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Abstract 
This paper presents the verification of sampling design problem for collecting data from a water 
distribution network. The aim is to compare the theory verification of model with the real one through 
developing a calibration procedure based on an optimization algorithm. At first, the multi-objective 
optimization model is assumed to be solved and the locations of measurement points are determined with 
different level of accuracy. Three approaches are considered for parameter uncertainty estimation in 
sampling design. With assuming the measurement points (i.e. the pressure heads) at each node, 
calibration procedure is made in order to adjust the best parameter (i.e. the pipe friction coefficients). 
Calibration is performed based on Genetic algorithm (GA) optimization approach. Determined 
Locations in the solutions of each scenario of sampling design are assumed to be the measurement points 
in each calibration procedure. Thus, the calibration results are compared in three scenarios with the 
same number of measurement. Comparison of the results is carried out based on the sum of squared 
deviations between all pressures calculated from the calibrated model and actual pressures with the real 
parameter. For the sets of the same measurement numbers, the best fitness solutions are selected based 
on the sum of squared error (SSE) criteria. The consistency of results for every specific number of 
measurements shows the robustness of methodology and its safe application to different cases. 

Keywords: calibration, sampling design, field measurement 
 

1- Introduction 

Since development of the water distribution networks and making sensitive decisions in the investment 
sections of water supply, it is required extremely to accurately model the networks. Within this modeling, 
the correspondence between the results obtained from mathematical modeling and real conditions of the 
system is essential for modelers and decision makers. In other words, the results of mathematical model 
should have the least error and indicate the system operation with more reality. Therefore, the model 
must be calibrated in order to meet this purpose. 

In order to calibration, field measurements of pressure and flow are necessary. The clients have some 
limitations in supplying the budget for collection of field measurements. Also, to meet the minimum error 
in calibration, it is required to collect more measurement data especially in spatial distribution. So, what 
the decision makers are interested to know, what are the relationships are between the number of field 
measurements and the accuracy resulted from their calibration. 
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Several authors have proposed various methods to obtain the relationship between the number and 
location of field measurement and the error resulted from their calibration. Although they have been 
presented different approaches for selecting the sampling points, rarely has the validation of the results 
been considered in the literature, may be because of the complexity of the optimization model. 

Walski (1983) suggested monitoring pressure location should be away from water sources. Yu and Powell 
(1994) used a dynamic analysis for selecting the measurement points in which one additional point was 
added every stage. At the same time, Ferreri et al. (1994) proposed ranking of WDS nodes based on the 
sensitivity analysis of nodal heads relative to roughness parameters. 

 
Meier and Barkdoll (2000) have addressed sampling design by choosing the fire flow test locations for 
potential points for calibration and used from genetic algorithm to find the best points. They have 
determined these flow tests as they are opened simultaneously. The objective function was to maximize 
the total of pipes with non-negligible flow velocity within the opening of the specific number of fire flow 
tests. The model has run for every number of fire flow tests each time, and the final results has been 
determined for each composition of fire flow tests up to ten points among the total of 189 potential 
hydrants. They have validated their model by comparing the results of optimization model and the best 
points of complete enumeration for each specific number of fire flow samplings. Of course, because 
numerous numbers of states are required for complete search, the authors had to validate their model for 
only four small types of measurement numbers. 

 
Recent researchers have continued the route of sampling design by analyzing the sensitivity matrix of 
prediction variables relation to the parameters. In these approaches, the points that their predicted 
variables have the most sensitivity relation to parameter deviation are better candidates for sampling 
location. With this approach, parameter estimation and sampling design theory are accomplished. 

 
Bush and Uber (1998) developed the sampling design theory with a sensitivity-based method to rank the 
measurement point for calibration. In addition to pressure measurement location, they determine 
concentration measurement location and also the effect of both. They proposed three methods based on 
the minimization of the parameter's confidence region volume for roughly sampling design. They showed 
that the measurement with both pressure and tracer concentration are more effective. 

 
Lansey et al. (2001) proposed a three-step calibration procedure including parameter estimation, 
calibration assessment, and data collection design. With these looped steps, data collection plan are 
updated based on parameter estimation and propagation of parameter errors. The uncertainty of this 
model is calculated based on trace of the covariance matrix of the predictive heads. 

 
Most recently, Kapelan et al. (2003) have introduced a multi-objective sampling design for calibration of 
the model. They have determined the relationship between the number of sampling pressure logger points 
versus its correspondent errors via a multi-objective approaches. In their objectives, they have considered 
the total cost of sampling design as the number of sampling points and the accuracy of the calibration 
results. The accuracy of the calibration is based on some theories obtained from the uncertainty of 
parameters and its estimation. Thus, they have addressed three different approaches as the model 
accuracy. Three different types of accuracy have been compared based on the results from the case study, 
and the best points are concluded as a theory basis. 

 
This study extends the work of Kapelan et al. (2003) verifying three parameter uncertainty estimation 
approaches within the process of calibration. First, based on the Kapelan et al.'s approach, determining 
the sampling locations are developed. After obtaining the results of sampling design, calibration 
procedure is performed. Then, with assuming the measurement points (i.e. the pressure heads) at each 
node, calibration procedure is made in order to adjust the best parameter (i.e. the pipe friction 
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coefficients). Calibration is performed based on Genetic algorithm (GA) optimization approach. 
Determined Locations in the solutions of each scenario of sampling design are assumed to be the 
measurement points in each calibration procedure. Thus, the calibration results are compared in three 
scenarios with the same number of measurement. Comparison of the results is carried out based on the 
sum of squared deviation between all pressures calculated from the calibrated model and actual pressures 
with the real parameter. 

 
In the next section, the optimal sampling design is described. Then, model formulation is stated for both 
multi-objective sampling design and calibration of water network model. The proposed method for 
network calibration is explained in the next section. The methodology described then applied to the case 
study, and results of the model are presented and discussed. 

 
 

2- Optimal sampling design 

Selecting the sampling locations for data collection is an important issue in the calibration process. It can 
influence on the accuracy of calibration procedure. On the other hand, if sampling locations are not 
selected properly, it may cause that the lower correspondence between the measured and predicted 
variable. Therefore, considering the specific number of sampling locations, it is valuable to set a proper 
distribution of measurement devices on the potential locations with calibration purposes. 

 
Optimal sampling design is accomplished by selecting the points that, after measuring data in those points 
and calibrating the model, will yield to minimum discrepancies in verification process. Verification is a 
process that the model results are compared with a set of conditions that were not used to estimate the 
parameters. Nevertheless, after verifying the model, the model results do not still match with the new 
data measurement. It shows that the model are still not well-estimated even with the best selection points; 
i.e. the parameter still have error in their estimation. Also, the less the parameters have error, the smaller 
the discrepancies between measured and calculated variables are generated. In other words, the 
parameters such as roughness coefficient have the errors in their estimation which is called uncertainty. 

 
Therefore, In order to obtain the optimal sampling locations, one should find the point that has the most 
sensitivities relation to the variation of parameters. These points, if used for monitoring, can calibrate the 
model so that the model results are closely matched with the measurement locations, which can generate 
the most discrepancy; i.e. the points which have the most errors participate in the calibration; and will 
yield the parameters that are more compatible with those high-error points. With other data for 
verification, model results will have the smaller discrepancies because the parameters have been 
estimated with these data. Based on this uncertainty theory; three different approaches have been 
suggested for uncertainty modeling in sampling design. 

In the first approach, the set of points are appropriate for monitoring that have the most sensitivities of 
predicted variables relation to parameter variations. This could be stated as follow: 

 
Cur = J TWJ 

 

Where J =Jacobian matrix of derivatives yi / aK ( i = 1,..., No ; K = 1,..., Na ) derivatives calculated for 

model predicted (dependent) variables y(a) that spatially and temporally correspond to measurement y . 
No =total number of field measurement, Na =number of calibrated parameter. Calculation of Jacobian 
matrix is possible from several ways as follow: 
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1- finite-difference method (Lansey et al. 2001) 
2- sensitivity equation method (Bush and Uber 1998) 
3-adjoint method (Kapelan et al. 2003) 

The second approach finds those points that have the least variation of parameters with the specific 
variation of model results. The covariance matrix of the parameter, Cova, can handle this purpose and can 
be estimated by first-order approximation as follow: 

 

Cova = E 
No − Na 

.Cur −1 

 
where E=optimal objective function value. The uncertainty of the ith calibration parameter is equal to the 
value of ith diagonal element of matrix Cova .. 

 
In the third approach, propagation of error to the predicted values is considered. The set of points which 
has the minimum error in their predicted variables are the best options for monitoring. The first-order 
second-moment (FOSM) analysis can accurately estimate the covariance of the predicted uncertainty 
given the uncertainty of input. The prediction covariance matrix Covz can be estimated as follow: 

 
Covz = J z .Cova J T 

 

where J z =Jacobian matrix of derivatives zi / aK that i = 1,..., Nz , K = 1,..., Na , Nz =number of 
predicted variables of interest. Jacobian matrix J z is a matrix of Nz  Na dimensions and matrix Covz is 
defined as a Nz  Nz dimension. Like matrix Cova , the uncertainty of predicted variables is the diagonal 
element of matrix Covz . 

 

Based on these approaches, uncertainties of point selection are modeled. An optimization algorithm can 
solve this model and can present the best points for installing the measurement devices. In the next 
section, the process of model formulation for finding the best points is presented. After finding the best 
solution, each method of handling uncertainty present a different set for optimum sampling location. In 
order to see which one of the set is more proper, verification of the model is required. The verification 
should include the process of calibration with the best solution of each type. An approach that can obtain 
the minimum error in calibration can indicate to the best solution. 

 
 

3- Model Formulation 

At first step, two objective functions are formulated in order to solve the sampling locations. The first 
objective mimics the uncertainty of the model and based on this objective the measurement points are 
selected from the set of potential points in the field. The second objective restricts the number of 
selecting point in each step. After obtaining the model, a trade-off between the number of solution and 
the corresponding accuracy for Pareto-optimal solutions are determined. At second stage of this paper, 
verification process is initiated. Verifying the optimal sampling locations is carried out with calibration 
process. 

 
As mentioned above, three different types of fist objective function could be stated as follow: 
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 

ij 

1 Max F = det(Cur )1/ (2 Na ) 

Min F1 = 
a 1 

Na 

 

i=1 
Nz 

 
1/ 2 
a,ii 

 1/ 2 

Min F1 = 
z 
Covz,ii 
i=1 

 
These objectives are called CAO1, CAO2 and CAO3, respectively. The other objective function is 
limitation of the number of sampling locations that can be stated as bellow: 

 
MinF2 = N 

 
The number of sampling devices ( N ) are related to the number of observation ( No ) as temporally and 
spatially. In our case, because that observation are done in each time step, therefore these relationship is 
as No = N  t , where t is the number of measurement times. 

 
4- Network model Calibration 

Verification process is accomplished with calibration based on the optimization algorithm. In this study, 
optimization algorithm used for calibration is an evolutionary technique which better known as genetic 
algorithm (GA). In GA, the objective function is minimized so that the best parameters are estimated. 
Assuming that some measurements are available, the GA minimizes the sum of the square differences 
between the measured and computed variables. Measurement and computed variables can be pipe flows, 
nodal pressure heads and tank levels that are variables in various operational conditions. In this paper, 
nodal pressure heads are the only variables that are compared. Mathematically, the objective function 
used in this algorithm is as follow: 

 t N  ij ij 

Min E = wij [Y * − Y 
j=1 i=1 

( X )]2 

 
where: E= objective function that must be minimized; t= number of operational conditions; N = number 
of pressure head measured locations; Wij = weighting factor for location i and operation condition j with 

respect to their importance or accuracy; Y  = observed pressure head at node i and operational condition 
j ; Yij ( X ) = calculated pressure at node i and operational condition j ; The GA decreases the objective 

function with altering the friction coefficient parameters so that measured and calculated pressures are to 
closely match in each operational condition. 

 
The constraints of this optimization model are mainly the simulation equations of the model. Simulation 
equations include two groups of mass balance for each node and energy equations of each loop. Since 
most of the simulation models in water network models is solved with numerical methods and needs 
iteration algorithm, it is required to establish a linkage between simulation and optimization model. Thus, 
constraints are satisfied from the simulation model, so that, the equations of simulation model are solved 
iteratively and the results of pressure heads are returned back to the optimization model in each step. 
Therefore, the optimization model have to search between the feasible search space and examine the 
various decision variables to find better solution that can satisfy the simulation model and minimize the 
objective function. The decision variables are friction coefficients of the pipes. 

Cov 
1 

N 

N 
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In this paper, an optimization program written in C language has been linked to the source code of 
EPANET hydraulic simulation program. The source code of EPANET was written in C language and was 
compatible to every optimization model that is written in C language. (Rossman, 2000) 

GA is one the best search algorithm that has the ability to do this task. GA was developed by Holland 
(1975) at the University of Michigan. It can mimic the adaptation of natural systems, and provide a robust 
and efficient way to search complex parameter spaces for ever better solutions to an optimization problem 
(Goldberg 1989). 

 
At first step in GA, decision variable encoding was introduced. The encoding scheme is a string of integer 
values. These genes represent the values of friction factors of pipes as integer values. The fitness function 
of GA is the objective function as mentioned above. Next, proper operations, including selection, 
crossover, mutation and elitism, were determined and refined after some experimental implementations. 
In the next section, we describe the case study and some of the assumptions for implementing the model. 

 
 

5- Case Study 

Verification of sampling design is applied on a case study of Anytwon city in U.S.A. that has been used 
many times in the previous works. This case study was used in the literature for the purpose of calibration 
by Ormsbee(1989), Lansey and Basnet(1991) and also for the purpose of sampling design by Kapelan et 
al.(2003). The network schematic is shown in Fig. 1. The distribution system consists of 34 pipes and 16 
nodes that their characteristics are given in tables 1 and 2. In order to group the pipe friction factor into 
smaller numbers, five groups are considered that is shown table 3. The friction coefficient of pipes is 
expressed as Hazen Williams C factor. 

 

Source 

 
Fig.1. Water Distribution Network 
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Table1. Properties of the network pipe 
 

No. ID Length 
(m) 

Diameter 
(mm) 

HW 
roughness 
coefficient 

 
No. 

 
ID Length 

(m) 
Diameter 

(mm) 

HW 
roughness 
coefficient 

1 1002 3657 406 120 18 1036 1830 254 120 
2 1004 3657 406 120 19 1038 1830 254 120 
3 1006 3657 406 120 20 1040 1830 254 130 
4 1008 2743 305 70 21 1042 1830 203 130 
5 1010 1830 305 120 22 1044 1830 203 90 
6 1012 1830 254 70 23 1046 1830 305 90 
7 1014 1830 305 70 24 1048 1830 203 90 
8 1016 1830 254 70 25 1050 1830 254 90 
9 1018 1830 305 70 26 1052 1830 203 90 

10 1020 1830 254 70 27 1056 1830 203 130 
11 1022 1830 254 70 28 1058 1830 254 130 
12 1024 1830 254 70 29 1060 1830 203 130 
13 1026 1830 305 70 30 1062 1830 203 130 
14 1028 1830 254 90 31 1064 3656 203 130 
15 1030 1830 254 120 32 1066 3656 203 130 
16 1032 1830 254 120 33 1078 30.5 305 110 
17 1034 2730 254 120 34 1080 30.5 305 110 

 
Table2. Node Information 

No. Identification Elevation (m) Demand 
(L/s) 

1 20 6.23 31.51 
2 30 15.24 12.52 
3 40 15.24 12.52 
4 50 15.24 31.51 
5 140 24.4 12.52 
6 170 36.6 12.52 
7 130 36.6 12.52 
8 120 36.6 31.51 
9 110 15.24 12.52 
10 160 36.6 31.51 
11 100 15.24 12.52 
12 150 36.6 12.52 
13 80 15.24 31.51 
14 90 15.24 63.83 
15 70 15.24 31.51 
16 60 15.24 50.9 

Total   403.95 
 
 

Three pumps are available at the reservoir and pump water to the distribution system. The pump 
characteristic curves for three pumps are the same and are as follow (flow (L/s) and heads (m)): (0.0, 
91.4), (252.5, 82.3), (504.7, 55.2). Both tanks have bottom elevations of 65.5 m and overflow elevation 
of 77.7 m; i.e. the tanks have 12 m height. The water level at the reservoir is fixed at an elevation of 3.04 
m. Five loading conditions, including a normal demand loading and four separate fire demand loadings, 
are available for implementing of sampling design and calibration. For each fire demand loading, water 



8 

 

 

required for fire demand is added to the nodes as assumed to be 82.48 L/s (node 40), 107.17 L/s (node 
90), 31.49 L/s (node 120), and 82.48 L/s (node 140). The tanks are half-full (6.1 m) for the normal 
demand loading while they are full (12 m) for each fire flow loading. 

Table3. Roughness coefficients of pipe grouping 
 

Pipe Grouping HW roughness 
coefficient 

1 
2 
3 
4 
5 

120 
70 
90 
130 
110 

 
 

6- Results and Discussions 

At the first step, it is required that sampling design problem is solved for the distribution system. Total 
nodes (16 nodes) are possible locations for monitoring. Total assumed parameters are 5 because of five 

friction groupings of pipes. Assuming Na = 5, the multi-objective genetic algorithm was run to find the 
trade-off between the number of point locations and their associated accuracy. In each number of point 
locations for pressure logger, the best arrangement of location's position is determined based on the 
minimum parameter uncertainty. Table 4 shows the results of point location obtained from the third 
approach of first objective function based on the work of Kapelan et al.(2003). 

 
Table4. Multi-objective genetic algorithm solution of sampling design problem 

Pareto-Optimal Front for CAO3 
Number of 
monitoring 
locations 

Network nodes 

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 
0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 
0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 
0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 
0 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 
0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 
0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 
0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 
0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 
0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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In order to verify the results, a calibration procedure was done. For the purpose of calibration, it is 
necessary to be available the measurement point of pressure at all nodes. Thus, the pressure calculated 
from the actual friction coefficients are assumed to be the measurement pressures at all nodes. These 
measurement pressures are shown in column 2 of table 7. It is also required to assume the initial friction 
coefficients for all pipes. Therefore, the value of 100 was assumed for Hazen Williams's roughness 
factor. 

 
For each number of monitoring locations, an optimization model was run to calibrate the model based on 
those specific numbers of location. The position of locations predefined based on the solution obtained 
from sampling design. Thus, various runs are necessary for calibrating the model. Results of calibration 
procedure for all different number of monitoring locations are presented in table 5 and Fig. 2. 

 
Table5 . Comparison of Calibration results for different uncertainty approaches 

Number of 
monitored 

points 

Objective function of calibration model 

CAO1 CAO2 CAO3 
1 93.30 93.30 93.30 
2 136.74 137.21 96.90 
3 29.91 78.72 65.75 
4 9.95 64.38 9.95 
5 9.54 22.99 9.54 
6 10.93 29.00 10.93 
7 14.28 5.95 14.28 
8 5.51 3.05 6.77 
9 2.60 2.05 2.25 

10 2.02 4.46 2.02 
11 0.43 1.74 0.43 
12 1.60 0.78 1.60 
13 1.75 0.39 0.39 
14 0.32 0.32 0.32 
15 0.17 0.17 0.17 

 
Comparison of results can be carried out based on their objective function. All types of number of 
monitoring points are compared with the same objective function. After calibrating for each measurement 
points, the objective function is calculated based on the sum of squared deviations between all the 
pressures of the calibrated model and the actual pressures. The pressures obtained from the calibrated 
model for four-monitoring position, for instance, are shown in table 6. Also, the corresponding friction 
coefficients of calibrated model are shown in table 7. The monitoring points in the hydrant are also 
compared with these scenarios. The hydrants are at nodes 40, 90, 120 and 140. 

 
The pipe grouping mentioned above was used in sampling design problem. It is impossible to apply the 
pipe grouping for calibration approach because all types of calibration will converge to the exact solution 
in each run. The reason is probably for small number of parameters to be calibrated (five pipe grouping). 
Therefore, despite the sampling design problem was solved with only 5 pipe grouping, the calibration 
process was run for all pipe frictions. It means that the parameter to be calibrated increase from 5 to 34 
unknown parameters. In other words, this resulted in 34 decision variables. Thus, the number of genes 
required in a chromosome of GA is 34 genes. 
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As shown in table 6, the average percent deviation is 6.3% for initial pressure and was reduced to 0.4% 
for scenario CAO1 pressure, to 0.7% for scenario CAO2, to 0.4% for scenario CAO3 pressure and to 
0.6% for hydrants that are comparable to the work of Ormsbee (1989) (1.3% final pressure). 
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Fig.2. Objective functions of all possible states of four-point subset measurements 

Table 6. Calibration results of node pressures with GA optimization 
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Node ID Mean actual 

pressure (m) 
Initial 

pressure (m) 
Final pressure (m) (4 points for monitoring) 

CAO1 CAO2 CAO3 Hydrant 
20 85.65 85.58 85.75 85.8 85.75 85.88 
30 66.07 62.64 65.9 66.16 65.9 65.79 
40 59.98 57.98 59.98 58.76 59.98 59.98 
50 59.19 56.27 58.63 58.47 58.63 58.76 
60 61.21 56.36 61.18 61.16 61.18 61.19 
70 65.49 61.06 65.16 64.8 65.16 64.61 
80 58.46 55.61 58.41 58.46 58.41 58.47 
90 56.75 55.63 56.75 58.04 56.75 56.76 
100 61.85 57.04 61.72 61.86 61.72 61.71 
110 70.41 66.16 70.41 68.26 70.41 68.19 
120 34.73 32.41 34.73 34.74 34.73 34.73 
130 36.66 32.63 36.12 36.54 36.12 36.21 
140 48.76 46.32 48.54 48.76 48.54 48.76 
150 37.5 34.49 37.52 37.77 37.52 37.68 
160 39.82 35 39.76 39.82 39.76 39.78 
170 35.6 32.1 34.77 35.45 34.77 35.09 
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Table 7. Calibration results of friction coefficients with GA optimization 

Pipe 
ID 

Actual 
C-factor 

Initial 
C- 

factor 

Final C-factor (4 points for monitoring) 

CAO1 CAO2 CAO3 Hydrant 
1002 120 100 123 110 123 98 
1004 120 100 106 125 106 117 
1006 120 100 119 90 119 101 
1008 70 100 101 118 101 118 
1010 120 100 116 133 116 134 
1012 70 100 83 100 83 71 
1014 70 100 96 83 96 71 
1016 70 100 61 109 61 64 
1018 70 100 82 69 82 76 
1020 70 100 65 94 65 71 
1022 70 100 80 67 80 72 
1024 70 100 61 75 61 76 
1026 70 100 71 74 71 81 
1028 90 100 102 73 102 101 
1030 120 100 78 114 78 94 
1032 120 100 130 99 130 129 
1034 120 100 88 97 88 95 
1036 120 100 117 98 117 117 
1038 120 100 116 115 116 109 
1040 130 100 133 139 133 136 
1042 130 100 131 131 131 130 
1044 90 100 138 80 138 125 
1046 90 100 109 76 109 66 
1048 90 100 97 93 97 103 
1050 90 100 77 76 77 94 
1052 90 100 102 105 102 116 
1056 130 100 123 117 123 105 
1058 130 100 105 117 105 97 
1060 130 100 103 119 103 103 
1062 130 100 114 132 114 137 
1064 130 100 97 129 97 118 
1066 130 100 112 116 112 138 
1078 110 100 90 77 90 121 
1080 110 100 79 128 79 93 

 
The GA was run in each time until no improvement is met. After some experiment, the number of 
generation for each run was set to 1000 generation. For example, improvement of fitness function for one 
point monitoring at node 170 is shown in fig. 3. As it can be seen, improvement after about 500 
generation does not exist. The proper operation such as mutation and crossover, after some examinations, 
are set to 0.1 and 0.25, respectively. The population size of each generation was considered to 100 
individuals. 
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Fig. 3.Improvement of fitness function for calibration with monitoring node of 170(one-point monitoring) 
 

7- Summary and conclusion 

Sampling design problem has advanced and multi-objective genetic algorithm has been used for finding 
the sampling locations in water distribution system. In this paper, an algorithm of calibration based on 
GA was developed to verify the sampling design solutions. The calibration includes an optimization 
model that has been linked to the hydraulic simulation package EPANET. GA successfully calibrated the 
network of Anytown city after up to 1000 generations. 

 
In the procedure, for each specific number of sampling locations, GA found the calibrated model and 
compared between three approaches of parameter uncertainty estimation. As shown in the figures and 
tables, between three approaches of parameter estimation, CAO3 has better behavior in meeting the 
optimum calibration. The points which CAO3 offers show the more confidence in comparison to other 
approaches. Also, as it can be seen in table 6, the average percent deviation of pressure from their real 
values is reduced to less than 1% in each of the scenarios and also when only hydrant measurements are 
existed. 
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