relevance to our construction:

c1 ∪ [ω] = 0 ⇐⇒ −ap + bp + aq − bq + cq + br − cr + dr + cs − ds = 0

a, d > 0, 0 < a < b, c > b − a, d > c .
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Bundle over resolved cone of L1,5,2

c1 ∪ [ω] = 0 ⇐⇒ bp + aq + 2bq + cq + br = 0 and ap − cr = 0

b,−c > 0 and a > |c |. 25
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