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Abstract

Maintenance planning program of offshore assets is a complex activity due to its impact on
the operational and safety risks and consequences, dependence on personnel resource avail-
abilities, site constraints due to operational requirements and environmental factors, and
uncertainties related to various vulnerabilities on asset. This thesis elaborates the challenges
on offshore maintenance frameworks and have carried out a review of recent state-of-the-art
literature from which have observed that the current state-of-the-art does not incorporate
site constraints of the asset related to offshore personnel resource availability and impact
of time required to carry out activities, into the maintenance plan and its impact on other
activities due to the maintenance. Also, it has been identified that dynamic and autonomous
resource allocations for maintenance activities are not employed in the offshore maintenance
planning program that allows each maintenance item to independently adjust its resource
allocation based on the time required to complete the activity, to improve the resource util-
isation.

In this work, a novel approach has been utilised to formulate a maintenance plan opti-
misation problem for a Floating Production Storage and Offloading Facility (FPSO) that
maximises the maintenance personnel resource utilisation and enable FPSO condition en-
hancement, considering the priorities with respect to design features, operating conditions,
deteriorations, and the consequences of not doing the maintenance, taking into considera-
tion the personnel resource time required for activity completion. To find the Pareto-optimal
solution, an overall objective function has been developed corresponding to maintenance pri-
orities with respect to Stress Unity Check, Fatigue Damage Ratio, Bending Moment Ratio,
Shear Force Ratio, Degree of Corrosion Scale, Degree of Metal Loss, Safety Risks in the
event of not doing maintenance and Financial Risks in the event of not doing maintenance,

taking into consideration the personnel resource time required for activity completion using

XVl



ABSTRACT xvii

the weighted sum approach. This formulation provides flexibility to direct the focus of the
overall objective function towards any one or more of the objective functions by adjusting
their respective weight according to the maintenance strategy followed, which would supple-
ment the Regulatory oversight requirements of the FPSO.

Also, in this work, a novel work management framework has been proposed that comprises of
Deep Q-Reinforcement Learning (DQN) problem formulation as a solution to multi-objective
optimisation problem for maintenance activities of FPSOs. The framework enables carrying
out activities that have minimal site constraints, considering the design features, operat-
ing conditions, deteriorations, consequences of not doing the activities and time required to
complete the activities, to get higher weighted sum of the completion times at short time
as possible, whereby achieving higher resource utilisations. A greedy algorithm benchmarks
the performances of DQN model and a hybrid model comprising of greedy and DQN pa-
rameters. This formulation enables achieving the optimal path for carrying out activities
that liquidates the risks to the asset’s performance, which would in turn supplement the

Regulatory oversight requirements of the FPSO.
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Introduction

1.1 Background and Motivation

With the emergence of nuclear industry in the 1900s, the risks associated with any acci-
dents in that industry became a main concern, due to the very high consequences involved.
With that, there was a wide emphasis on the predictive methodologies with the aim to
lower any potential risks. This approach was subsequently passed on to other industries
including, petrochemical, offshore and marine sectors. The offshore asset is an integration
of various floating systems, having individual needs on maintenance, governed by their de-
sign features, operating conditions, deterioration mechanisms and risks involved in not doing
the maintenance activity. The practical site constraints encountered have an impact on the
maintenance execution and the utilisation of resources, which generally not get accounted
for in the maintenance strategies. This in turn reduce the effectiveness and confidence of
the maintenance framework. The research work detailed in the subsequent pages have been
based on this philosophy and investigate the merits and weaknesses on the current practises
in maintenance frameworks with the aim to develop an effective maintenance management
approach for offshore floating systems addressing the site constraints of personnel availabil-
ity and impact of time required to carry out activities, governed by overall risks and site

constraints, whereby enhancing the effectiveness and confidence of the framework.
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1.2 Research Gaps

Through an extensive and comprehensive literature survey, the following gaps were found:
e It has been identified that the current state-of-the-art literature does not incorporate spe-
cific site operational constraints of the asset related to predicted offshore personnel resource
availability for the maintenance activity, due to maximum allowable bed space, impact of
time required to carry out activities and its impact on other activities due to this mainte-
nance.

e Also, it has been identified that there is no evidence to support that adaptive timetabling
happens such that dynamic and autonomous resource allocations for maintenance activities
take place in the offshore maintenance planning systems that allows each maintenance item
to independently adjust its resource allocation based on the time required to complete the
activity, to improve the resource utilisation.

e [t has also been noted that the expectation is that maintenance planning enables personnel
resource allocations, such that the resources are accessible on demand, confirm quality ser-
vice on demand, provide maintenance activities on demand and provide maintenance with
lower costs; however, it would be challenging to have different systems served independently
with a proper resource allocation made according to their own requirements.

e It has been concluded that there exists scope for further research works that addresses
the site constraints of personnel resource availability, impact of time required to carry out
activities and its impact on asset condition due to the maintenance execution, by examin-
ing machine learning and deep reinforcement learning network based artificial intelligence
approach that would reduce the human intervention and bring consistency, considering the
design features, actual condition of the component, site constraints, deterioration factors,

consequences of not doing the activities, time required to complete the activities and investi-
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gating the impact on key maintenance performance indicators regarding resource allocations
and resource utilisations. This would in turn optimise resources without compromising safety

and efficiency while maintaining or lowering the risk levels in the life cycle.

1.3 Research Problems and Challenges

An optimised strategic planning of maintenance activities would be required satisfying Reg-
ulatory and Owners’ requirements, without compromising safety and reliability of the asset,
within the constraints of maintenance duration, activity completion, resource availability
due to offshore bed space restrictions. It has been noted that the maintenance performance
indicators widely considered relates to the asset availability, reliability, and safety compli-
ance, whereas the site constraints and impact of time required to carry out activities are not
regarded as a performance indicator in any of the literature, which is a major limitation of
the existing frameworks, as the availability of bed space offshore for any activity is the prime
performance indicator for any maintenance execution.

It has been noted that probabilistic assessment models, Bayesian Networks and Multi-
objective optimisation techniques have been widely used in the literature for optimisation
of maintenance activities. Most of these methods generate a set of pareto optimal solutions
and use some additional criterion or rule to select one particular pareto optimal solution as
the solution of the multi-objective problem. There exists scope for further research work
that would incorporate site constraints and impact of time required to carry out activities
including the Offshore resource availability into the maintenance plan and its impact on asset
condition due to the maintenance execution.

Even though many good maintenance models and frameworks are available in the literature,
there still remains a significant gap in incorporating the overall risks and site constraints

into the maintenance program. Most of the methodologies take into account the failure
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events of only few selected critical components and criteria, without integrating with the
complete system and associated overall risks. In order to achieve the optimum maintenance
plan, the operational and environmental uncertainties, maintenance uncertainties, unpre-
dictive resource availability for maintenance execution, uncertainties related to damage and
degradation mechanisms, uncertainty of failure occurrence and the deviations from design
assumptions needs to be assessed and considered.

The maintenance planning also needs to be integrated with the inspection plans and offshore
resource availability to achieve a credible implementation plan incorporating the overall risks.
The constraints of Offshore personnel availability for the maintenance activity due to max-
imum allowable bed space is a factor not considered in any of the frameworks identified in
the literature review. This is a major limitation of the existing state-of-the art maintenance
frameworks. There are still research gaps in frameworks, towards incorporating the overall
risks, practical site constraints encountered mainly with regards to the availability of bed

space onboard for the personnel and impact of time required to carry out activities.

1.4 Research Aims and Objectives

The aim of this research work was to develop an effective maintenance management approach
for offshore floating systems, governed by overall risks and site constraints and thereby en-
hancing the effectiveness and confidence of the framework.

This research is organised in the following 3 main objectives:

Research Objective 1: Investigate the maintenance frameworks and offshore operational
conditions, addressing the significance of overall risks and site constraints in better decision
making for maintenance planning, so as to develop an algorithm for multi-objective decision
making for maintenance planning.

Research Objective 2: Investigate how the logic behind qualitative risk assessment on pri-
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oritisation of activities on the asset and managing the risks could be incorporated into
multi-objective decision making for maintenance planning.

Research Objective 3: Investigate how to employ artificial intelligence to enhance the effec-
tiveness of maintenance frameworks for offshore floating systems, by incorporating overall

risks, operational priorities, and site constraints.

1.5 Research Questions

The main research questions that were addressed in this work were as follows:

e Investigate how the site constraints, overall risks associated to an offshore asset and their
consequences could be incorporated into the maintenance and repair planning of the offshore
floating systems.

e Investigate how to describe the condition of offshore floating systems and evaluate their
repair and maintenance requirements and how to estimate and optimise the repair and main-
tenance costs, using engineering techniques.

e Investigate how to predict the condition of offshore floating systems and estimate repair
and maintenance costs at a future point of time and how to evaluate the optimum repair
and maintenance strategy, using artificial intelligence techniques.

The above-mentioned questions were addressed by way of the research methodology detailed

in the following section.
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1.6 Research Objective and Methodology

1.6.1 Research Objective 1

The relation between maintenance frameworks, offshore operational conditions, overall risks
and operational constraints were addressed, employing information from other published
literature of corrosion rates of ships. Also, simulation of scenarios were made based on pub-
lished data and real life experience. The commercially available loading calculator has been
employed to parametrically define the geometric model. The results were studied in depth in
order to develop the algorithm for multi-objective optimisation of maintenance planning. In
this part of the research a novel feature-engineering algorithm has been designed that incor-
porate the impact of time required to complete the activities on the optimisation objectives
of Floating Production Storage and Offloading Facility (FPSO) design features, operating
conditions, deteriorations, consequences of not doing the maintenance and the personnel re-
source availability for activity completion. Also, the benchmarking of the algorithm has been
carried out by comparing the parameters, with and without considering the time required
to complete the task, which reflects influence of the time required to carry out the activity,
on the prioritisation of activities.

The evaluation of the model has been carried out by comparing the priorities for each sce-
nario based on 3 different loading conditions of the FPSO — light load condition, medium
load condition and full load condition. The performance of the greedy algorithm has been
evaluated in terms of the personnel resource allocation and resource utilisation. To evaluate
the satisfaction of resource allocation, the weighted sum of the task completion times based
on the priorities have been considered. To evaluate the satisfaction of resource utilisation, it
has been considered that the higher weighted sum of the completion times at as short time as
possible, leads to higher resource utilisations. This algorithm will leverage behaviours from

operating scenarios, which later has been used as an input to artificial intelligence algorithm.



INTRODUCTION 7

1.6.1.1 Research Contribution

The deliverables of this objective were:

Through an extensive and comprehensive literature survey it has been identified that the
current state-of-the-art literature does not incorporate site operational constraints of the
asset related to offshore personnel resource availability for the maintenance activity, due to
maximum allowable bed space, impact of time required to carry out activities and its impact
on other activities due to this maintenance.

Also, it has been identified that there is no evidence to support that dynamic and autonomous
resource allocations for maintenance activities take place in the offshore maintenance plan-
ning systems that allows each maintenance item to independently adjust its resource alloca-
tion based on the time required to complete the activity, to improve the resource utilisation.
It has also been noted that the expectation is that maintenance planning enables resource
allocations, such that the resources are accessible on demand, confirm quality service on
demand, provide maintenance activities on demand and provide maintenance with lower
costs; however, it would be challenging to have different systems served independently with
a proper resource allocation made according to their own requirements.

This review work leads to the journal manuscript titled ‘Recent Advances and Future Trends
on Maintenance Strategies and Optimisation Solution techniques for Offshore sector’, which
has been published in Elsevier Journal - Ocean Engineering 250, 110986 (2022) [see the list
of publications -1].

A maintenance plan optimisation problem was formulated that maximise the maintenance
personnel resource utilisation and enable FPSO condition enhancement, considering the
priorities with respect to design features, operating conditions, deteriorations, and the con-
sequences of not doing the maintenance, taking into consideration the personnel resource

time required for activity completion.
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This has been achieved by developing a FPSO main deck maintenance system model in-
corporating design features, operating conditions, deteriorations, consequences of not doing
the maintenance and the personnel resource estimated to complete the activity. To enable
the problem formulation, a novel approach has been utilised such that the decision variables
for each location on the FPSO have been normalised between the maximum and minimum
values along the length of FPSO in order to bring the variables related to the functionality in
proportion with that at other locations along the FPSO, and also to enable scaling all of the
decision variables and whereby their respective objective functions to the same magnitude.
Also, a novel approach has been employed for the multi-objective optimisation of FPSO
main deck maintenance activities, such that to find the Pareto-optimal solution, an over-
all objective function has been developed as a linear combination of the multiple objective
functions corresponding to maintenance priorities with respect to normalised Stress Unity
Check, Fatigue Damage Ratio, Bending Moment Ratio, Shear Force Ratio, Degree of Cor-
rosion Scale, Degree of Metal Loss, Safety Risks in the event of not doing maintenance and
Financial Risks in the event of not doing maintenance respectively, taking into consideration
the personnel resource time required for activity completion. Depending on the priority of
the objective function when compared to other objective functions, a relative weight has been
associated to the prioritised objective function, using the weighted sum approach. Also, the
formulation enables maximisation and minimisation of the objective functions and provides
flexibility to direct the focus of the overall objective function towards any one or more of
the objective functions by adjusting their respective weight according to the maintenance

strategy followed.

1.6.2 Research Objective 2

The benchmarking and analysis of the algorithm from Objective 1 for problem formulation

of FPSO main deck maintenance, was carried out, by comparing the parameters, with and
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without considering the time required to complete the task, which reflects influence of the

time required to carry out the activity, on the prioritisation of activities.

1.6.2.1 Research Contribution

The deliverables of this objective were:

A novel multi-objective optimisation of maintenance activities has been formulated whereby
a greedy algorithm has been proposed, which incorporates the impact of time required to
complete the activities on the optimisation objectives of design features, operating condi-
tions, deteriorations, consequences of not doing the maintenance and the personnel resource
availability for activity completion. The greedy algorithm follows the problem-solving pat-
tern of making the locally optimal choice at each step with the hope of finding the globally
optimal solution. It works step by step looking at the immediate situation and chooses the
steps that provide immediate benefits. This in turn enables achieving the most feasible so-
lution immediately. Also, greedy algorithm is computationally cheaper, easier to implement
and good approximations are obtained, and hence chosen for this work.

The benchmarking of the algorithm has been carried out by comparing the parameters, with
and without considering the time required to complete the task, which reflects influence of
the time required to carry out the activity, on the prioritisation of activities.

The performance of the greedy algorithm has been evaluated in terms of the personnel re-
source allocation and resource utilisation. To evaluate the satisfaction of resource allocation,
the weighted sum of the task completion times based on the priorities have been considered.
To evaluate the satisfaction of resource utilisation, it has been considered that the higher
weighted sum of the completion times at as short time as possible, leads to higher resource
utilisations.

Also, for multi-objective optimisation, an overall objective optimisation problem has been

proposed by linear combinations of the multiple objective functions and depending on the
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priority of an objective function when compared to other objective functions, a weighting
factor could be associated to the prioritised objective function, using the weighted sum ap-
proach.

The novel approaches employed in this work for multi-objective optimisation of FPSO main-
tenance activities, leads to the journal manuscript titled ‘Novel Multi-objective Optimisation
for Maintenance Activities of Floating Production Storage and Offloading Facilities’, of which
submitted to Elsevier Journal - Applied Ocean Research, in October 2021- Manuscript no.
APOR-D-21-00884 [see the list of publications -2].

1.6.3 Research Objective 3

In order to bypass the challenges identified in Objective 2, an artificial intelligence algorithm
has been developed that comprises of Deep Q-Reinforcement Learning (DQN) problem for-
mulation as a solution to multi-objective optimisation problem. The goal was to achieve
the best trade-off between the turnaround time for the activities and liquidating the risks

to the asset’s performance, based on completion of activities in the work management system.

1.6.3.1 Research Contribution

The deliverables of this objective were:

A sophisticated artificial intelligent tool able to bypass the challenges and limitations identi-
fied in sections 2 and 3, has been developed such that a novel work management framework
has been proposed that enables carrying out activities that have minimal site constraints,
considering the design features, operating conditions, deteriorations, consequences of not
doing the activities and time required to complete the activities, to get higher weighted sum
of the completion times at short time as possible, whereby achieving higher resource utilisa-

tions.
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A greedy algorithm benchmarks the performances of DQN model and a hybrid model com-
prising of greedy and DQN parameters, with respect to average number of timesteps per
episode — the smaller number of timesteps per episode means agent take minimum step-
s/shortest path to reach the target; average rewards per timestep — the larger the reward
means the agent is doing the right thing; the solution provides execution of maintenance ac-
tivities having minimal site constraints leading to better resource utilisation and completion
of activities; average number of penalties per episode — the smaller the number, the bet-
ter performance of agent. It has been noted that overall, the hybrid and the DQN models
achieve better results when compared with the Greedy model, towards task completion time
and liquidating the risks to the asset’s performance.

The novel approach employed in this work for multi-objective optimisation with Deep Q-
Reinforcement Learning for FPSO maintenance activities, leads to the journal manuscript
titled ‘Novel Multi-objective Optimisation with Deep Q-Reinforcement Learning (DQN) for
Maintenance Activities of Floating Production Storage and Offloading Facilities’, of which
submitted to Taylor & Francis Journal — Ships and Offshore Structures, in February 2022 —

Manuscript no. 220812080 [see the list of publications -3].

A future research direction has been proposed incorporating DQN algorithm and have
positioned the succeeding research that could in turn lead to the development of a com-
prehensive maintenance management tool that would be consistent, unaffected by human
factors and incorporates the integration of the risks and site constraints on the overall Off-
shore operations. Also, the tool could be adapted to predict the asset condition in future
and could be used to estimate repair costs, schedule repairs, evaluate consequences of repair

strategy.
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1.7 Structure of the Thesis

The thesis is divided into six main chapters, which includes this chapter as introduction,
and states the background and motivation behind this research work. The remainder of the
chapters are organised as follows.

An investigation of the current state of the art literature on maintenance strategies, and
optimisation solution techniques for offshore sector have been carried out in Chapter 2, to
identify scope for further research work to enhance the effectiveness and confidence of the
maintenance frameworks.

In Chapter 3, a novel multi-objective optimisation problem for maintenance activities has
been formulated, that maximise the maintenance personnel resource utilisation and enable
FPSO condition enhancement, considering the priorities with respect to design features,
operating conditions, deteriorations, and the consequences of not doing the maintenance,
taking into consideration the personnel resource time required for activity completion.

In Chapter 4, benchmarking and evaluation of the machine learning algorithm has been car-
ried out, in terms of the personnel resource allocation and resource utilisation by comparing
parameters, with and without considering the time required to complete the task. Also, for
multi-objective optimisation, the overall objective optimisation problem has been proposed
by linear combinations of the multiple objective functions, using the weighted sum approach.
Chapter 5 proposes a novel work management framework that comprises of DQN problem
formulation as a solution to multi-objective optimisation problem, to enable carrying out
activities that have minimal site constraints, considering the design features, operating con-
ditions, deteriorations, consequences of not doing the activities and time required to complete
the activities, to get higher weighted sum of the completion times at short time as possible,
whereby achieving higher resource utilisations. A greedy algorithm benchmarks the perfor-
mances of DQN model and a hybrid model comprising of greedy and DQN parameters.

Chapter 6 proposes a future research direction incorporating DQN algorithm and have posi-
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tioned the succeeding research that could in turn lead to the development of a comprehensive
maintenance management tool, which would be consistent, unaffected by human factors and

incorporates the integration of the risks and site constraints on the overall offshore operations.



Chapter2

Literature Review

2.1 Introduction

This Chapter reviews existing literature on maintenance strategies, and optimisation solu-
tion techniques for offshore sector. Maintenance strategies are a prominent factor in offshore
maintenance management due to the high resource costs involved and due to the fact that
they are a mitigation against the rate of deteriorations through age. The maintenance
strategies of offshore systems are governed by the operational requirements and regulatory
compliance in terms of seaworthiness and safety of the asset. The key maintenance per-
formance indicators include maximising the asset availability and reliability, maintaining
safety and regulatory compliance, and minimising the costs. The maintenance activities
are planned and prioritised based on the associated consequences, within the constraints of
manpower and material availability. The prioritisation of offshore maintenance activities is
based on the activity’s impact on the control measures that liquidate the risks to the asset’s
performance. On one hand, offshore maintenance planning is facing expectations to opti-
mise the maintenance regimes to minimise the costs related to resources and labour, and
to improve the asset availability and reliability, while maintaining safety compliance. It is
expected that the offshore maintenance planning system enables carry out activities that

have minimal site constraints, to get higher resource utilisation and reduce operating costs.

14
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It would be challenging to have different offshore systems served independently with a proper
resource allocation and resource utilisation, taking into consideration the site constraints,
while maintaining interference between production critical and safety critical activities.
Major contribution made by this Chapter is that, by carrying out an extensive and compre-
hensive literature survey, the following gaps were found:

e The current state-of-the-art literature does not incorporate site constraints of the asset
related to offshore personnel resource availability for the maintenance activity, due to max-
imum allowable bed space, impact of time required to carry out activities and its impact on
other activities due to this maintenance. There exists scope for further research work that
would incorporate these site constraints, the completion time of activities and its overall
impact into the maintenance plan. The criticality of other systems in the Offshore asset
would also need to be incorporated employing the current condition data, to enhance the
confidence of the strategy.

e There is no evidence to support that dynamic and autonomous resource allocations for
maintenance activities take place in the offshore maintenance planning systems that allows
each maintenance item to independently adjust its resource allocation based on the time
required to complete the activity, to improve the resource utilisation. It would be expected
that maintenance planning enables resource allocations, such that the resources are accessible
on demand, confirm quality service on demand, provide maintenance activities on demand
and provide maintenance with lower costs. However, it would be challenging to have differ-
ent systems served independently with a proper resource allocation made according to their
own requirements. In that respect, the maintenance models have to incorporate the site
operational constraints related to personnel resources, impact of time required to carry out

activities and its impact on the overall activities in the maintenance planning system.
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Figure 2.1: Offshore Oil and Gas Systems [1]

2.2 Offshore sector and maintenance requirements

The offshore structures installed in the ocean for oil and gas exploration and extraction, and

for power generation from wind are the main assets that categorise as offshore sector.

The various offshore oil and gas systems indicated in Figure 2.1 could be categorised as
Fixed Platforms (1, 2), Tower Platforms (3), Tension Leg and Mini-tension leg platforms (4,
5), Spars (6), Semi-submersibles (7, 8), Floating Production, Storage and Offloading Facili-
ties (9), Sub-Sea tie-back to Platforms (10).

The various offshore wind floating structures indicated in Figure 2.2 could be categorised
as Spars (a), Semi-submersibles (b), Mooring stabilised Tension Leg Platforms (c).
The maintenance would be required on an offshore equipment or component when its prop-
erties deteriorate by age and reach the point of affecting the performance and safety. Main-
tenance would control or slow down the rate of deterioration and an optimum maintenance
plan would fulfil the requirements and repair strategy. The maintenance frequency would

be based on the age, the maintenance history, findings from inspections and the rate of



LITERATURE REVIEW 17

Figure 2.2: Offshore Wind floating structures [2]
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deteriorations. The various considerations include operational priorities and critical service
vulnerabilities, safety compliance and production performance, prioritisation of activities
and overall risks, uncertainties on damage and deterioration mechanisms and deviations
from design assumptions and conditions, criticality of maintenance and impact assessment
of consequences in the absence of maintenance and condition for maintenance, controls, and
mitigations.

The typical damage and deterioration mechanisms on offshore assets includes corrosion,
cracks, and deformations/imperfections, which forms the basis for what normally goes wrong
in an asset’s life. An evaluation of the deterioration mechanisms, deterioration rates, the
associated uncertainties and their acceptance criteria would be required to accurately quan-
tify the risk and failure events. The assumptions made during the component design and
risk evaluations could become invalid due to various operational and environmental factors
such as unexpected scenarios due to extreme weather conditions, loading/offloading pat-
terns, functionality of critical equipment, faults/errors in gauging and monitoring devices.
Also, the deviations during the fabrication and manufacturing phases such as geometric and
material imperfections, workmanship depending on quality control, regulatory and shipyard
practices, plays a vital role on the state of degradations. The skills of the maintenance per-
sonnel and performance of maintenance tools, which varies on individual cases would play
a critical role in the effectiveness of the maintenance program. A review of causes behind
incidents in offshore oil and gas facilities has found that >50% of the fire incidents analysed
were related to piping system and machinery equipment failure, as per S Z. Halim et al.

2018 [3].

The Figure 2.3 above shows the corrosion and cracks found on offshore platform struc-

tures.

The Figure 2.4 shows the corrosion rate for the inner bottom plates, based on statistics
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Figure 2.3: Corrosion on gratings and Cracks on plates of Offshore structures [4]
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Figure 2.4: Loss of plating thickness from corrosion, for inner bottom plates [5]
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Figure 2.5: Loss of plating thickness from corrosion, for side shell plates [5]
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The Figure 2.5 shows the corrosion rate for the side shell plates of bulk carriers, based

on statistics of measurement data.

Corrosion rates of offshore structures depends on the effectiveness of cathodic protections,

cargo composition, inert gas properties, temperature of cargo and maintenance activities on

the structures. The corrosion rate varies depending on the function and location of the

structural component, as indicated in Figures 4 and 5.

Coatings and cathodic protection systems forms the major controls and mitigations in off-

shore environment against corrosion, whereas the safety factors and allowances incorporated
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in the design forms the controls against fatigue cracks and deformations, as detailed by J K.
Paik et. al. 2004, 2003 [6, 7]. The condition of coating systems determines the level of fab-
ric maintenance to be carried out on the structural and piping system component, whereas
the consequent metal loss determines the amount of metal repair work to be executed. In
the case of machinery equipment, the running hours and the equipment performance results

determine the level of maintenance to be carried out.

2.3 Maintenance resources and site constraints

The maintenance resources referred in this paper are the technicians available to perform the
tasks. The maintenance activities have resource requirement in terms of time to complete the
task, and the maximum and minimum allowable resources for the activity. The performance
of resource allocation could be checked by resource utilisation and the quality-of-service sat-
isfaction of the maintenance activity with a time varying number of maintenance activities.
The allocated resource of a maintenance activity on the work management system would
be the fraction of the work management system resource that is currently allocated and
being used by the maintenance activity. When a maintenance activity is planned, an initial
amount of resource would be reserved to it among all the available offshore resources, based
on the minimum resource requirement of the maintenance activity that is known to the work
management system initially.

The resource utilisation and quality of service utility models could be used to check the
utility checks of maintenance items and maintenance activities. In this paper, the resource
utilisation has been used to check if the allocated maintenance window for the maintenance
activity is utilised. Also, resource utilisation would indicate the usage of the available main-
tenance window effectively for the maintenance activity, such that higher weighted sum of

the task completion times at as short time as possible, would lead to higher resource utili-
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sations.

The site constraints that are encountered for maintenance activities include access restric-
tions, conditions of work, personnel and equipment availability, weather conditions, techni-
cian capabilities and impact on other activities. Shadow areas and locations with accessibility
issue, restricted access spaces that require additional risk assessment prior accessing, overside
sections that need boat cover and additional risk assessment prior accessing, locations hav-
ing presence of continuous water and need special equipment for carrying out maintenance,
locations with accessibility issues during normal operations and need to be dealt during a
pre-specified period such as plant shut down as an opportunistic work, are typical site con-

straints on an offshore asset.

2.4 Maintenance planning program

The Figure 2.6 indicates an overview of maintenance planning program. The maintenance
strategies are tasks that could be considered to restore the desired functionality. The main-
tenance processes and the analyses techniques develop a series of maintenance strategies
to achieve the desired goals, with a feedback loop to maintenance strategies for continuous

improvement of the maintenance program.

2.4.1 Analyses — Modelling techniques

This section investigates the recent developments in modelling/ optimisation techniques for
maintenance planning that could be employed at operational stages. The rationalisation of
the offshore maintenance planning could be assisted by numerous procedures applied in a
wide variety of areas. However, a rational or optimum maintenance planning could not be

carried out by introducing only one procedure; to achieve the object, every important aspect
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Figure 2.6: Maintenance planning program overview
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must be taken into consideration. In an offshore maintenance planning optimisation prob-
lem, the decision variables cannot be chosen arbitrarily; rather, they must satisfy certain
specified functional and other requirements. The offshore maintenance plan development
is a typical optimisation problem involving multiple and frequently contradictory objective
functions and constraints.

As the objective functions and constraints in the offshore maintenance plan optimisation
problem would be considered as linear functions of the design variables, the problem could
be classified as a linear programming problem, which could be stated in the following form,

as stated by S I. Gass. 1984 [8].

n

Find X = x1, 29, T3, .....T,, which minimises f(X) = Z CiT; (2.1)

i=1

subject to the constraints
Sorqagr; = by, g =1,2, ....,m
z;, >=0,1 =1, 2, ..n

where ¢;, a;;, b; are constants

The existing literature related to analyses techniques to develop the maintenance strate-
gies to achieve the maintenance goals have been reviewed and an insight to the modelling and
optimisation techniques, objective functions, decision variables and constraints considered

in the current research have been summarised in Table 2.1.
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Table 2.1: Analyses techniques for maintenance planning

Ref. / Equipment Analyses
Year
Modelling/ Objective Decision Constraints
Optimisatio functions variables
n technique
H. Hesabi | Modular Aero- | Deep Minimise the | Maintenance Limited time
etal 2022 | Propulsion Learning / total cost cost available to
System Mathematical | under perform
Simulation of a | Programming | intermission maintenance
Commercial break time
Turbofan limitation
Engine
W. Zhu et | Offshore wind | Bayesian Enzure Failure modes, | Uncertainties
al. 2019 turbine Network/ performance | Logistic related to
Monte-Carlo | of the wind delays, logistic delays
simulations turbine, Weather and weather
maximise conditions conditions
short- and
long-term
profits, and
optimise
maintenance
grouping,
minimise
logistic cost
and
downtime
loss.
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D.Fanet | Offshore wind | Mixed MMinimize Travel costof | Discrete
al. 2019 farms particle maintenance | vessel, weather
STVArim cost technician windows,
optimization cost, loss of maintenance
(MPS0) / profit without | technicians
Dizcrete accomplizhing | and vessels
Wolf pack the availability
search maintenance in
(DWPS) the defined
period and
weather
windows
Z.Lmmet | Offshore wind | Linear and
al. 2020 turbine Non-linear
models
A Mentes | Offshore wind | EResilience Ability to Human and Maintenance
and O. turbine Engineering | learn, orgamizational | fatlures
Turan. anticipate. factors
2019 momitor and
respond to
EMETEENCY
M Yazdi | Offshore Pythagorean | Reduction of | Reliable expert | Rizk reduction
etal 2020 | facility fuzzy the critscal elicitation worth (REW)
platform DEMATEL / | root events procedure and Birnbaum
Mathematical | and importance
Programming | subsequently teasures
the system’s (BIM)
failure employed to
identify and
rank i order
the basic
events leading
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(s
the Top Event
(TE).

5. Zhong
etal 2019

Offzhore wind

farms

Fozzy muli-
objective
nonlinear
chance-
constrained
programming
model / 2-
phase
solution
framework
integrating
the
operational
law for fuzzy
arithmetic
and the non-
dominated
sorting
genetic
algorithm II
for multi-
objective

programming

Eeliability
maximisation
and cost

minimisation

Wind speed,
power demand

and generation,

and the
maifitenatice

cost

hlamntain
sufficient net

POWer reselrves




LITERATURE REVIEW 29
Y. Liand | Offshore oil Fegression Asgzet Features of Potential
Z Hu. and gas and Multi- retirement Environmental | ecosystem
2021 facilities criteria obligations of | , Health and impacts, and
Decizion liabilities and | Safety, gain or damage
Analysiz expenses to Techme/ to
be settled Feasibility, hydrodynamic
Socio- state
economic and
Financial
HI LNG FPSO Markow Femaining State of the Economic
Hwang et model & useful life, equipment, benefits,
al 2018 Bayesian Maintenance | Types of Degree of
network- cost failures that severity in case
based could occur of failure
approaches
MN. Offshore wind | Risk-based hlinimize Failure modes | System
Scheu et turbine model operational of the criticality
al 2019 expenditure, | components
Downtime
reduction
B. Zhang | Offshore wind | Non-linear MMaximize Starting and Felationship
and £ farm programming | the total wind | conducting constraints
Zhang. f farm power status of between
2021 Deterministic | production maintenance maintenance
optimization tasks as well as | status and
problem the on/off turbine
status of wind | operating
turbine on'off status,
operations. Environmental
Levels of constraints of
power tidal
productions conditions,
and the wind
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spining conditions,
reserve. Wind Farm
Operational
constramts of
power balance
constraints,
spinning
reserve
limstations.
ML Offshore Linear and Additional Depradation Detection
Zagorows | turbomachine | exponential | operational indicator window
ka et al non-linear profits and
2020 regression in | reduced
an expanding | energy
moving consumption
window
framework
P. Zhou Offshore wind | Artificial Effective Maintenance Failure
and P T. farm Neural maintenance | lead time conditions
Yin. 2019 Network cost
model /
Cpportunistic
condition-
bazed
maintenance
optimisation
J. Kang Offshore wind | Dynamic Achieve Maintenance Maintenance
and CG. | farm reliability more costs, schedules
Soares. threshold extended use | Mamtenance
2020 model ofa times
mcorporating | maintenance
Monte-Carlo | opportunity
simulation to
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conduoct
random
sampling
MLiet Offshore wind | Non- Minimize the | Maintenance Maintenance
al 2020 turbine homogenecus | total cost per unit of | schedule
Continnous- | maintenance | time,
Time Markov | cost Degradations
Process
I. Lazakis | Offshore wind | Mathematical | Fuel Climate, Operational
and 5. farms Eﬂls m:?; Consumption | Vessel constraints of
Khan. planning and | | Vessels Specifications | technician and
2021 T optrone | Routing, & Flest equipment
Maintenance | Confizuration, | carrying
Scheduling Wind Farm capacity of
Aftributes Crew Transfer
Turbines Veszel
Failure
Attributes,
Cost
M. Abbaz | Marine Fault tree
and M. Structures analysis,
Shafies. Bayesian
2020 Network:,
Statistical
and
Stochastic
models,
multi-criteria
decision
analysis,
Artificial

Intellizence
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and Machine
Leaming
MP. Marine and Fuzzy- Identify the Reliability, Costs and
Asuquo et | offshore TOPSIS best, most Equipment and | benefits for
al 2019 machinery appropriate, | Labour Cost their
and Effectiveness, | subsequent
acceptable Safety, implementatio
maintenance | Availability n
strategy to be | and Downtime
adopted
A Offshore wind | FAMEA,
Jamshidi | turbine FMECA,
etal 2019 RBI, FCM
(Fuzzy
Cognitive
Maps).
Bayesian
C. Stock- | Offshore wind | Meta- Best possible | Each possible | Weather
Williams | farm heurnistic Transfer Plan | solution or accessibility,
and 5 K. model / mdividual 1z Technician
Swamy. Genetic encoded mto a | availability,
2019 Algorithm- decizion Technician
Travelling vector, Costto | shift mes,
Merchant Completion, mumber of
Problem Total energy technicians
output of the allowed
wind farm over | stmultaneously
the day onto a turbine
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Y.Luet Offshore wind | Artificial Determining | Conditional Defined
al. 2018 turbine Neural optimal failure mspection
Network life | maintenance | probabilities intervals
percentage interval value
prediction to minimize
model the total
maintenance
cost
AH Offshore wind | Adaptive Minimize the | Number of Each vessel
Schrotenb | farms Large costs of the technicians of | could only
oer et al. Neighbourho | chosen routes | a particular perform a
2018 od Search type at the single trip per
heuristic depotina period.
model period, All nodes are
embedded in Selected route. | visited exactly
a Monte- once
Carlo throughout the
Simulation time horizon.

Limit the use
of technicians
of the selected
vessel routes to
the number of
technicians
being
allocated.
Technician
allocation
obeys the
availability of
technicians.
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Rd0O. Well Eecurrent Well Production Production
Werneck | production Neural production data, impacts
etal 2021 Networks and pressure | Injection data,
forecasting Well's pressure
C.Dialle | Multicompone | Selective Maximise Total duration | Within total
etal 2019 | nt systems Maintenance | reliability of | of maintenance | budget
Problem the system. activities. available.
Minimizse Length of One and only
maintenance | Intermission maintenance
cost breaks. pattern 1z
Maintenance selected per
performed by | subsystem.
TEPAITPErson. Achieved
Eepairperson | reliability i3
13 hired/ equal or
utilised. greater than
the required
Mminimum
reliability.
When a
repairperson is
hired, their
total
maintenance
work time does
not exceed the
break duration.
H. Seitiet | Process Units | D-Fuzzy Evaluate the | Best Expected cost
al 2019 Axiomatic alternatives Eeplacement | function
Design (D- for Time Availability,
FAD) replacement Safety
method, 1538 | intervals with
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combination | respect to
of fuzzy criteria with
axiomatic the associated
design and D | risks.
numbers Cost function
Q. Atmospheric Fuzzy Determinatio | Failures, Hot | Risk influence
Ahmadi et | storage tanks Decizion- n of leading | wotk factors
al. 2020 making trial | indicators
and validity,
evaluation importance,
laboratory and
(DEMATEL) | practicability
outputs in
Bayesian
network
Y Limet | Coal Kijima type | Minimise the | Maintenance Maintenance
al_ 2020 Transportation | Il model and | total cost per vt of | resources
discrete ime | maintenance | time.
finite horizon | cost and time | Maintenance
Markon Actions
decision
process Deep
Femforceme
nt Learning
Algorithm
MAJTuh | Offshore wind | Simulation MhMinimize MMaintenance Weather
Broeket | farm model total cost per unit of | restrictions due
al. 2019 maintenance | time. to wave height
cost Delay between | and wind
offshore speed.
activities. Component
Operational failure rates
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costs.
Production
rate.
Q. Ozguc. | FP30D Global and Minimise Fatigue Hot spot
2020 local finite cumulative parameters of | stresses and
element fatigue stress range notch stresses
models & damage and number of | per load
Hydrodynami cycles componett
¢ 3-D panel
model
G.Zovet | Marine Probabilistic | Minimise Life cycle Uncertainties
al 2021 Structures crack growth | maintenance | costs,
model cost Fatigue
parameters,
Inzpection
findings
D. Yang et | Aircrafts Heuristic Eeducing the | Femaining BEeliability of
al. 2018 sequential repair useful the phased
game frequency lifetimes mission
algorithm and cost (RUL) of all
the key
subsystems
M. Yazdi | Process Non-linear Minimize the | Health & Budget
etal 2019 | facilities model / Bi- safety Safety limitation,
objective mvestment importance, Safety factors
fuzzy and accident | Time
structure probability allocation,
optimization Cost,
model Environmental
enhancement
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Eeputation
importance
D Fanet | Subsea Eeliability Optimal Maintenance System
al 2021 Equipment model with group Cost, availability,
stochastic maintenance | PM duration, Failure rate
dependency / | plan PM interval
Collaborative Corrective
particle maintenance
SWarm duration
optimization
algorithm
GM. Contmuoous Mathematical | Maximise Uncertain
Galante et | and programming | the system’s environment
al 2020 dizcontinuous reliability
operating
systems
J Matias | Gas lift il Bemaining Maximize Equipment System
etal 2020 | well Useful Life | production health dynamics,
(RUL) and economic | mdicators, Safety
estimation objectives Plant data constraints,
model Operational
constraints
Y. Hanet | Safety Critical | Hybnd Provide Drynamic Human errors,
al. 2021 Equipment on | dynamic risk | dynamic real | variables Functional
Offshore modelling time risk failures
Installations methodology | profile
that combines | predictions
dynamic
Bayesian
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network
(DBN)
technique and
support
vector
regression
(SVR)
algorithm
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Table 2.1 references:

(9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
(28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45],
[46], [47], (48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63],
[64], [65], [66].

It could be noted from the Table 2.1 that probabilistic assessment models, Bayesian Net-
works and multi-objective optimisation techniques have been widely used in the literature

for optimisation of maintenance activities.

2.4.2 Maintenance processes

The maintenance processes develop a series of maintenance strategies to restore the de-
sired functionalities and goals. There are various ways to classify the current maintenance
processes. In this paper, maintenance processes have been classified as reliability-centred
maintenance, reliability-based maintenance, and performance-based maintenance. A brief
discussion of these processes has been provided below.

The reliability-centred maintenance is the process that ensures the systems continue to do
as required, in their present operating context. It could be noted that a systematic analysis
of the system would be carried out to understand its functions, failure modes of its equip-
ment and to choose an appropriate maintenance to prevent the failure mode from occurring
or to detect the failure mode before failure occurs. This involves identifying actions that
when implemented would reduce the probability of failure and those actions that would be
most cost effective. The reliability of the examined system defines the maintenance plan and
does not consider the impact of site constraints, deviations on operating conditions, resource
availabilities.

In the reliability-based maintenance, a system would be selected for evaluation and the criti-

cality of the equipment and components in the system would be determined. The developed
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maintenance model would act as the foundation for applying selective reliability techniques
to create an effective reliability strategy. It could be noted that the maintenance prioriti-
sation would be carried out based on this design features, deteriorations, criticality of the
equipment and the consequences of not doing the maintenance, however, does not consider
the deviations in operating conditions, site constraints and the resources.

The performance-based maintenance involves specifying the performance standards for equip-
ment, instead of the maintenance techniques. It could be noted that this involves defining
equipment requirements such as minimum and maximum ranges of operating conditions,
availability, and reliability requirements. If there are any changes to the conditions, that
would lead to an operational risk assessment and mitigations, however, this approach does
not consider the impact of site constraints and resource availabilities.

The existing literature related to maintenance processes for developing the strategies to
achieve the desired goals have been reviewed and an insight to the current research have

been summarised in Table 2.2.
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Table 2.2: Maintenance processes for developing strategies

Maintenance Processes

Ref. / Year Equipment
Reliability- Beliability- Performance-
centred hased bhased
maintenance maintenance maintenance
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H Hesabietal | [oPUlsion System p
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Engzine
Eﬁ‘;g’;‘g - Offshore wind turbine v
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L. Lin et al. 2020 Offzhore wind turbine v
oy gt al Offshore wind farms v
2019
A Dehghani and
g _‘ ”
F Aslani 2019 Offshore structures
H ] Hwang et al. I NG FPSO v

2018
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Table 2.2 references:
[9], [10], [11], [12], [15], [67], [17], [19], [20], [21], [22], 23], [24], [25], [26], [27], 28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [68], [42], [43], [44], [45], [46], [47],
[48], [49], [50], [51], [52], [69], (53], [54], [55], [56], [57], [58], [59], [60], [61], [70], [62], [63],
[64], [65], [66].

It could be noted from the Table 2.2 that reliability-based maintenance and performance-
based maintenance processes have been widely used in the literature for developing the

maintenance strategies to restore the desired functionality.

2.4.3 Maintenance strategies

The maintenance strategy contains guidelines, activities and decision support systems that
would be employed to maintain an equipment and prevent occurrence of a failure event.
There are various possible ways to classify the current practices in maintenance activities.
In this work, the maintenance strategies have been classified as corrective maintenance,
preventive maintenance, condition-based maintenance, run to failure maintenance, oppor-
tunistic maintenance, planned maintenance, predictive maintenance, selective maintenance,
and risk-based maintenance. A brief discussion of these strategies has been provided below.
The corrective maintenance is a remedial work carried out to identify and rectify a failure
event so that the failed system could be restored to an operational condition within the
allowable tolerances, as indicated in the work of M. Scheu et. al. 2012 [71]. This involves
all engineered or administrative procedures implemented to reduce the likelihood of a failure
event. This kind of maintenance would be a reactive activity and not a proactive method
of maintenance. This approach would be appropriate for less critical systems and increases
the uncertainty of the asset availability and reliability with additional cost involved.

The preventive maintenance is a task carried out regularly on an equipment to minimise

the likelihood of failure event and restores the inherent reliability or performance of the
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equipment, as indicated in the works of R. Martin et. al. 2016 [72]. It could be noted that
this activity would be performed at set intervals regardless of whether a failure is about
to happen and involves all maintenance activities that would be identified as necessary to
provide an acceptable probability of survival to the end of a specified interval for the system.
This approach considers the design features, operating conditions, deterioration rates and
the consequences of not doing the maintenance, however, does not consider the impact of
site constraints and resource availabilities.

The condition-based maintenance is a maintenance plan carried out on a regular or real time
basis that is based on the use of Condition Monitoring to determine when a remedial action
is required, as indicated in the works of J. Shin and H. Jun 2015 [73], M. Lewandowski and
S. Oelker 2014 [74], and J 1. Alizpurua et. al. 2017 [75]. This involves carrying out mainte-
nance action before the failure event occurs, by assessing the equipment condition including
operating environments and predicting the risks of failure in a real time, based on data col-
lected. A major limitation of the approach is in the accuracy of diagnostics and prognostics
that plays a crucial part in the effectiveness of condition-based maintenance optimisations.
Also, the reliability of the condition sensors has a great impact on the effectiveness of this
approach.

The run-to failure maintenance involves allowing an equipment to run until failure and there-
after a remedial activity is carried out, as indicated in the work of M S. Kan et. al. 2015
[76]. However, it could be noted that this approach would be acceptable only if the risk of
failure is acceptable and would be applied mainly for low priority equipment and could lead
to increased downtime if not implemented appropriately.

The opportunistic maintenance is a type of preventive maintenance that employ convenient
replacement of equipment or components by taking advantage of an unplanned or planned
shutdown of the system, with maintenance resources available on location, as indicated in
the work of A. Martinetti et. al. 2017 [77]. This approach could be employed for activi-

ties that cannot be carried out during normal operations due to redundancy issues, and the
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equipment for which there is no imminent integrity, safety or production risks identified,
however, this approach impacts the preventive replacement cost on economic benefit.

The planned maintenance is a scheduled maintenance activity that involves getting rid of
a component at or before a specified age limit regardless of its condition at the time, as
indicated in the works of K. Tracht et. al. 2013 [78]. It could be noted that this activity
would restore the capability of the equipment at or before a specified age limit and regardless
of its condition at the time, to an acceptable probability of survival to the end of another
specified interval. This approach considers the design features, assumptions on operating
conditions, deterioration rates and the consequences of not doing the maintenance, however,
does not consider the impact of site constraints, deviations on operating conditions and re-
source availabilities.

The predictive maintenance involves condition monitoring using measurement and signal
processing methods, that enables diagnose and predict system condition during operation.
A mathematical model for predictive offshore maintenance based on prognosis and health
management, has been developed by A. Raza and V. Ulansky 2017 [79] for a periodically
inspected system. A major limitation of this strategy is that it is dependent on the reliability
of the smart technologies and sensors.

The selective maintenance involves finding the subset of components and the level of main-
tenance activities needed on components to enhance the probability of successfully carrying
out the next mission after a finite break between two successive maintenance missions, as
performing all required maintenance activities could not be possible due to limitation on
maintenance resources during the breaks, as indicated in the works of H. Hesabi, et. al.
2022 [9].

The risk-based maintenance focuses on optimising the maintenance programs recognising
that the main goal of maintenance is to prevent failures that affect the safety and reliability
of the operating assets. This would be achieved by developing the program that focuses the

maintenance resources at areas and components of greater concern and providing a method-
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ology that determines the optimum combination of maintenance frequency and methods, as
indicated in the works of G. Ford et. al. 2015 [80]. Hence, there is a continuous improvement
aspect to the risk-based maintenance process that allows re-evaluation of risk and mainte-
nance activities. The development of offshore risk-based maintenance involves identifying
the potential failure events of each component or area; identify the initiating events that
lead to those failures; determining the progression of failure sequences and the consequences
of the failure events; prioritise and rank the risk associated with that event; selecting an
appropriate maintenance program that could mitigate the failure events and the events that
lead to those failures. Provided, the design features, operating conditions, deteriorations,
and site constraints are incorporated in the risk-based approach, that would lead to a com-
prehensive maintenance strategy for the asset.

The existing literature related to maintenance strategies to achieve the desired goals in a
maintenance program have been reviewed and an insight to the current research have been

summarised in Table 2.3.
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Table 2.3: Maintenance strategies to achieve the desired goals in a maintenance program
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Table 2.3 references:
(9], [10], [11], [12], [13], [14], [15], [67], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [81], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [68], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [69], [53], [54], [55], [56], [57], [58], [59],
[60], [61], [70], [62], [63], [64], [65], [66].

It could be noted from the Table 2.3 that preventive maintenance, risk-based maintenance
and condition-based maintenance strategies have been widely used in the literature to restore

the desired functionalities and goals.

2.4.4 Desired goals of maintenance program

This section categorises the desired goals of maintenance program into key influencing fac-
tors, key considerations and key performance indicators, so as to evaluate the effectiveness

of the program.

The Figure 2.7 indicates an overview of desired goals of maintenance program categorised
into key influencing factors, key considerations and key performance indicators.
The major offshore maintenance performance indicators include asset availability, reliability,
safety compliance, regulatory compliance, manpower costs, activity completion, cost related
to activity duration, increase in efficiency, consistency, offshore practices, onshore practices,
and site constraints related to environmental factors. The main factors that influence off-
shore maintenance performance are rate of deterioration mechanisms, measures to mitigate
deteriorations, rectification of anomalies and the failure consequences. The typical damage
and deterioration mechanisms on offshore assets includes corrosion, cracks and deforma-
tions, imperfections that forms the basis for what normally goes wrong in an asset’s life. An
evaluation of the deterioration mechanisms, deterioration rates, the associated uncertainties

and their acceptance criteria would be required to accurately quantify the risk and failure
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Key Influencing Factors Key Considerations Key Performance Indicators

eOwner's strategy eQOperational priorities e Availability
eRegulatory requirements eRate of deterioration eReliability

eDesign conditions mechanisms eSafety compliance
eDesign assumptions *Measures to mitigate eRegulatory compliance

deteriorations
eRectification of anomalies
eFailure consequences

eOperational conditions
eOperational requirements
eEnvironmental conditions

eManpower costs
e Activity completion
¢Cost related to activity

Safety considerations *Uncertainties duration
eMaintenance duration *Acceptance criteria eIncrease in efficiency
*Maintenance frequency *Design deviations *Consistency
ePersonnel resource *Fabrication and Offshore & onshore
availability manufacturing deviations practices
eMaterial resource *Operational deviations «Site constraints related to
availability o Skills of personnel environmental factors
eFailure probability ePerformance of eSite constraints of available
maintenance tools beds offshore
*Planned unit downtime eImpact of time required to

carry out activities

Figure 2.7: Categorisation of desired goals of maintenance program

events. The assumptions made during the component design and risk evaluations could
become invalid due to various operational and environmental factors such as unexpected
scenarios due to extreme weather conditions, loading-offloading patterns, functionality of
critical equipment, faults-errors in gauging and monitoring devices. Also, the deviations
during the fabrication and manufacturing phases such as geometric and material imperfec-
tions, workmanship depending on quality control, regulatory and shipyard practices, plays
a vital role on the state of degradations. The skills of the offshore maintenance personnel
and performance of maintenance tools, which varies on individual cases would play a critical
role in the effectiveness of the maintenance program. Also, the planned unit downtime is
another major consideration to be made towards planning the maintenance program.

The key factors that influence the offshore maintenance planning involves maintenance du-
ration, maintenance frequency, regulatory compliance, owners strategy, design conditions,
design assumptions, environment conditions, operational conditions, operational require-

ments, safety compliance, resource availability with respect to man power and materials,
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costs, failure probability, risks of not carrying out the maintenance, risks with doing the
maintenance, business risks, safety risks and environment risks.

The offshore maintenance activities would be prioritised to address top vulnerabilities that
impact safety and reliability of the asset and based on the activity’s impact on barriers that
will liquidate the risks to the asset’s performance. The critical component prioritisation
would be done by a risk assessment that needs to be carried out based on the probability of
occurrences of the failure events, the consequences of failure events and those events that lead
to those failures, anomalies, repairs, and planned maintenance activities. The probability
of failure would be determined by the relative frequency of failure; influence of degradation
mechanisms on the relative frequency; analysis of data and detailed analysis. The various
allowances and safety factors for various components determine the probability of the failure
mode occurrence.

The corrective activities would reduce the likelihood of the safety event occurrence, by ad-
dressing the failure modes related to that event. The maintenance activities on production
impacting equipment would liquidate the risks to the asset’s production performance and
hence would be prioritised accordingly. The corrective repair and preventive maintenance
activities on safety critical and production impacting equipment would take priority over
other general service activities while planning the maintenance activities in each schedule
window. The plan would be primarily constrained by the available bed space on board that
limits the number of activities executed in a scheduled period. The offshore operational con-
straints related to material availability, execution readiness on support activities, isolations,
risk assessments and permit requirements would determine the readiness of the activity at
a schedule window. Also, environmental constraints related to weather, wind and sea state
conditions that impacts execution of activities would define the execution priority.

The risk models categorise the offshore activities to - high, medium, low - based upon the
probability of failure event occurrence and the consequence on safety, economics, and the

environment. The activity with the highest consequence and probability rating would be
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used to determine the overall risk. The risk would be dependent on the business plans and
procedures of the asset’s operating companies. The risk evaluations would identify potential
events, their mitigated and unmitigated consequences with respect to safety and economic
inputs, their likelihood of occurrence and the associate risk with respect to safety, environ-
ment and economic impacts, barriers that are in place, their effectiveness and any other
factors that could change the magnitude of the risk.

The safety consequence assessment of not doing the activity employs the acceptance criteria
for relevant component, whereas the environmental consequence would be estimated using
the data on material volume and the environmental sensitivity of the area affected. The eco-
nomic consequence assessment relies on the remedial cost and financial impact of the failure
event on the business. This involves estimating the time required to design and implement
a repair, estimating the business impact during the outage period and defining the lost or
deferred revenue.

The economic consequence assessment relies on the remedial cost and financial impact of the
failure event on the business. This involves estimating the time required to design and im-
plement a repair, estimating the business impact during the outage period and defining the
lost or deferred revenue. The machinery and structural failure consequences could generally
be managed in a more controlled manner when compared with that of the pressure system
failures. Some maintenance activities could be carried out while the equipment is online,
whereas others require equipment or system shut down. This defines the window when the
maintenance could be scheduled in and nested with.

In the case of FPSO’s, the asset availability and reliability form the basis for production
performance and relates to the actual quantity of oil and gas produced, water and gas in-
jected, and gas flared, with respect to the respective target values. Any deviations from
the target values would impact the production performance and business objectives. The
maintenance activities on production impacting equipment would liquidate the risks to the

asset’s production performance and hence would be prioritised accordingly.
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The existing literature related to desired goals of maintenance programs have been reviewed

and an insight to the current research have been summarised in Table 2.4.
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Table 2.4: Desired goals of maintenance program
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Table 2.4 references:

9], [10], [11], [12], [13], [14], [15], [67), [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26)
[27], [28], [81], [29], [30], [31], [32], [33], [34], [35], [82], [36], [37], [38], [39], [40], [41], [68],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [69], [53], [54], [55], [56], [57], [58],
[59], [60], [61], [70], [62], [63], [64], [65], [66].

It could be noted from the Table 2.4 that site constraints of available beds offshore and
the impact of time required to carry out activities have not been considered as a key per-
formance indicator/ desired goal in any of the literature reviewed in this work, which is a
major limitation of the existing frameworks, as the availability of bed space offshore for any
activity is the prime performance indicator for any maintenance execution. Towards this,
there exists scope for further research work that would incorporate site constraints of avail-
able beds offshore and impact of time required to carry out activities including the Offshore
resource availability into the maintenance plan and its impact on asset condition due to the

maintenance execution, to achieve the optimal maintenance strategy.

2.5 Discussion

It has been noted that the maintenance performance indicators widely considered relates
to the asset availability, reliability, and safety compliance, whereas the site constraints of
personnel resource availability and impact of time required to carry out activities are not
regarded as a performance indicator in the existing literature, which is a major limitation
of the existing frameworks, as the availability of bed space offshore for any activity is the
prime performance indicator for any maintenance execution. It has been noted that proba-
bilistic assessment models, Bayesian Networks and Multi-objective optimisation techniques
have been widely used in the literature for optimisation of maintenance activities. There

exists scope for further research works that would incorporate practical site constraints on
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personnel resource availability and impact of time required to carry out activities into the
maintenance plan and its impact on asset condition due to the maintenance execution, in
order to achieve the optimal maintenance strategy.

Also, no dynamic and autonomous resource allocations for maintenance activities take place
in the offshore maintenance planning systems that allows each maintenance item to inde-
pendently adjust its resource allocation based on the time required to complete the activity,
to improve the resource utilisation. In that respect, the maintenance models have to incor-
porate the site operational constraints related to personnel resources, environmental factors,

and its impact on the overall activities in the maintenance planning system.

2.6 Conclusion

It could be concluded that there exists scope for further research works that addresses the
site constraints of personnel resource availability, impact of time required to carry out ac-
tivities and its impact on asset condition due to the maintenance execution, by examining
machine learning and deep reinforcement learning network based artificial intelligence ap-
proach, considering the design features, actual condition of the component, site constraints,
deterioration factors, consequences of not doing the activities, time required to complete the
activities and investigating the impact on key maintenance performance indicators regarding

resource allocations and resource utilisations.



Chapter3

Novel Multi-objective Optimisation for
Maintenance Activities of Floating Pro-
duction Storage and Offloading Facili-

ties

3.1 Introduction

Through an extensive literature survey carried out, it has been identified that the current
state-of-the-art literature does not incorporate site constraints of the asset related to offshore
resource availability for the maintenance activity, due to maximum allowable bed space, im-
pact of time required to carry out activities and its impact on other activities due to this
maintenance. This is a major limitation of the existing state-of-the art maintenance frame-
works. There exists scope for further research works that would incorporate site constraints
related to availability of personnel resources for the maintenance activity into the mainte-
nance plan, its impact on other activities due to the maintenance execution, and impact of
time required to carry out activities.

In this Chapter, it is proposed that the above-mentioned gaps could be addressed by exam-
ining machine learning, considering the design features, actual condition of the component,

site constraints, deterioration factors, consequences of not doing the activities, time required
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to complete the activities and investigating the impact on key maintenance performance
indicators regarding resource allocations and resource utilisations.

In summary, the following contributions are made in this Chapter:

e A novel approach has been utilised to formulate a maintenance plan optimisation prob-
lem that maximise the maintenance personnel resource utilisation and enable Floating Pro-
duction Storage and Offloading Facility (FPSO) condition enhancement, considering the
priorities with respect to design features, operating conditions, deteriorations, and the con-
sequences of not doing the maintenance, taking into consideration the personnel resource
time required for activity completion. The decision variables for each location on the FPSO
have been normalised between the maximum and minimum values along the length of FPSO
in order to bring the variables related to the functionality in proportion with that at other
locations along the FPSO, and also to enable scaling all of the decision variables and whereby
their respective objective functions to the same magnitude.

e A novel approach has been employed for the multi-objective optimisation of FPSO main
deck maintenance activities, such that to find the Pareto-optimal solution, an overall objec-
tive function has been developed as a linear combination of the multiple objective functions
corresponding to maintenance priorities with respect to normalised Stress Unity Check, Fa-
tigue Damage Ratio, Bending Moment Ratio, Shear Force Ratio, Degree of Corrosion Scale,
Degree of Metal Loss, Safety Risks in the event of not doing maintenance and Financial Risks
in the event of not doing maintenance respectively, taking into consideration the personnel
resource time required for activity completion. Depending on the priority of the objective
function when compared to other objective functions, a relative weight has been associated
to the prioritised objective function, using the weighted sum approach. Also, the formulation
enables maximisation and minimisation of the objective functions and provides flexibility to
direct the focus of the overall objective function towards any one or more of the objective

functions by adjusting their respective weight according to the maintenance strategy followed.
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3.2 Related work

The existing literature related to analyses techniques to develop the maintenance strategies
for offshore floating systems have been reviewed and the highlights in current literature have

been summarised in Table 3.1.
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Table 3.1: Analyses techniques to develop maintenance strategies for offshore floating systems

Eef. / Year Equipment Paper highlights
D_Fanetal Offshore wind | This wotk proposes a hybrid heuristic optimization
2019 farms of maintenance
routing and scheduling for offshore wind farms,
with the following highlights:

- Indicates that routing, and scheduling of
maintenance are very important for operation and
maintenance cost reduction.

- Mixed particle swarm optimization (MPS0) has
been applied to seek a desired mapping relation
between vessels and wind farms.

- A dizcrete Wolf pack zearch (DWPS) has been
mtroduced to optimize the maintenance route under
all constrants.

- Objective iz to minimise maintenance cost,
considering the parameters of travel cost of vessel,
technician cost, loss of profit without
accomplishing the maintenance in the defined
period and weather windows. The constraints being
dizcrete weather windows, maintenance technicians
and vessels availabality.

- This work demonstrates a new hybrid heuristic
optimization technique integrated with MPSO and
DWPS to zupport the multiple round trips to the
bazes during mamtenance.
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5. Zhong et al.
2019

Offzhore wind

farms

Thiz work proposes a preventive maintenance
scheduling problem of wind farms in the offshore
wind energy sector which operates under
uncertainty due to the state of the ocean and marlket
demand, with the following highlights:

- A fuzzy multi-objective nonlinear chance-
constrained programming

model has been developed with reliability and cost
criteria and constraints to obtain satisfying
schedules for wind turbine mamtenance.

- To solve the optinisation model, a 2-phaze
zolution framework integrating the operational law
for fuzzy arithmetic and the non-dominated sorting
genetic algorithm II for multi-objective
programming has been developed. Pareto-optimal
solutions of the schedules were presented to form
the trade-offs between the reliability maximization

and cost minimization objectives.

A Dehgham
and F. Aslani.
2019

Offzhore
strctures

Thiz work provides a comprehensive review on
common damages or deterioration of fixed steel
jackets used as substructures in offshore petroleum
and wind industry as well as strengthening,
modification and repair (SMR) techniques
developed for these platforms, which 15 an integral
part of life extension programme, after assessing
fitness for purpose (FFP) of the structure.

It has been demonstrated that the fatigue loading
exerted by wave and wind actions i3 one of the
main loading type experienced by these platforms.
Also, fatigue failure would be one of the major
concerns for offshore platforms due to the fact that
they are extensively subjected to repeated forces
form waves and wind during their service life. High
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corrozion rate in splash zone accelerates the

mitiation and growth of fatigue cracks that vsually
occur at the weld toes due to the presence of weld
toe undercuts and other defects caused by welding

Processes.

Y.Liand Z
Hu. 2021

Offshore oil and

gas facilities

This work carries out a review of the tool models
the pre-decommissioning stazes of offshore o1l and
gas facilities, with the following highlights:

- It has been found that regression analysiz and
MMulti-criteria Decision Analysiz (MCDA) method
are the efficient algorithms and methodology.
MCDA could get rid of the support for data to some
extent by using experts’ opinions, however, the use
of too many qualitative methods and expert-defined
criteriza makes this method not objective enough and
mefficient 1 actual use. For regression analysis, the
abundance and detail of the data significantly
affects the performance of regression equation The
mzufficient historical data could lead to overfitting
of the regression equation.

- It has been identified that the core problems of the
current decision-making model is the lack of basic
data and the mcomplete Multi-criteria Decizion
Analysis method. The formulation of criteria and
the sub-criteria requires incorporating uncertainty
and randomness into qualitative and quantitative
evaluations, to enhance its ability to adapt to
random problems.
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HJ. Hwang et
al. 2018

LNG FP50

Thiz work proposes a condition-based maintenance
{CBM) system for LNG FPSO, with the following
highlights:

- Data driven approaches have been employed for
CBM implementation in this work.

- The proposed system analyse the data obtained
from various sensors in order to identify
abnormalities of equipment, to diagnose fault
conditions, to predict the deteriorated states of
equipment, and to provide timely maimntenance
support.

- The configuration management and CBM
platform that acts as a traffic signal between CBEM
functions have been proposed in this work

B. Zhang and
Z. Zhang 2021

Offzhore wind

farm

Thiz work proposes a methodology that integrates
the maintenance scheduling and the power
production planning 10 an offshore wind farm mto
an asynchronous scheduling framework, with the
following highlights:

- The methodology addreszes the differences of
maintenance scheduling and the power production
planning in terms of decision timescales and

response speeds.

- Thiz work demonstrates the formulation of the two

optimisation problems into a two-stage adaptive
optimisation model considering interactions
between mamtenance activities and power
productions.

- The accessibility to offshore wind turbines
influenced by vessel availability and metocean
conditions were mcorporated into the model
formulation so that maintenance constraimnts of
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offshore wind farms were more comprehenszively

addressed.

P. Fhou and P
T. Yin 2019

Offshore wind

farm

Thiz work proposes an opportunistic condition-
bazed maintenance (OCBM) strategy for offshore
wind farm in terms of predictive analytics, with the
following highlights:

- This work considers the effect of changeable
maintenance lead time on the implementation of a
planned maintenance decision, by carrying out a
comprehensive analysis of the maintenance actions,
economics and the remaming vseful life reliability.
- Also, thiz work demonstrates an opportumstic
condition-based maintenance optimisation model
defined by the condition maintenance threshold and
opportunistic maintenance threshold.

J. Kang and C
G. Soares. 2020

Offshore wind

farm

Thiz work proposes an opportunistic strategy that
minimise the maintenance cost for offshore wind
farms, considering degradation process, the
maintenance effectiveness uncertamnty and the
watting time caused by the changeable marine
environment, with the following highlights:

- The rolling horizon approach has been employed
to renew the maintenance schedule based on the

operating data.

- The uncertamnty of maintenance effectiveness has
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been addressed by infroducing two-parameter age
reduction factors and the extra downtime results
from changeable marine weather.

I. Lazaki= and
5. Khan 2021

Offshore wind

farms

Thiz work proposes a computationally effective
heunstic optimisation and cluster strategy for
optimal daily or short-term route planning and
scheduling under the presence of operational
constraints, with the following highlights:

- An optimal operational planning methodology
baszed on two types of vessels - Service Operation
WVeszel and Crew Transfer Vessel, used separately
and combined.

- Verification of the proposed framework carried
out under different operational scenarios.

- The optimization framework considers climate
data, vessels specifications. failure information
wind farm attributes and cost-related specifics. The
zeries of overall operational tasks were divided mnto
sequential sessions, including maintenance crew
pick-up and drop-off tasks while the vessel routing

optimisation performed for all sessions separately.
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&l Abbas and
W Shafiee.
2020

Marme

Structures

Thiz work provides an overview of the state-of-the-
art and future trends in asset maintenance
management strategies applied to

corroded steel structures in extreme marine
environments. with the following highlights:

- The corrosion prediction models as well as
mndustry best practices on maintenance of marine
steel structures have been detailed. In this regard,
several deterministic and probabilistic models have
been detailed that predict the corrosion rate of
marine steel structores as a function of the exposure
period, environmental conditions and matersal
properties.

- It has been demonstrated that the existing models
mvolve considerable uncertainties in data collection
and analysis for accurate modelling of the
combined effects of environmental factors on
overall corrosion loss in marine structores. To
overcome this, some applications of advanced
technologies such as computerized maintenance
management

system (CMMS), Bayesian network (BN), artificial
mtelligence (Al), and multi-criteria decision
analysis (MCDA) to maintenance optimisation of
corroded steel marine structures have been detatled.
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C. Stock-
Williams and S
K. Swamy.

2019

Offshore wind

farm

This work identifies that there 13 potential to
automate the daily maintenance planning of
offshore wind farms as the managers and schedulers
need to manage large numbers of wind turbine
vistts every day, in order to carry out repair of
faults, inspections and to conduct scheduled service
operations. Daily schedules become a choice of
which all maintenance activities are to be
conducted, taking account of the constramts on
weather conditions, shifts, veszel and technician
capabilities and availability, and the impact of
activities on wind farm profitability.

- The objective was to achieve the best possible
Transzfer Plan, within the constramnts of weather
accessibility, technician availability, technician shift
times, number of technicians allowed
simultaneously onto a turbine.

- This work demonstrates that insufficient attention
has been paid to the use of metaheuristics coupled
to sophisticated offshore wind farm simulations that
allow much simpler incorporation of realistic
constraints and evaluation of outcomes. There 15
potential to use Artificial Intellizence to support
this process for developing Plans that account
automatically for the many interacting variables and

uncertainties.
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AH
Schrotenboer et
al 2018

Offshore wind

farms

Thiz work proposes a Technician Allocation and
Eouting Problem for offshore wind farms (TARP)
to jointly optimise the daily allocation of
techmicians to Operations and Maintenance (O&M)
bazes, and the daily vessel routes transporting those
technicians to offshore wind farms, in order to
perform maintenance activities in a given time
horizon, with the following highlights:

- A Two-5Stage Adaptive Large Neighbourhood
Search heuristic has been demonstrated to solve the
TAFRP and two variants. The first variant restricts
the allocation of technicians to O&M bases to be
constant throughout time, whereas the second
variant takes an allocation as given.

- The Two-5tage Adaptive Large Neighbourhood
Search has been embedded i a Monte—Carlo
simulation to study the impact of the technician
sharing in different practical scenarios of offshore
wind maintenance service logistics.

- This work demonstrates that the Two-Stage
Adaptive Large Neighbourthood Search provides
high guality and often optimal solutions.

OCMK
Hernandezr et
al 2021

Offshore wind

in=tallations

Thiz work presents a review of the environmental
maintenance (O&M), and decommizsioning of
offshore wind technologies, with the following
highlights:

- An activity—stressor—receptor—impact framework
haz been employed by which the possible impacts
of an environmental stresszor on a specific receptor
could be identified for each activity, including pile
driving, cabling and blade rotation.

- Also, the case study addresses impact on
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biological resources, protected areas and offshore
wind spots considering atmospheric analysis along
the coastline.

MAJuh
Broel: et al.
2019

Offshore wind

farm

Thiz work proposes a simulation model of a wind
farm maintenance system to assess the effectiveness
of jack-up sharing policies compared to leasing,
with the following highlights:

- The work demonstrates that by sharing the cost of
emploving a jack-up vessel, it could be possible for
zervice providers to lower cost compared to the
vessel leasing (VL) policy.

- With VL policy, the cost of maintenance would be
considered a variable cost that depends on the
chartering and leasze time.

- With the resource sharing policies - vessel sharing
{V'5) and vessel & harbour sharing (VHS) -, a part
of the costs of maintenance becomes a fixed cost,
whereby purchazing a jack-up vessel provides
economic benefits than vessel leasing. The larger
the collaboration, the lower the individual share of
the fixed capital

0. Ozzuc. 2020

FPS0

In this work, the fatizue analyses have been
performed on the FPSO side shell longitudinal
structural elements attached to the typical transverse
bulkhead and web frame at mid ship area, using
component stochastic and full spectral procedure.

- Also, the comparizon of fatigue damage estimates
using these two methods under the effect of vertical
and horizontal bending in combination have been
demonstrated.

- The analyses have been performed in accordance
with three loading conditions such as fully loaded,

mtermediate and ballast conditions.
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- The spectral fatigue analysis approach produces a
stress transfer function, which in turn contributes to
the generation of the power spectral density
function.

- The work demonstrates that combining the
spectral moments with Palmeren-Miner law
provides the cumulative fatigue damage of the
FPS0.

3. Zou et al.
2021

MMarine

Structures

Thiz work proposes a probabilistic maintenance
optimisation approach explothing value of
nformation (Vol) computation and Bayesian
decizion optimisation. Also, the work presents a
detailed comparative study on Value of Information
{(VoI), Life Cycle Cost (LCC) and reliability based
fatigue inspection and maintenance optimisation
approaches in structural engineering, with the
following highlights:

- The work demonstrates that the Vol based
approach takes all available maintenance strategies
into account (both with and without mvolving
mzpections) and could relizbly vield optimal
maintenance strategies, whether the Vol 15 larger
than or equal to zero. When the Vol 15 equal to
zero, LCC and reliability-based Condition Based
Mamtenance (CBM) optimization could lead to
suboptimal maintenance strategies.
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G. Rinaldi et al.
2021

Offshore wind

farms

Thiz work proposes a methodology to calculate the
capital and operational indicators of a floating wind
farm over its project lifetime, with the following
highlights:

- A zet of computational models have been used to
reduce the uncertainties in the estimation of the
technical and economical parameters, whereby
mtroduces stochastic operation and mamntenance
maodelling for uncertainty reduction.

- The effect of using detailed operation and
maintenance models and strategies allow a better
estimation of operational cost.

- The work demonstrates sizeable contribution of
operational expenses towards the cost of energy.

M Vieraetal
2022

Offzhore wind
zupport
strictures

Thiz work proposes a stochastic approach to
evaluate the benefits in operation and maintenance
costs that could anse from the use of structural
health monitoring systems on the support structures
of offshore wind, with the following highlights:

- The stochastic model was developed based on a
Monte Carlo simulation, providing both a tool to
produce a sensitivity analysis on the system
performance. as well as insights on the impact of
structural health monitoring systems on the total
energy output of a certain farm.

- The work demonstrates that structural health
monitoring systems could indeed be an asset for
offshore wind operation, however other parameters
influence their potential and attractiveness to farm
oWners.

- It 15 the relation between the interval between

imspections, the monitoring ratio or the rate of
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monitored turbines, and the detection rate of the
monitoring systems that matters to farm owners.
- The stochastic model was developed insuch a
way that 1t iz flexible enough to incorporate
industrial data, such as real hMean Time Between
Failures. Also, the model was developed with the
goal of not benefiting the implementation of
structural health monttoring systems over on-site

mspections.
A Garcia- Offzhore Thiz work performs a Life Cycle Assesament
Teruel et al. floating wind {(LCA) of floating
2022 farms offshore wind farms using an Operations &

MMamntenance (O&M) model to evaluate the
environment impact, with the following highlights:
- A detailed O&M model has been employed in this
work representing unplanned maintenance events
bazed on failure rates, using site specific metocean
conditions to calculate weather windows and
considering vessel characteristics to calculate fuel
consumption.

- The O&M model employs 2 time-domamn
stochastic approach, based on the Markov Chain
MMonte Carlo technique, to model all the relevant
aspects of an offshore wind farm operation,
mcluding environmental resource, reliabality and
power performance of the devices, mamntenance
vessels and related accesszibility due to weather, and
both corrective and preventive maintenance
regimes.

- From the simulations, a series of results describing
the farm energy production, availability,

maintainability and economic performance were
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obtained. This O&M model was used to estimate
the contributions of the O&M activities to the LCA
aszessment. These were considered through the fuel
consumption during offshore operations and
transits, as well as the number of spare parts vsed
for replacements of failed components.

- The work demonstrates that O&M activities have
a significant environmental impact 1n floating
offshore wind farms and need to be considered in
detail It has been found that the operational phase
was often not well considered or represented in

previous LCA studies.

AH
Schrotenboer et
al. 2020

Offshore wind

farms

Thiz work presents the Stochastic Maintenance
Fleet Transportation Problem for Offshore wind
farms (SMFTPO), in which a maintenance provider
determines an optimal medium-term planning for
maintaining multiple wind farms while controlling
for uncertainty in the mamtenance tasks and
weather conditions, with the following highlights:
- A two-stage stochastic mixed integer
programming model has been provided or the
SMFTPO settings, and solved using Sample
Average Approximation.

- The work demonstrates that the method of
bundling maintenance tasks results in
overestimating medium term maintenance costs.
Also, it was shown that incorporating additional
constraints to incentivize quickly scheduling
maintenance tasks is costly in a multiple wind farm
zetting. As the value of the stochastic sclution 13

larze, considering the uncertainty 13 a requirement,
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while on the other hand the expected value of
perfect information is relatively small.

W.Nietal
2021

Offloading
mooring system

of FPS0

Thiz work proposes a modified approximation
method for failure probabality estimation of high-
dimension structural systems with numerous
correlated failure modes, with the following
highlights:

- The method considers component comrelation,
reliability index, reliability index ratio and the
correlation between the current and weakest failure
modes that improves the accuracy and applicability
of the method to different-configuration systems.

- The work demonstrates that the proposed method
could restrain error divergence more effectively
than the existing approximation methods especially
when the number of failure modes and the
correlation between them mcrease.

- The proposed method has alzo been proved to be
applicable to fast reliability caleulation of practical
offshore engineering systems, such as side by side
offloading mooring system of Floating Production
Storage and Offloading facility (FPSO).

A Allal et al.
2021

Offzhore wind

farms

Thiz work proposes a simulation optimization
approach for the routing and the scheduling of
maintenance for offshore wind farms in order to
minimize cost while keeping a high availability of
wind turbines, with the following highlights:

- An Ant Colony System (ACS) algorithm has been
used to optimise maintenance tasks routing using
boats.

- A multi-agent-based modelling and simulation has
been introduced to deal with the complexity of the
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system. In order to make the proposed approach
more realistic, several parameters and constraints
have been considered such as weather

conditions, rezources cost, maintenance duration.

- The efficiency of the proposed maintenance policy
{with routing) has been demonstrated by adopting
an approach based on a simulation optimization of
Operation & Mamtenance tasks for Offshore Wind
Farm using ACS algorithm mnning under Netlogo
program.

- The strategy involves making a tour when an
event starts a maintenance. The ACS algorithm
explores all combinations of turbines and returms
the optimal tour for the maintenance teams.

- The tour policy allows to increase the use of

increase Equipment Health Factor (EHFE) of each
turbine. Despite the increase in the number of
preventive maintenances, the number of costly
corrective maintenance was reduced that would
explain the reduction of the overall costs. In tum,
the quantity of produced energy was increaszed alzo
due to the improvement of availability rate of wind
turbines.

- Also this work demonstrates the efficiency of the
simulation optimisation approach to resolve
dynamic, stochastic and complex problems, where
several optimisation processes were executed in

different moments duning the simulation.
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M Lietal Offshore wind | This work proposes a maintenance strategy for
2021 farms offshore wind farms integrating three types of

maintenance opportunities, with the following
highlights:

- In addition to the mamtenance opportunsties
created by degradation failures and mcidents, an
age-based opporfunistic mamntenance strategy has
been introduced to improve the trigger of
preventive dispatch.

- The simulation method has been used to represent
the mamtenance scenarios and to evaluate the
average annual maintenance costs.

- The proposed strategy considers the number of
aged components and is termed multiple age-based
opportunity (MABQ) strategy. The age-based
opportunity will be created when the number of
aged components reaches a predetermined value.

- The comparative analysis under the based scenario
for a 10-turbine farm demonstrates that the MABO
and single age-based opportunity (SABO) strategies
could both reduce about 11.9% cost than non-age-

bazed opportunity (NABO) strategy.

E.B.Hageman | FPSO hull In this work, several sources of uncertainty of the
et al 2022 hull structure of an FPS0 have been quantified,
with the following highlights:

- Two years of continuous monitoring data have
been used to quantify several sources of
uncertainties. These sources include uncertainty
related to the future extrapolation of loads and
statistical uncertainty of the long-term sea states
which would be quantified using a Bayesian
rezampling scheme. Also, the uncertainty
ntroduced through the use of analytical load




NOVEL MULTI-OBJECTIVE OPTIMISATION FOR MAINTENANCE ACTIVITIES
OF FLOATING PRODUCTION STORAGE AND OFFLOADING FACILITIES 105

distribution models have been addressed. Finally,
the uncertainty in the calculation method has been
quantified.

- These data were used in a case study for the
particular FP30 which has been monitored to
demonstrate their practical application employing a
reliability model.

- Multiple stochastic models for the long-term
description of loads were examined. Besides the
tradmtional Weibull model, the less frequently used
Pareto, Lognormal and Gumbel model were tested
and compared agamnst an uncertainty model based
on a spectral fatigue asseszment.

- The work demonstrates that the Pareto and
Weibull models were considered appropriate
models and were found to be comparable against
deszign stage analyses, whereby the inclusion of
measurement data in Risk Based Inspection analysis
for the presented FPS0 case results in prolongation
of the inspection intervals from mmitially planned 3
years to new interval of 7 to 11 years, depending on
the load model, with recommendation for repetition
of the analysis at regular intervals to further
improve the mspection scheduling and to maintain

the target structural reliability.
M. Yazdietal | Chemical Plant | This work proposes a decision-maling framework
2020 that captures dependency of the risk factors and the

source of information. This was achieved by
integrating DEMATEL (decizsion making trial and
evaluation laboratory) methodology with Best-
Waorst method (BWNM) and Bayesian network (BN).
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The work demonstrates that the proposed
methodology adequately deals with some shortages
of typical decision-making methods that includes:

- satizfy all the decision makers opitdons to accept
the final results as much as possible.

- compute the optimum relative weight of decision-
makers i a group decision making problem.

- provide a systematic way that Bayesian structural
network 1z constructed based on multiple decizion-
makers opinions.

- provide probabilistic inference and decizion-
makers support in the uncertain environment
according to the DEMATEL technique.

- compromizes a systematic approach to update the
result in a dynamic environment.

- modify and develop the decision-making model
with supplementary information and data.

M. Yazdi et al.
2019

Offshore
facility platform

Thiz work proposes an extension to DEMATEL
{decision making trial and evaluation laboratory)
named Pythagorean fuzzy DEMATEL ona
common probabilistic safety analysis for
Chuantitative risk assessment, with the following
highlights:

- Dbjective was to tackle existing shortages in
prioritising Corrective Actions with consideration
of canzal influence of criteria of cost, benefit,
efficiency or effectiveness in decision making
process.

- This work indicates that there would be difficulty
in dealing with dynamic interrelations between
factors such as considering the sequence of a group
of Corrective Actions on an identified critical basic

event. However, a multivariate analysis covering
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all sequences would have enough capability to cope
with this sifuation.

H. Heszabi et al.
2022

Modular Aero-
Propulsion
System
Simulation of a
Commercial
Turbofan
Engine

Thiz work proposes a predictive selective
maintenance framework using deep learning and
mathematical programming, with the following
highlights:

- Objective iz to minimise total cost under
mtermizsion break time limitation.

- Total cost 1s composed of maintenance and faitlure
costs, which depends on success probabilities of the
subzequent missions.

- To estimate the success probabilities, the
optimization model interacts with a long short-term
memory model, which 1s bazed on a data driven
approach that takes into account the real work
condition implemented in various systems.

- Thiz work demonstrates the ability of predictive
selective maintenance framework to predict the
health condition of various components with
accuracy and deals with the selective maintenance

of sertes systems.

C. Diallo et al.
2019

Multicomponent

zystems

This work proposes a bi-objective imperfect
zelective maintenance optimisation model for a
series-parallel multicomponent system, with the
following highlights:

- A mathematical model has been developed to
optimise the trade-offs between the total
maintenance cost and the system reliability based

on the decizion maker’s preferences.
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- The weighted sums approaches are used to obtain
the zet of Pareto optimal solutions showing trade-
off between reliability and total maintenance cost.

- Numerical experiments indicate that the proposed
model reaches valid maintenance decisions. Also, it
was shown that when high system reliability iz
required, the optimal decizion iz not significantly
affected by the decisionmaler’s preference for one
objective or the other.

Y. Lietal
2020

Coal
Transportation

Thiz work proposes a selective maintenance
optimisation for multi-state systems that could
execute multiple consecutive missions over a finite
horizon, with the following lighlights:

- The work demonstrates that selective maintenance
strategy could be dynamically optimized fo
maximise the expected number of future mission
successes whenever the states and effective ages of
the components become kmown at the end of the
last mission.

- The dynamic optimisation problem that accounts
for imperfect maintenance has been formulated as a
dizcrete time finite horizon Markov decizion
process with 2 mixed integer discrete contmnuous
state space. Based on the framework of actor critic
algorithms. a customized deep reinforcement
learning method has been put forth.

- Also, a postprocess has been developed for the
actor to search the optimal maintenance actions in a
large-scale discrete action space, whereas the
techniques of the experience replay, and the target
network has been utilized to facilitate the agent

training.
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D Yangetal | Aircrafts Thiz work proposes a sequential game algorthm
2018 with state backtracking for a fleet of atrerafts to

reduce the maintenance frequency and costs under
the constramt of reliability, with the following
highlights:

- A heuristic sequential zame approach for Fleet-
level Selective Maintenance (FSM) under a phased
mission scheme with short breaks has been
demonstrated i this work.

- The problem has been formulated with the
objective of reducing the repair frequency and cost,
within the constraints of the reliability of the phazed
mission. The variables being the remaining useful
lifetimes (EUL) of all the key subsystems.

G M. Galante | Continuous and | The work demonstrates mathematical programming

et al. 2020 dizcontinuous formulation of the selective maintenance problem
operating with the aim to maximise the system’s reliability
systems under an uncertain environment.

- This work proposes a Dempster-Shafer theory
(DST) based approach to deal with uncertainty of
components’ reliability data in the selective
maintenance problem, with the following
highlights:

- A constrained optimisation model has been
developed for the system’s reliability maximisation,
certain timeframe such as mission time or time
between turnarounds, ensuring a high reliability
level at the same time.

- Under the DST framework, experts’ opinions
were converted mto belief maszes and opportunely
aggregated by means of the Yager combination

rule.
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K. Chaabane et | Manufacturing | This work proposes a selective maintenance

al 2020 Fystems problem (SMP) model for jointly optimizing
maintenance and assignment decisions in a system
running multiple missions, with the following
highlights:

- An mtegrated non-linear programming
formulation has been developed, and a solution
techmique proposed based on the genetic algorithm.
- The SMP addresses five joint decizions: selection
of components to mamntain, selection of
maintenance levels performed on the selected
components, identification of breaks where
maintenance tasks are performed, repairpersons
zelection, and maimntenance tasks assignment to
zelected repairpersons.

- The objective was to minimise the total
maintenance and labour costs for a mamtenance

plan that guarantees a given reliability threshold.

- The work demonstrates that the mixed cohort
composition of the repair crews performed equally
or better than the uniform cohorts, especially when
differences, in terms of costs and required
maintenance times are sufficiently large between

maintenance workers.

A EKhatab et al. | Manufacturing | This work proposes a variant of the zelective

2019 systems maintenance problem (SMP) where a mixture of
new and reconditioned remanufactored parts were
vsed to carry out replacements, with the following
highlights:

- The concept of a statistical mixture was employed
to calculate the reliability function of components
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zelected from a mixed population of new and
reconditioned spare parts.

- A mixed integer nonlinear programming model of
the SMP was developed and optimally solved.

- Numerical experiments indicate how

reconditioned spare parts impacts the SM decisions.

TI Ikonenet | Engineering Thiz work proposes a selective maintenance

al. 2020 Systems problem (SMP) model to improve the efficiency of
selective maintenance optimisation for industrial
zcale problems, while still guaranteeing the
optimality of the solution, with the following
highlights:

- A statistical analysiz of lifetime data has been
mcorporated into selective maintenance
optimization, focusing on datazets with bathtub-
shaped failure rates.

- Alzo, two improvements were proposed to the
efficiency of mixed integer non-linear programming
(MINLP) bazed zelective mamntenance optimisation.
The first 13 the avoidance of component
replacements due to the infant mortality period of
the component, which reduces the reliability. The
second 15 the convexification of two MINLP
models, nvolving only replacement, or replacement
and repair, actions.

- The work demonstrates that the improvements
enable MINLP bazed methods to tackle large scale
zelective maintenance optimisation problems with

up to 1000 system components.
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L. L etal
2022

Transportation

zystem

Thiz work proposes a multi-mission selective
maintenance and repairpersons assignment model
where the durations of mizsions, maintenance
actions, and breaks are stochastic, with the
following highlights:

- The proposed selective maintenance program
{(SMP) could assist mamntenance decision-makers to
make four decizions - determiming maintenance
levels of components, determining number of hired
repairpersons, assigning maintenance actions, and
determining sequence of maintenance actions for
each repairperson.

- Due to the stochasticity of durations, the
completion probability of the selected maintenance
action was obtained by computing a
multidimenszional integration, and the Monte Carlo
simulation approach has been employed to evaluate
the completion probability of the zelected
maintenance actions.

- The proposed model has been transformed into an
optimisation problem constrained by the limited
maintenance resources and the objective to
minimize the expected grand total cost with a given
reliability threshold.

- A tailored genetic algorthm (GA-UD) has been
developed to solve the resulting optimization
problem, and the standard deviation of the grand
total cost of the best maintenance strategy 1n each
scenario was evaluated by the Monte Carlo
simulation approach.

- The work demonstrates that considering the
stochasticity of the durations could not only ensure

that the system meets the mission reliability
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requirement. but also reduce the grand total cost by

making some reasonable maintenance strategies.
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Table 3.2: Principal Dimensions of modelled FPSO

Length between

perpendiculars 300m
Moulded Breadth 50m
Moulded Depth 30m

Table 3.1 references:
[11], [15], [67], [16], [17], [19], [21], [22], [24], [25], [28], [30], [82], [36], [37], [38], [46], [47],
(53], [56], [58], [59], [63], [66], [45], [40], [9], [32], [35], [39], [42], [48], [51], [52], [60].

3.3 System formulated multi-objective problem formu-
lation for FPSO Main Deck maintenance

A FPSO main deck modelled in this work is estimated to be of a 10-year-old hull with the

principal dimensions as indicated in Table 3.2.

The commercially available loading calculator has been employed to parametrically de-
fine the geometric model.
The Profile view of the modelled FPSO has been shown in Figure 3.1, and the Elevation and

Plan views shown in Figure 3.2.

3.3.1 Maintenance window model

Let n denotes the maintenance plan, k,, a single maintenance activity, in the maintenance
window denoted by Cy, .. Let B be the resource availability in the window,hy, , and

hi,,, the quality of services, sigma® the extent of activity completion, then the minimum
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Figure 3.1: Profile of the modelled FPSO

maintenance window required for a maintenance activity could be expressed as follows, as

in the works of G. Sun, et. al. 2019 [83].

+ Pn ’ hkm,n ‘2
duenizn Dl P P+ o2

Cr,,m = Blogs(1 ) (3.1)

Where P, and P, denotes the space of all polynomials of degrees less than or equal to n
and [ respectively, and the log, transformation normalises the expression and enables pro-

portional changes rather than additive changes.

3.3.2 Offshore resource model

Offshore resources considered in this work are the professional technicians available to per-
form the tasks, which include personnel already doing the work, or could do the work that
needs to be done on the various systems, which require a portion of the resource allocations.

The maintenance activities have resource requirement in terms of time to complete the task,
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Figure 3.2: Elevation and Plan views of modelled FPSO
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and the maximum and minimum allowable resources for the activity. The minimum resource
requirement for the activity would be the initial resource allocation for the activity. Further
allocation of resources would be carried out by monitoring the status of the activity based
on the predicted progress as per pre-defined results. The resource estimations take place by
adapting the quality-of-service requirements of individual systems.

The performance of resource allocation could be checked by resource utilisation and the
quality-of-service satisfaction of the maintenance activity with a time varying number of
maintenance activities. The expectation would be that the performance of one maintenance
system does not affect the other, and thus the performance isolation for quality of service
would be important. The overall resource availability in the work management system of the
offshore asset would be split up for the individual maintenance activities, and there would
be a need to map and schedule the resources efficiently. The unused personnel resource on
the work management system would be a fraction of the offshore resource that does not get
allocated to maintenance activities.

The reserved resource would be a fraction of the unused resource of the work management
system, reserved to the maintenance activity based on its ratio of resource requirement rela-
tive to other maintenance activities. The sum of the resource reservations of the maintenance
activities determines the unused resource of the work management system. The allocated
resource of a maintenance activity on the work management system would be the fraction
of the work management system resource that is currently allocated and being used by the
maintenance activity. When a maintenance activity is planned, an initial amount of resource
would be reserved to it among all the available offshore resources, based on the minimum
resource requirement of the maintenance activity that is known to the work management
system initially. The overall resource of a maintenance activity among the resources in the
work management system would be the sum of the allocated resource and reserved resource
for the maintenance activity after the maintenance activity resource allocation and reserva-

tion update.
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The resource utilisation and quality of service utility models could be used to check the
utility checks of maintenance items and maintenance activities. In this work, the resource
utilisation has been used to check if the allocated maintenance window for the maintenance
activity is utilised. Also, resource utilisation would indicate the usage of the available main-
tenance window effectively for the maintenance activity, such that higher weighted sum of
the task completion times at as short time as possible, would lead to higher resource utili-

sations and enables enhancement of FPSO conditions.

3.3.3 Degradation model

During the life of FPSO, the component considered for maintenance degrades as the time
goes by until their failure. Modelling the time to failure ¢, of the component ¢, at random
by employing the Weibull distribution with scale parameter o, and shape parameter €, the
component probability density function f;(¢), reliability function R;(t), and mean time to

failure MTTF;, could be expressed as follows as in the works of M. Li, et. al. 2021 [16].

filt) = ;<Ui> e—<§z>fz (3.2)
ot
Ri(t) = ()" (3.3)
MTTEF, = /Oo tfi(t) = o T (é + 1) (3.4)
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where, T’ (E% + 1) denotes the Gamma function.

3.3.4 Constraints

Similar to most literature, this work considers site constraints of access restrictions, condi-
tion of work, personnel availability, equipment availability, weather conditions, repair shifts,
technician capabilities and impact on other activities. However, differing from the existing
literature, this work considers the new important factor, the impact of time required to carry
out offshore maintenance activities, to achieve the optimal personnel resource utilisations.
Shadow areas and locations with accessibility issue, restricted access spaces that require ad-
ditional risk assessment prior accessing, overside sections of the deck that need boat cover
and additional risk assessment prior accessing, locations having presence of continuous water
and need special equipment for carrying out maintenance, locations with accessibility issues
during normal operations and need to be dealt during a pre-specified period such as plant

shut down as an opportunistic work, are typical site constraints on a FPSO.

3.3.5 Decision variables

The decision variables considered in this work are the design features, operating conditions,

deteriorations experienced and the consequences of not doing the maintenance activities.

3.3.5.1 Design features

The strength design of the FPSO hull ensures that the structure could withstand the von
mises stresses experienced on the hull. The calculated von mises stresses determines whether

the location would lead to a hot spot for deterioration and failures. The von mises could be
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evaluated by considering the stress unity check value, such that,

von mises stress

Stress Unity Check UC =

yield strength (35)

Stress Unity Check {1}, UC is the inverse of factor of safety. UC value high, means

high stress locations and need to be prioritised for maintenance.
A fatigue design ensures that the FPSO hull structure has an adequate fatigue life. The

calculated fatigue lives form the basis for the operational life of the FPSO hull. Fatigue

could be evaluated by considering the fatigue damage ratio, such that,

fatigue damage at considered no. of cycles

Fatigue Damage ratio D = (3.6)

fatigue life at constant amplitude loading

Fatigue Damage ratio, {x2},D value high, means location has low fatigue life and need

to be prioritised for maintenance.

3.3.5.2 Operating conditions

The bending moment experienced on the FPSO hull during operating conditions defines
how much indicates the reaction in a cross-section of the hull due to the external forces and

moments induced by the loads that the structure gets subjected to. The bending moment
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experienced could be evaluated by considering the bending moment ratio, such that,

The bending moment experienced on the FPSO hull during operating condition indicates
the reaction in a cross-section of the hull due to the external forces and moments induced
by the loads that the structure gets subjected to. The bending moment experienced could

be evaluated by considering the bending moment ratio, such that,

bending moment experienced in situ
Bending Moment ratio M = J P

(3.7)

bending moment allowable

Bending Moment ratio, {3}, M value high, means high bending moment experienced at

the location and need to be prioritised for maintenance.

The shear force experienced on the FPSO hull during operating condition indicates the
resultant shearing forces on the hull due to the external forces induced by the loads that the
structure gets subjected to. The shear force experienced could be evaluated by considering

the shear force ratio, such that,

shear force experienced in situ

hear F tio 5 =
Shear Force ratio S shear force allowable

Shear Force ration,{x,}, S value high, means high shear force experienced at the location
and need to be prioritised for maintenance.

As the stresses in hull section induced by the bending moment and shear force are carried by
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hull girder structural members, namely strength deck plating and deck longitudinal, side shell
plating and longitudinal, bottom shell plating and longitudinal, inner bottom plating and
longitudinal, double bottom girders and bilge plating, any deterioration of these structural
members during the life of the FPSO impacts the design envelopes of M and S, whereby

reducing the still water bending moment and shear force allowable limits.

3.3.5.3 Deteriorations

The dominant deterioration mechanism expected on FPSO structures has been considered
as the corrosion. The structures exposed to weather or sea water would be protected by
paint coating and the expected lifetime of the coating would generally exceed that of the
FPSO. The intact coating condition would be achieved when the coating has been applied
to a clean surface with good surface preparation. The areas with degraded coating could
become anodic compared with areas with intact coating and would lead to corrosion.

The coating breakdown and scattered corrosion in excess of approx. 8% of the area consid-
ered would generally be recommended for remedial action, while other minor blisters and
coating breakdowns are classed as insignificant findings. The corrosion scale could be eval-

uated by considering the degree of corrosion scale, such that,

observed % corrosion scale

Degree of corrosion scale R; = — —
coating intact condition

Degree of corrosion scale, {x5}, R; value high, means high corrosion scale at the location

and need to be prioritised for maintenance.

The individual component thickness has to be maintained within the diminution al-
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lowances considered in the strength assessment. The corrosion would lead to metal loss of
the original thickness and the resultant metal loss could be evaluated by the diminution

ratio, such that,

loss in plate thick
Diminution ration C = Degree of metal loss = - 055 T prate tae .ness (3.10)
intact gross plate thickness

Diminution ratio, {z¢},C value high, means high degree of metal loss at the location and

need to be prioritised for maintenance.

3.3.5.4 Consequences of not doing maintenance

T'The consequences of corrosion have significance on strength, operability, and operating life
of the FPSO hull structures. The main consequences of hull structural failures could be the
impacts on Safety and Financial aspects, resulting in the scenarios such as release of hydro-
carbon gas to the atmosphere and a potential explosion; release of hydrocarbon oil to the
environment; internal structural failure leading to contaminations between compartments;
global Hull girder and local structural failures; and loss of stability, resulting in capsizes.
The associated risks could be quantified as safety risks and financial risks of high, medium,

and low severities, such that,

Safety risks, {7},
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Criticality Sa = 3 High. Sa = 2 Medium. Sa =1 Low (3.11)

Safety risks, {z7}, Sa value high, means high safety risks involved in case of not doing

the maintenance, and hence need to be prioritised for maintenance.

Financial risks, {zg},

Criticality Fi = 3 High. F'i = 2 Medium. Fi =1 Low (3.12)

Financial risks, {zs}, Fi value high, means high financial risks involved in case of not

doing the maintenance, and hence need to be prioritised for maintenance.

3.3.5.5 Personnel resource for activity completion

The personnel resource Time, {xg}, required for each activity could be estimated based on
the extent of coating breakdown observed at the FPSO locations. The time 7' required to
complete the task, based on the coating breakdown, could be evaluated by considering the

ratio of coating breakdown area, such that,

observed % coating breakdown area

(3.13)

Ratio of coating breakdown area R = —
total coating intact area
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R value high, means coating breakdown over a large area at the location and need more
time to carry out maintenance.
IFR < 02, returnT = 2
IFR > 02but < 04, returnT = 3
IFR > 04but < 0.6, returnT = 4

IFR > 0.6, returnT = 5

3.3.6 Objective functions

The main objective of this work was to maximise the maintenance personnel resource util-
isation and enable FPSO condition enhancement, considering the priorities with respect to
design features, operating conditions, deteriorations, and the consequences of not doing the
maintenance, taking into consideration the personnel resource time required for activity com-
pletion.

Objective Function,

Fo= Gy < cli) (3.14)

where, P[i] is the Priority based on the objectives, and T[] is the time required to complete

a maintenance activity, and C[i] = > T j] the cumulative task completion time.

By aggregating the parameters, Priority P and Time 7', into the single score of %, when

the tasks are sorted from higher score to lower score, that would lead to optimal solution.
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Higher priorities {P} lead to a higher score for the Objective Function. More time {T'}

required to complete the task, would decrease the score of the Objective Function.

The objective function corresponding to maintenance priorities with respect to design

features of Stress Unity Check {z;} taking into consideration the personnel resource time

required for activity completion has been termed as F; = > (% x C[ 1]. The ob-

jective function corresponding to maintenance priorities with respect to design features of

Fatigue Damage Ratio {z,} taking into consideration the personnel resource time required

for activity completion has been termed as F» = ) (% x C[ 2]. The objective function

corresponding to maintenance priorities with respect to operating conditions of Bending Mo-
ment Ratio {x3} taking into consideration the personnel resource time required for activity
completion has been termed as F3 = ) (% « C[ 3]. The objective function corresponding
to maintenance priorities with respect to operating conditions of Shear Force Ratio {x,} tak-

ing into consideration the personnel resource time required for activity completion has been

termed as [y = ) (% « C[ 4]. The objective function corresponding to maintenance

priorities with respect to deteriorations of Degree of Corrosion Scale {z5} taking into con-
sideration the personnel resource time required for activity completion has been termed as

Fs = > (% « C[ 5]. The objective function corresponding to maintenance priorities with

respect to deteriorations of Degree of Metal Loss {xg} taking into consideration the person-

nel resource time required for activity completion has been termed as Fg = > (% x C[ 6].

The objective function corresponding to maintenance priorities with respect to Safety Risks

in the event of not doing maintenance {z;} taking into consideration the personnel resource

time required for activity completion has been termed as F; = ) (% x C[7]. The

objective function corresponding to maintenance priorities with respect to Financial Risks

in the event of not doing maintenance {zs} taking into consideration the personnel resource

time required for activity completion has been termed as Fy = ) (% x C[ 8.
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3.3.7 Implementation of multi-objective problem formulation and

optimisation model

To enable the problem formulation, a novel approach has been utilised such that the decision
variables for each location on the FPSO have been normalised between the maximum and
minimum values along the length of FPSO in order to bring the variables related to the
functionality in proportion with that at other locations along the FPSO, and also to enable
scaling all of the decision variables and whereby their respective objective functions to the

same magnitude, such that,

Maz. {z;} at location — Min. {z;} along length of FPSO
Mazx. {z;} along length of FPSO — Min. {x;} along length of FPSO
(3.15)

Normalised {x;} =

The FPSO main deck maintenance planning system problem has been implemented in-
corporating design features of stress unity check,r; and fatigue damage ratio, x5; operating
conditions of bending moment ratio, 3 and shear force ratio, x4; deteriorations of degree
of corrosion scale, x5 and degree of metal loss,xg; safety and financial consequences of not
doing maintenance, x7, rs and the personnel resource to complete the activity, x9 based on
the ratio of coating breakdown area. It was estimated that there would be no coating break-
down on the main deck for the first 10 years of the FPSO life and thereafter an 8% annual
coating breakdown deterioration is anticipated on the main deck structures for the next 3
years, if no maintenance is carried out.

The input data for the design values, x1, x5 were estimated from the real life experience of the

Author, operating condition values, x3, x4 obtained from running various load cases on the
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geometrical model of the FPSO in commercially available loading calculator, deterioration
values, x5, s developed employing the information from published literature of corrosion
rates of ships from Tanker Structure Co-Operative Forum and the consequence values of not
doing the tasks, x7, rs were estimated from the real life experience of the Author. The time
required to complete the task, xg was estimated based on the extent of coating breakdown
considered at the main deck locations, dependent on the age of the FPSO.

The proposed FPSO main deck maintenance planning system problem has been shown in

Figure 3.3.

To find the Pareto-optimal solution, an overall objective function has been developed as
a linear combination of the multiple objective functions, similar to the approach proposed
in the works of R E. Steuer 1986 [84].
The objective functions, Fi, Fy, F3, Fy, Fs, Fg, Fr, Fg corresponding to maintenance pri-
orities with respect to normalised Stress Unity Check z, Fatigue Damage Ratio x5 , Bending
Moment Ratio x3, Shear Force Ratio x4, Degree of Corrosion Scale x5 , Degree of Metal Loss
xg , Safety Risks in the event of not doing maintenance x; and Financial Risks in the event
of not doing maintenance xg respectively, taking into consideration the personnel resource
time required for activity completion, were combined into an overall objective optimisation
problem. Depending on the priority of the objective function when compared to other ob-
jective functions, a relative weight has been associated to the prioritised objective function,

using the weighted sum approach, such that

{vi} = Z(iai * 1) (3.16)

where, «; indicate the relative weight of the prioritised objective function when com-
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Design features
x, Unity Check UC = von mises
stress / yield strength
(UC is the inverse of Factor of
Safety)

Personnel resource for activity completion
Ratio of Coating breakdown area R = Observed
coating breakdown area / Total coating intact area.
Time, T required to complete task: IFR <= 0.2,
returnT=2;IFR>=0.2but<=0.4, return T=3; IFR
>0.4but<=06 returnT=4; IFR > 0.6, return T=5

X, Fatigue Damage ratioD =
Fatigue damage at considered no. of L
cycles / Corresponding fatigue life at
constant amplitude loading

Operating conditions
x; Bending moment ratio M =
Bending moment experienced in
situ / Bending Moment allowable

h 4

x, Shear Force ratio 5 = Shear
Force experienced in situ / Shear
Force allowable

Deteriorations
Degree of Corrosion Scale: FPSO Main Deck Maintenance Planning
x; Degree of Corrosion Scale R; = System
Observed corrosion scale / Coating
intact condition

Degree of metal loss: —>
Xg Diminution ratio C = Loss in
plate thickness / Intact gross plate
thickness

Consequences of not doing
maintenance

Safety:

x5 Risk Criticality, 5a. L&

5a=3 High. 58 =2 Medium. 5a=1

Low

Financial: "

x5 Risk Criticality, Fi. Rate of deteriorations

Fi = 3 High. Fi = 2 Medium. Fi=1 Estimated annual coating breakdown if no

Low maintenance is carried out, Deterioration rate 8%

Figure 3.3: FPSO Main Deck maintenance planning system problem
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pared with the priority of other objective functions. The positive weight, Sign +, means
the corresponding objective function would be maximised, and negative weight, Sign —,
means the corresponding objective function would be minimised. This formulation provides
flexibility to direct the focus of the overall objective function, y;, towards any one or more
of the objective functions by adjusting their respective weight according to the maintenance

strategy followed.

3.4 Conclusion

The main objective of this Chapter was to formulate a maintenance plan optimisation prob-
lem that maximise the maintenance personnel resource utilisation and enable FPSO con-
dition enhancement, considering the priorities with respect to design features, operating
conditions, deteriorations, and the consequences of not doing the maintenance, taking into
consideration the personnel resource time required for activity completion.

This has been achieved by developing a FPSO main deck maintenance system model in-
corporating design features, operating conditions, deteriorations, consequences of not doing
the maintenance and the personnel resource estimated to complete the activity. To enable
the problem formulation, a novel approach has been utilised such that the decision variables
for each location on the FPSO have been normalised between the maximum and minimum
values along the length of FPSO in order to bring the variables related to the functionality in
proportion with that at other locations along the FPSO, and also to enable scaling all of the
decision variables and whereby their respective objective functions to the same magnitude.
Also, a novel approach has been employed for the multi-objective optimisation of FPSO
main deck maintenance activities, such that to find the Pareto-optimal solution, an over-
all objective function has been developed as a linear combination of the multiple objective

functions corresponding to maintenance priorities with respect to normalised Stress Unity
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Check, Fatigue Damage Ratio, Bending Moment Ratio, Shear Force Ratio, Degree of Cor-
rosion Scale, Degree of Metal Loss, Safety Risks in the event of not doing maintenance and
Financial Risks in the event of not doing maintenance respectively, taking into consideration
the personnel resource time required for activity completion. Depending on the priority of
the objective function when compared to other objective functions, a relative weight has been
associated to the prioritised objective function, using the weighted sum approach. Also, the
formulation enables maximisation and minimisation of the objective functions and provides
flexibility to direct the focus of the overall objective function towards any one or more of
the objective functions by adjusting their respective weight according to the maintenance

strategy followed.



Chapter4

Benchmarking and Analysis of Novel
Greedy Algorithm for problem formu-

lation of FPSO main deck maintenance

4.1 Introduction

Based on the formulation of multi-objective optimisation carried out in Chapter 4, a greedy
algorithm has been proposed in Chapter 5 that incorporates the impact of time required to
complete the activities on the optimisation objectives of FPSO design features, operating
conditions, deteriorations, consequences of not doing the maintenance and the personnel re-
source availability for activity completion. Also, the benchmarking of the algorithm has been
carried out by comparing the parameters, with and without considering the time required
to complete the task, which reflects influence of the time required to carry out the activity,
on the prioritisation of activities.

The performance of the greedy algorithm has been evaluated in terms of the personnel re-
source allocation and resource utilisation. To evaluate the satisfaction of resource allocation,
the weighted sum of the task completion times based on the priorities have been considered.
To evaluate the satisfaction of resource utilisation, it has been considered that the higher
weighted sum of the completion times at as short time as possible, leads to higher resource

utilisations.

132
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In summary, the following contributions are made in this Chapter:

e A novel multi-objective optimisation of maintenance activities has been formulated whereby
a greedy algorithm has been proposed that incorporates the impact of time required to com-
plete the activities on the optimisation objectives of design features, operating conditions,
deteriorations, consequences of not doing the maintenance and the personnel resource avail-
ability for activity completion.

e The benchmarking of the algorithm has been carried out by comparing the parameters,
with and without considering the time required to complete the task, which reflects influence
of the time required to carry out the activity, on the prioritisation of activities.

e The performance of the greedy algorithm has been evaluated in terms of the personnel re-
source allocation and resource utilisation. To evaluate the satisfaction of resource allocation,
the weighted sum of the task completion times based on the priorities have been considered.
To evaluate the satisfaction of resource utilisation, it has been considered that the higher
weighted sum of the completion times at as short time as possible, leads to higher resource
utilisations.

e Also, for multi-objective optimisation, the overall objective optimisation problem has been
proposed by linear combinations of the multiple objective functions, using the weighted sum

approach.

4.2 Novel Greedy Algorithm for formulation of FPSO
main deck maintenance

The novelty of this work is that a greedy algorithm approach, which follows the problem-
solving pattern of making the locally optimal choice at each step with the hope of finding
the globally optimal solution has been employed in this work, for the problem formulation of

FPSO main deck maintenance. The greedy algorithm was chosen for this work, as it works



BENCHMARKING AND ANALYSIS OF NOVEL GREEDY ALGORITHM FOR
PROBLEM FORMULATION OF FPSO MAIN DECK MAINTENANCE 134

step by step looking at the immediate situation and chooses the steps that provide immedi-
ate benefits. This in turn enables achieving the most feasible solution immediately. In the
FPSO main deck maintenance optimisation problem, if more activities could be done before
completing the ongoing activity, these activities could be performed within the same time.
Also, the greedy algorithm enables dividing the problem iteratively based on a condition and
makes one greedy choice after another and reduces the problem, without need to combine
all the solutions.

In this problem formulation, the greedy algorithm makes greedy choices to get the optimum
overall objective function, developed as a linear combination of the multiple objective func-

P[]
T[]

tions. The objective function {F; = > (&= * C[i]} is the weighted sum of the completion
times based on the priorities with respect to design features, operating conditions, deteri-
orations, and the consequences of not doing the maintenance, and the objective is to have

higher weighted sum of the completion times at as short time as possible.

The following algorithm returns the optimal value of the objective functions:

Algorithm 1 Greedy Algorithm:
Algorithm(P, T, N)
{
Minimum x;; Mazimum x;.
Normalised x; = (Max z; — Min z; value along the FPSO) /
(Mazx z; value along FPSO — Max x; value along the FPSO)
Priority for the task, P, assigned based on O f fshore Operational practices :
I1F x; < 0.25, return 2, Priority P4;
IF z; > 0.25 but < 0.5, return 3, Priority P3;
I1F x; > 0.5but < 0.75, return 4, Priority P2;

I1F x; > 0.75 return 5, Priority P1;
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Ratio of Coating breakdown area R =

Observed % coating breakdown area | Total % coating intact area.

Estimated annual coating breakdown i f no maintenance is carried out —
Deterioration rate 8%.

Time, T required to complete the task :

IFR < 0.2, returnT = 2

IFR > 02but < 04, returnT = 3

IFR > 04but < 0.6, returnT = 4

IFFR > 0.6, returnT = 5

Algorithm : (P[i]/ T[i])

Aggregating the parameters (Priority P and Time T') into a single score, such that
when the tasks are sorted from higher to lower score, lead to optimal solution.

x Higher priorities (P) lead to a higher score for the Objective Function

x More time (T') required to complete the task, would decrease the score of the —
Objective Function

Algorithm : Order the tasks by decreasing value of (P|i]/ T[i])

Time, T} , estimated shifts required to complete the task, as per the new order of
tasks by decreasing value of (P|i]/ T[i]).

Algorithm : Cumulative Task Completion time C (1) = > T [j] = T [1] + T [2] +
2T ]

Algorithm : Weighted completion times,

> P[]/ T[] = C (i) = P[i]/T[i] « C 1), ..., PIN]/T[N] « C (N)

Algorithm : Objective function F; : Weighted sum of the completion times based on
priorities to address locations with high x;

P[1]/T[1] = C (1) + P[2]/T[2] x C (2) + ... P[N]/T[N] = C (N)

}
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The FPSO main deck maintenance planning system problem has been implemented in-
corporating design features of stress unity check,r; and fatigue damage ratio, x5; operating
conditions of bending moment ratio, 3 and shear force ratio, x4; deteriorations of degree
of corrosion scale, x5 and degree of metal loss,xg; safety and financial consequences of not
doing maintenance, x7, rs and the personnel resource to complete the activity, x9 based on
the ratio of coating breakdown area. It was estimated that there would be no coating break-
down on the main deck for the first 10 years of the FPSO life and thereafter an 8% annual
coating breakdown deterioration is anticipated on the main deck structures for the next 3
years, if no maintenance is carried out.

The input data for the design values, x1, x5 were estimated from the real life experience of the
Author, operating condition values, x3, x4 obtained from running various load cases on the
geometrical model of the FPSO in commercially available loading calculator, deterioration
values, x5, r¢ developed employing the information from published literature of corrosion
rates of ships from Tanker Structure Co-Operative Forum and the consequence values of not
doing the tasks, x7, rg were estimated from the real life experience of the Author. The time
required to complete the task, xg was estimated based on the extent of coating breakdown
considered at the main deck locations, dependent on the age of the FPSO.

The proposed problem formulation for FPSO main deck maintenance planning has been

shown in Figure 4.1.

4.3 Benchmarking and Evaluation of Greedy Algorithm
for FPSO main deck maintenance

The benchmarking of the algorithm has been carried out by comparing the parameters, with
and without considering the time required to complete the task, which reflects influence of

the time required to carry out the activity, on the prioritisation of activities. In the simula-
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Design features
x; Unity Check UC = von mises
stress [ yield strength
(UC is the inverse of Factor of
Safety)

X, Fatigue Damage ratio D =

Fatigue damage at considered no. of
cycles / Corresponding fatigue life at
constant amplitude loading

Personnel resource for activity completion
Ratio of Coating breakdown area R = Observed
coating breakdown area / Total coating intact area.
Time, T required to complete task: IFR <=0.2,
returmn T=2;IFR>0.2but<=04, return T=3; IFR
>0.4 but <=0.6, returnT=4; IFR > 0.6, return T=5

L J

Operating conditions
X3, Bending moment ratio M =
Bending moment experienced in
situ / Bending Moment allowable

x, Shear Force ratio 5 = Shear
Force experienced in situ / Shear
Force allowable

¥

Deteriorations
Degree of Corrosion Scale:
¥ Degree of Corrosion Scale R; =
Observed corrosion scale / Coating
intact condition

Degree of metal loss:

Xg Diminution ratio C = Loss in
plate thickness / Intact gross plate
thickness

Consequences of not doing
maintenance

Safety:

x; Risk Criticality, Sa.

5a=3 High. 5a =2 Medium. 5a=1
Low

Financial:

x; Risk Criticality, Fi.

Fi - 3 High. Fi = 2 Medium. Fi=1
Low

Mormalised x; = (Maximum x; at the location -
Minimum x; value along the FPSO) / (Maximum x;
value along the FPSO - Minimum x; value along
the FPSO)

Priority for the task, P [i]

Algorithm: (P[i] / T[il)

Agoregating the parameters (Priority P & Time T)
into a single score, such that when the tasks are
sorted from higher score to lower score, lead to
optimal solution.

Algarithm: Order the tasks by decreasing value of
(P[i] / TTil)

Time, Tj, estimated shifts required to complete
the task, as per the new order of tasks by
decreasing value of (P[i] / T[i])

Algarithm: Cumulative Task Completion time C[i)
=¥ T[jl = T[1] + T[2] + ...T[j]

Algorithm: Weighted completion times, ¥ P[i]/T[i]
* C{i) = Pil/TIil * C(i) , ..., PIN]/TIN] * C(N)

Algorithm: Objective function F;: Weighted sum of
the completion times based on the priorities to
address locations with high x;

PI11/TI1] = C(1) + P[2]/T[2] * C(2) + ... PIN]/TIN] *
C(N)

+

Rate of deteriorations
Estimated annual coating breakdown if no
maintenance is carried out, Deterioration rate 8%

Figure 4.1: Problem formulation of FPSO main deck maintenance planning
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tions, the performance of the greedy algorithm has been evaluated in terms of the personnel
resource allocation and resource utilisation.

To evaluate the satisfaction of resource allocation, the weighted sum of the task completion
times based on the priorities have been considered. To evaluate the satisfaction of resource
utilisation, it has been considered that the higher weighted sum of the completion times at as
short time as possible, would lead to higher resource utilisations and enable FPSO condition
enhancement.

The evaluation of the model has been carried out by comparing the parameters based on
three different loading conditions of the FPSO — light, medium and full load conditions.
The schematic representation of the FPSO system optimisation problem has been shown in

Figure 4.2.

The graphs shown in the Figures 4.3 to 4.18 in the following sections indicate three dif-
ferent loading conditions of the FPSO such that, yellow coloured graph corresponds to the
full load condition of the FPSO, grey coloured graph corresponds to the light load condition
of the FPSO, and the orange and blue coloured graph corresponds to the medium load con-
dition of the FPSO. It was observed that the priorities remain almost identical for full load
and light load conditions of the FPSO, and hence a single plot of yellow colour corresponds
to the full and light loading conditions in the Figures 4.3 to 4.18.

The bending moment experienced on the hull girder would always be maximum at the mid-
ship region of the FPSO, which extends one fourth length of the FPSO forward and aft of
the midship. The bending stress reach a peak at this region, irrespective of the loading con-
dition the FPSO is subjected to in its lifetime. This makes the midship region vulnerable to
exceed the threshold of bending strength of the material in the event of an improper loading
and any eventual failures affecting the ability to control the FPSO stability during a damage
event leading to Safety risks. Also, any excessive corrosion at the midships region of the

FPSO could result in overstressed and buckled primary and secondary structures, requiring
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Dersign features
Strength: x|, Unity Check UC

Fatigue: ¥, , Fatigue Damage ratio O

Personnel resource for act tian
Ratia of Coating breakdown ares R
Time, T required to complete the tash: IF R <= 0.2,

T=2;IFR> 02 but <= 04, T=3; IFR > 0.4 but <=
05 T=&IFR>06T=5

Dperating conditions

Strength: x; , Bending moment
ratio M

Strength: x, , Shear Foree ratio §

Deteriorations

Degree of Corrasion Scale, 1y
Degree of Corrasion Scale Ri

Degree of metal bods, @, -
Diminution ratio C

Consequendes of nat doing
fsaintenance

Safety: 1, , Risk Criticality, Sa

Financial: x,; , Risk Criticaléty, Fi

Rormalised x; = (Maximum x, - Minimem x,
value along the FRSO) / [Maximum x, value
along the FPS0 - Minimum x, value slong the
FRE0)

Priarity for the task, P [i

Algorithar: [PLIS TI)

Aggregating the parameters [Priority P & Time
T] inte a single score, such that when the tasks
are sorted from higher scoee to lowaer score,
lead to optimal schution,

Algorither: Order the tasks by decreasing value
of (Pl / TIi])

Tirnee, T}, estimated shifts required to complete
thee task, as per the neew order of tasks by
decreasing value of (P[] J/ T[I))

Algorithim: Cusrulative Task Comgletion time
ofif = E Tl = T{11 + T(20 + T

Algorithm: Weighted completion times, §
BT = Cfiy = POLATON = €O - — PINLTIND *
im)

Algorithim: Objective function F,: Weighted sum
of the tﬂ!rﬁp‘élmllmhiﬁﬂm thei prbl'l'l:lél
to sddress bacations with high x,

FALTIR] * C{3p+ P2ITI2] = O3} + .. PINLT[N]
* LK)

FPSO Model Evalisation
Light load condition: Priority based on Minimum ¥, over Third
required o complete task, [P[i] / TTI)
Medium load condition: Pricrity based on Normalised x, over
Timea required to complete task, (R[] / T[}
Full load condition: Priarity based on Masimum x; over Time
required 1o complete task, (P[] / TTI)

Resource allocations based on minimum x,
narmalized ¥, and maximoem 1 over Time réquined
o eomphete task, (P{1 S TID)

MMM:EMM
utilisaticn

Weighted task completion time, based on minimum
X, normalised x, ard masamum x, § PHLTID * i),
with respect to Task Completion Time, C{i) = 3 T{|]

|

[ 3 [

Estirnated annual coating breakdown if ne "

FPS0 Maodel
Resgurce allocation based on normalised x, without
considering time required to comglete task, P{i]

Resource allocation based on normalised x; ower
Tirmst reqquired to complete task, (P[] / T[I))

maintenance is carmied out, Deteroration
rate 5%

Figure 4.2: FPSO system optimisation problem
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in situ or dry-docking steel repairs leading to financial impacts.
The Figures in the following sections show that the midship region need to be prioritised for
maintenance and the relative order of execution at this region has become clearer from the

plots, which leads to condition enhancement of the FPSO.

4.3.1 Resource allocation based on design features — Stress Unity

Check over Time required to complete task

In this simulation in Figure 4.3, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on Stress Unity
Check over Time required to complete tasks, (P[i]/T[i]).

The simulation results obtained for the priority based on Stress Unity Check over Time re-

quired to complete task are shown is figure 4.3.

It could be observed in Figure 4.3 that when the maintenance activities are prioritised
solely based on the design feature of von mises stress, the highest priority is to allocate
resources to the locations on the FPSO at a distance of 161 — 209m from the Aft Peak of
FPSO, followed by locations 150 — 208.9m, 209.1 — 231m.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the design feature of Stress Unity Check for Full load condition
of the FPSO, it could be observed that the highest priority is to allocate resources to the
locations on the FPSO at a distance of Om and 209m from the Aft Peak of FPSO, followed
by locations 0.1 — 20m, 190 — 208.9m, 209.1 — 231m, and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the design feature of Stress Unity Check for Medium load con-
dition of the FPSO, it could be observed that the highest priority is to allocate resources to
the locations on the FPSO at a distance of 209m from the Aft Peak of FPSO, followed by
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FPSO design feature - Strength, Stress Unity Check
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Figure 4.3: Resource allocation based on design feature - Stress Unity Check over Time
required to complete task, (P[i] / T[i])
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locations 187 — 208.9m, 209.1 — 225m, and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the design feature of Stress Unity Check for Light load condition
of the FPSO, it could be observed that the highest priority is to allocate resources to the
locations on the FPSO at a distance of Om and 209m from the Aft Peak of FPSO, followed
by locations 0.1 — 20m, 190 — 208.9m, 209.1 — 225m, and so on.

The benchmarking of the algorithm has been carried out by comparing the resource alloca-
tions, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
The evaluation of the model carried out by comparing the resource allocations based on 3 dif-
ferent loading conditions of the FPSO — Full load, Medium load, and Light load conditions,
as indicated in Figure 4.3, demonstrates the performance of the greedy algorithm, in terms
of the personnel resource allocation based on Stress Unity Check over the time required to

complete tasks.

In this simulation in Figure 4.4, the performance of the greedy algorithm is being evalu-
ated in terms of the personnel resource utilisation, in terms of the weighted task completion
time, based on design feature of Stress Unity Check over Time required to complete tasks,
> Pl /T = C (i)
where, Task Completion Time, C(i) = > T[j].

The benchmarking of the algorithm has been carried out by comparing the resource util-
isations, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
To evaluate the satisfaction of resource utilisation, it could be observed that the higher
weighted sum of the completion times at as short time as possible, would lead to higher

resource utilisations. The evaluation of the model carried out by comparing the resource
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Weighted task completion time, based on Stress Unity Check
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utilisations based on 3 different loading conditions of the FPSO — Full load, Medium load,

and Light load conditions, as indicated in Figure 4.4, demonstrates the performance of the
greedy algorithm, in terms of the variation in personnel resource utilisation, based on Stress

Unity Check over the time required to complete tasks.

4.3.2 Resource allocation based on design features — Fatigue Dam-

age Ratio over Time required to complete task

In this simulation in Figure 4.5, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on fatigue
damage ratio over Time required to complete tasks, (P[i] / T[i]).

The simulation results obtained for the priority based on Fatigue Damage Ratio over Time

required to complete task are shown is figure 4.5.

It could be observed in Figure 4.5 that when the maintenance activities are prioritised
solely based on the design feature of fatigue damage ratio, the highest priority is to allocate
resources to the locations on the FPSO at a distance of 161 — 209m from the Aft Peak of
FPSO, followed by locations 150 — 208.9m, 209.1 — 225m.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the design feature of fatigue damage ratio for Full load condition
of the FPSO, it could be observed that the highest priority is to allocate resources to the
locations on the FPSO at a distance of 209 — 253m from the Aft Peak of FPSO, followed by
locations 195 — 208.9m, 253.1 — 265m, and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the design feature of fatigue damage ratio for Medium load
condition of the FPSO, it could be observed that the highest priority is to allocate resources
to the locations on the FPSO at a distance of 253m from the Aft Peak of FPSO, followed
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FPSO design feature - Strength, Fatigue Damage Ratio
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Figure 4.5: Resource allocation based on design feature — Fatigue Damage Ratio over Time
required to complete task,P[i| / T[]
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by locations 230 — 252.9m, 253.1 — 265m, and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the design feature of fatigue damage ratio for Light load condi-
tion of the FPSO, it could be observed that the highest priority is to allocate resources to
the locations on the FPSO at a distance of 253m from the Aft Peak of FPSO, followed by
locations 231 — 252.9m, 253.1 — 260m, and so on.

The benchmarking of the algorithm has been carried out by comparing the resource alloca-
tions, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
The evaluation of the model carried out by comparing the resource allocations based on 3
different loading conditions of the FPSO — Full load, Medium load and Light load conditions,
as indicated in Figure 4.5, demonstrates the performance of the greedy algorithm, in terms
of the personnel resource allocation based on fatigue damage ratio over the time required to

complete tasks.

In this simulation in Figure 4.6, the performance of the greedy algorithm is being evalu-
ated in terms of the personnel resource utilisation, in terms of the weighted task completion
time, based on design feature of Fatigue Damage Ratio over Time required to complete tasks,
> Pl /T[] = C (i)
where, Task Completion Time, C(i) = > T[j].

The benchmarking of the algorithm has been carried out by comparing the resource
utilisations, with and without considering the time required to complete the task, which
reflects influence of the time required to carry out the activity, on the prioritisation of
activities.

To evaluate the satisfaction of resource utilisation, it could be observed that the higher

weighted sum of the completion times at as short time as possible, would lead to higher
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Weighted task completion time, based on Fatigue Damage Ratio
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Figure 4.6: Weighted task completion time, based on design feature - Fatigue Damage Ratio
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resource utilisations. The evaluation of the model carried out by comparing the resource
utilisations based on 3 different loading conditions of the FPSO — Full load, Medium load,
and Light load conditions, as indicated in Figure 4.6, demonstrates the performance of the
greedy algorithm, in terms of the variation in personnel resource utilisation, based on Fatigue

Damage Ratio over the time required to complete tasks.

4.3.3 Resource allocation based on operating conditions — Strength,

Bending Moment Ratio over Time required to complete task

In this simulation in Figure 4.7, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on strength,
Bending Moment Ratio over Time required to complete tasks, (P[i] / T'[i]).

. The simulation results obtained for the priority based on Strength, Bending Moment Ratio

over Time required to complete task are shown is figure 4.7.

It could be observed in Figure 4.7 that when the maintenance activities are prioritised
solely based on the operating conditions — Strength, Bending Moment Ratio, the highest
priority is to allocate resources to the locations on the FPSO at a distance of 73 — 332m
from the Aft Peak of FPSO, followed by locations 60 — 72.9m, and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the operating conditions — Strength, Bending Moment Ratio for
Full load condition of the FPSO, it could be observed that the highest priority is to allocate
resources to the locations on the FPSO at a distance of 310-332m from the Aft Peak of
FPSO, followed by locations 295 — 309.9m, and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the operating conditions — Strength, Bending Moment Ratio for
Medium load condition of the FPSO, it could be observed that the highest priority is to allo-

cate resources to the locations on the FPSO at a distance of 209 —253m and 310—332m from
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Figure 4.7: Resource allocation based on operating conditions — Strength, Bending Moment
Ratio over Time required to complete task, P[] / T[]
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the Aft Peak of FPSO, followed by locations 187 — 208.9m, 253.1 — 274.9m, 275.1 — 309.9m

and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the operating conditions — Strength, Bending Moment Ratio
for Light load condition of the FPSO, it could be observed that the highest priority is to
allocate resources to the locations on the FPSO at a distance of 310 — 332m from the Aft
Peak of FPSO, followed by locations 290 — 309.9m, and so on.

The benchmarking of the algorithm has been carried out by comparing the resource alloca-
tions, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
The evaluation of the model carried out by comparing the resource allocations based on 3
different loading conditions of the FPSO — Full load, Medium load and Light load conditions,
as indicated in Figure 4.7, demonstrates the performance of the greedy algorithm, in terms
of the personnel resource allocation based on Strength, Bending Moment Ratio over the time

required to complete tasks.

In this simulation in Figure 4.8, the performance of the greedy algorithm is being evalu-
ated in terms of the personnel resource utilisation, in terms of the weighted task completion
time, based on operating conditions of Strength, Bending Moment Ratio over Time required
to complete tasks , > P[i|/ T[i] * C (i),
where, Task Completion Time, C(i) = > T[j].

The benchmarking of the algorithm has been carried out by comparing the resource util-
isations, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
To evaluate the satisfaction of resource utilisation, it could be observed that the higher

weighted sum of the completion times at as short time as possible, would lead to higher
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Weightedtask completion time, based on Bending Moment Ratio
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Figure 4.8: Weighted task completion time, based on operating conditions — Strength, Bend-
ing Moment Ratio over Time required to complete task, > P[]/ T[i] = C (1)
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resource utilisations. The evaluation of the model carried out by comparing the resource
utilisations based on 3 different loading conditions of the FPSO — Full load, Medium load,
and Light load conditions, as indicated in Figure 4.8, demonstrates the performance of the
greedy algorithm, in terms of the variation in personnel resource utilisation, based on Bend-

ing Moment Ratio over the time required to complete tasks.

4.3.4 Resource allocation based on operating conditions — Strength,

Shear Force Ratio over Time required to complete task

In this simulation in Figure 4.9, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on Strength,
Shear Force Ratio over Time required to complete tasks, ( P[i]/ T'[i] ).

The simulation results obtained for the priority based on Strength, Shear Force Ratio over

Time required to complete task are shown is figure 4.9.

It could be observed in Figure 4.9 that when the maintenance activities are prioritised

solely based on the operating conditions — Strength, Shear Force Ratio, the highest priority is
to allocate resources to the locations on the FPSO at a distance of 143m, 275m from the Aft
Peak of FPSO, followed by locations 121 —142.9m, 143.1 — 155m, 253 — 274.9m, 275.1 — 290m
and so on.
When the time required to complete the maintenance activities have been considered along
with the priorities based on the operating conditions — Strength, Shear Force Ratio for Full
load condition of the FPSO, it could be observed that the highest priority is to allocate
resources to the locations on the FPSO at a distance of 143m and 275m from the Aft Peak
of FPSO, followed by locations 135 — 142.9m, 143.1 — 150m, 253 — 274.9m, 275.1 — 310mand
SO on.

When the time required to complete the maintenance activities have been considered along
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FPSO design feature - Strength, Shear Force Ratio
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Figure 4.9: Resource allocation based on operating conditions — Strength, Shear Force Ratio
over Time required to complete task,P[i] / T[]
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with the priorities based on the operating conditions — Strength, Shear Force Ratio for
Medium load condition of the FPSO, it could be observed that the highest priority is to
allocate resources to the locations on the FPSO at a distance of 253m from the Aft Peak of
FPSO, followed by locations 240 — 252.9m,253.1 — 275m, and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the operating conditions — Strength, Shear Force Ratio for Light
load condition of the FPSO, it could be observed that the highest priority is to allocate
resources to the locations on the FPSO at a distance of Om and 209 — 332m from the Aft
Peak of FPSO, followed by locations 0.1 — 40m, 187 — 208.9m and so on.

The benchmarking of the algorithm has been carried out by comparing the resource alloca-
tions, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
The evaluation of the model carried out by comparing the resource allocations based on 3
different loading conditions of the FPSO — Full load, Medium load, and Light load condi-
tions, as indicated in Figure 4.9, demonstrates the performance of the greedy algorithm, in
terms of the personnel resource allocation based on Strength, Shear Force Ratio over the

time required to complete tasks.

In this simulation in Figure 4.10, the performance of the greedy algorithm is being evalu-
ated in terms of the personnel resource utilisation, in terms of the weighted task completion
time, based on operating conditions of Strength, Shear Force Ratio over Time required to
complete tasks , > Pli]/ T[i] x C (i),
where, Task Completion Time, C(i) = > T[j].

The benchmarking of the algorithm has been carried out by comparing the resource util-
isations, with and without considering the time required to complete the task, which reflects

influence of the time required to carry out the activity, on the prioritisation of activities.
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Weighted task completion time, based on Shear Force Ratio

1200
1000

800

P[il/T[il* C(i)
g

400

2

50

Task Completion Time,

C(i) =2 Tli]

—@— Weighted task completion time, based on Normalised Shear Force Ratio, without considering time required to complete task
Z P[] * Chi)

—8— Weighted task completion time, based on normalised Shear force Ratio,
ZPL/TID* €O

—&8— Weighted task completion time, based on Minimum Shear Force Ratio,
Z PALTHD* €t}

Weighted task completion time, based on Maximum Shear Force Ratio,
5 Pi)/T() * (i)

Figure 4.10: Weighted task completion time, based on operating conditions — Strength, Shear
Force Ratio over Time required to complete task, > P[i] / T[] * C (i)
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To evaluate the satisfaction of resource utilisation, it could be observed that the higher
weighted sum of the completion times at as short time as possible, would lead to higher
resource utilisations. The evaluation of the model carried out by comparing the resource
utilisations based on 3 different loading conditions of the FPSO — Full load, Medium load,
and Light load conditions, as indicated in Figure 4.10, demonstrates the performance of the
greedy algorithm, in terms of the variation in personnel resource utilisation, based on Shear

Force Ratio over the time required to complete tasks.

4.3.5 Resource allocation based on deterioration mechanisms —
Degree of Corrosion Scale over Time required to complete

task

In this simulation in Figure 4.11, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on Degree of
Corrosion Scale over Time required to complete tasks, ( P[i]/ T[] ).

The simulation results obtained for the priority based on Degree of Corrosion Scale over

Time required to complete task are shown is figure 4.11.

It could be observed in Figure 4.11 that when the maintenance activities are prioritised
solely based on the deterioration mechanisms — Degree of Corrosion Scale, the highest pri-
ority is to allocate resources to the locations on the FPSO at a distance of 49 — 73m, 121 —
161m, 253m, 310m from the Aft Peak of FPSO, followed by locations 30 — 48.9m,73.1 —
98.9,99.1 —120.9,161.1 — 170m, 231 — 252.9, 253.1 — 265m, 295 — 309.9, 310.1 — 325m and so
on.

When the time required to complete the maintenance activities have been considered along

with the priorities based on the deterioration mechanisms — Degree of Corrosion Scale for
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FPSO Deterioration Mechanisms - Degree of Corrosion Scale
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Figure 4.11: Resource allocation based on deterioration mechanisms — Degree of Corrosion
Scale over Time required to complete task, P[] / T[]
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Full load condition of the FPSO, it could be observed that the highest priority is to allocate
resources to the locations on the FPSO at a distance of 253m and 310m from the Aft Peak
of FPSO, followed by locations 243 — 252.9m, 253.1 — 265m,, 285 — 309.9, 310.1 — 332m and
SO on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the deterioration mechanisms — Degree of Corrosion Scale for
Medium load condition of the FPSO, it could be observed that the highest priority is to al-
locate resources to the locations on the FPSO at a distance of 253m and 310m from the Aft
Peak of FPSO, followed by locations 220 — 252.9m, 253.1 — 270m, 285 — 309.9, 310.1 — 325m
and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the deterioration mechanisms — Degree of Corrosion Scale for
Light load condition of the FPSO, it could be observed that the highest priority is to allocate
resources to the locations on the FPSO at a distance of 231 — 253m, 310 — 332m from the
Aft Peak of FPSO, followed by locations 209 — 230.9m, 253.1 — 275m, 275.1 — 309.9m, and
SO on.

The benchmarking of the algorithm has been carried out by comparing the resource alloca-
tions, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
The evaluation of the model carried out by comparing the resource allocations based on 3
different loading conditions of the FPSO — Full load, Medium load, and Light load condi-
tions, as indicated in Figure 4.11, demonstrates the performance of the greedy algorithm, in
terms of the personnel resource allocation based on von mises stress over the time required

to complete tasks.

In this simulation in Figure 4.12, the performance of the greedy algorithm is being evalu-

ated in terms of the personnel resource utilisation, in terms of the weighted task completion
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Figure 4.12: Weighted task completion time, based on deterioration mechanisms — Degree
of Corrosion Scale over Time required to complete task, > P[i]/ T[i] x C (i)
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time, based on deterioration mechanisms of Degree of Corrosion Scale over Time required to
complete tasks, > P[i|/ T[i] * C (i),
where, Task Completion Time, C(i) = > T[j].

The benchmarking of the algorithm has been carried out by comparing the resource util-
isations, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
To evaluate the satisfaction of resource utilisation, it could be observed that the higher
weighted sum of the completion times at as short time as possible, would lead to higher
resource utilisations. The evaluation of the model carried out by comparing the resource
utilisations based on 3 different loading conditions of the FPSO — Full load, Medium load,
and Light load conditions, as indicated in Figure 4.12, demonstrates the performance of the
greedy algorithm, in terms of the variation in personnel resource utilisation, based on Degree

of Corrosion Scale over the time required to complete tasks.

4.3.6 Resource allocation based on deterioration mechanisms —

Degree of Metal Loss over Time required to complete task

In this simulation in Figure 4.13, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on Degree of
Metal Loss over Time required to complete tasks, ( P[i] / T[] ).

The simulation results obtained for the priority based on Degree of Metal Loss over Time

required to complete task are shown is figure 4.13.

It could be observed in Figure 4.13 that when the maintenance activities are prioritised
solely based on the deterioration mechanisms — Degree of Metal Loss, the highest priority is to

allocate resources to the locations on the FPSO at a distance of 49—161m and 310m from the
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FPSO Deterioration Mechanisms - Degree of Metal Loss
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over Time required to complete task,P[i] / T[1]
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Aft Peak of FPSO, followed by locations 25 —48.9m, 161.1 — 175m, 275 —309.9, 310.1 — 332m

and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the deterioration mechanisms — Degree of Metal Loss for Full
load condition of the FPSO, it could be observed that the highest priority is to allocate
resources to the locations on the FPSO at a distance of 310m from the Aft Peak of FPSO,
followed by locations 285 — 309.9, 310.1 — 332m and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the deterioration mechanisms — Degree of Metal Loss for Medium
load condition of the FPSO, it could be observed that the highest priority is to allocate re-
sources to the locations on the FPSO at a distance of 310m from the Aft Peak of FPSO,
followed by locations 290 — 309.9m, 310.1 — 332m and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the deterioration mechanisms — Degree of Metal Loss for Light
load condition of the FPSO, it could be observed that the highest priority is to allocate re-
sources to the locations on the FPSO at a distance of Om, 73m, 121 —161m, 209 —253m, 310 —
332m from the Aft Peak of FPSO, followed by locations 0.1—25m,65—72.9,73.1—85m, 115—
120.9,161.1 — 170m, 195 — 208.9, 253.1 — 265m,, 290 — 309.9m and so on.

The benchmarking of the algorithm has been carried out by comparing the resource alloca-
tions, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
The evaluation of the model carried out by comparing the resource allocations based on 3
different loading conditions of the FPSO — Full load, Medium load, and Light load condi-
tions, as indicated in Figure 4.13, demonstrates the performance of the greedy algorithm,
in terms of the personnel resource allocation based on Degree of Metal Loss over the time

required to complete tasks.
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Weighted task completion time, based on Degree of Metal Loss

¥ PLil/T(i] * C(i)
%

Task Completion Time,

RS () -5 31 1)

Figure 4.14: Weighted task completion time, based on deterioration mechanisms — Degree
of Metal Loss over Time required to complete task, > P[i|/ T[i] * C (i)
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In this simulation in Figure 4.14, the performance of the greedy algorithm is being evalu-
ated in terms of the personnel resource utilisation, in terms of the weighted task completion
time, based on deterioration mechanisms of Degree of Metal Loss over Time required to
complete tasks, > P[i|/ T[i] * C (i),
where, Task Completion Time, C(i) = > T[j].

The benchmarking of the algorithm has been carried out by comparing the resource util-
isations, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
To evaluate the satisfaction of resource utilisation, it could be observed that the higher
weighted sum of the completion times at as short time as possible, would lead to higher
resource utilisations. The evaluation of the model carried out by comparing the resource
utilisations based on 3 different loading conditions of the FPSO — Full load, Medium load,
and Light load conditions, as indicated in Figure 4..14, demonstrates the performance of the
greedy algorithm, in terms of the variation in personnel resource utilisation, based on Degree

of Metal Loss over the time required to complete tasks.

4.3.7 Resource allocation based on Consequences of not doing the

tasks — Safety Risk over Time required to complete task

In this simulation in Figure 4.15, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on Safety Risk
over Time required to complete tasks, ( P[]/ T[1i] ).

The simulation results obtained for the priority based on Consequences of not doing the

tasks — Safety Risk over Time required to complete task are shown is figure 4.15.

It could be observed in Figure 4.15 that when the maintenance activities are prioritised
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FPSO Consequences of not doing the tasks - Safety Risk

Priority
w

Distance of location from Aft Peak of FPSO, m

—@—Priority based on normalised Safety Risk without considering time required to complete task, P[i]

—®— Priority based on Normalised Safety Risk over Time required to complete task,
(PLI1/ L)

—@— Priority based on Minimum Safety Risk over Time required to complete task,
(POT/ L)
Priority based on Maximum Safety Risk over Time required to complete task,
(Pl /T(i)

Figure 4.15: Resource allocation based on Consequences of not doing the tasks — Safety Risk
over Time required to complete task,P[i] / T[]
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solely based on the Consequences of not doing the tasks — Safety Risk, the highest priority
is to allocate resources to the locations on the FPSO at a distance of 60 — 253m from the
Aft Peak of FPSO, followed by locations 50 — 59.9m, 253.1 — 275m and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the Consequences of not doing the tasks — Safety Risk for Full
load condition of the FPSO, it could be observed that the highest priority is to allocate
resources to the locations on the FPSO at a distance of 209 — 253m from the Aft Peak of
FPSO, followed by locations 195 — 208.9m, 253.1 — 270m and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the Consequences of not doing the tasks — Safety Risk for
Medium load condition of the FPSO, it could be observed that the highest priority is to
allocate resources to the locations on the FPSO at a distance of 209 — 253m from the Aft
Peak of FPSO, followed by locations 187 — 208.9m, 253.1 — 275m and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the Consequences of not doing the tasks — Safety Risk for Light
load condition of the FPSO, it could be observed that the highest priority is to allocate
resources to the locations on the FPSO at a distance of 209 — 253m from the Aft Peak of
FPSO, followed by locations 195 — 208.9m, 253.1 — 270m and so on.

The benchmarking of the algorithm has been carried out by comparing the resource alloca-
tions, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
The evaluation of the model carried out by comparing the resource allocations based on 3
different loading conditions of the FPSO — Full load, Medium load and Light load conditions,
as indicated in Figure 4.15, demonstrates the performance of the greedy algorithm, in terms
of the personnel resource allocation based on Consequences of not doing the tasks — Safety

Risk over the time required to complete tasks.
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Weighted task completion time, based on Safety Risk
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Figure 4.16: Weighted task completion time, based on Consequences of not doing the tasks
— Safety Risk over Time required to complete task, > P[i]/ T[i] x C (i)
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In this simulation in Figure 4.16, the performance of the greedy algorithm is being evalu-
ated in terms of the personnel resource utilisation, in terms of the weighted task completion
time, based on Consequences of not doing the tasks — Safety Risk over Time required to
complete tasks, > P[i|/ T[i] * C (i),
where, Task Completion Time, C(i) = > T[j].

The benchmarking of the algorithm has been carried out by comparing the resource util-
isations, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
To evaluate the satisfaction of resource utilisation, it could be observed that the higher
weighted sum of the completion times at as short time as possible, would lead to higher
resource utilisations. The evaluation of the model carried out by comparing the resource
utilisations based on 3 different loading conditions of the FPSO — Full load, Medium load,
and Light load conditions, as indicated in Figure 4.16, demonstrates the performance of the
greedy algorithm, in terms of the variation in personnel resource utilisation, based on Safety

Risk over the time required to complete tasks.

4.3.8 Resource allocation based on Consequences of not doing the

tasks — Financial Risk over Time required to complete task

In this simulation in Figure 4.17, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on Financial
Risk over Time required to complete tasks, ( P[]/ T[1] ).

The simulation results obtained for the priority based on Consequences of not doing the

tasks — Financial Risk over Time required to complete task are shown is figure 4.17.

It could be observed in Figure 4.17 that when the maintenance activities are prioritised
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FPSO Consequences of not doing the tasks - Financial Risk

Priority
w

0 50 100 150 200 250 300 350
Distance of location from Aft Peak of FPSO, m

—&— Priority based on normalised Financial Risk without considering time required to complete task, P[i]

—@— Priority based on Normalised Financial Risk over Time required to complete task,
(P[] /T(i0)

—8— Priority based on Minimum Financial Risk over Time required to complete task,

(P} /(D)

Priority based on Maximum Financial Risk over Time required to complete task,
(PRl /T

Figure 4.17: Resource allocation based on Consequences of not doing the tasks — Financial
Risk over Time required to complete task,P[i] / T[]
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solely based on the Consequences of not doing the tasks — Financial Risk, the highest priority
is to allocate resources to the locations on the FPSO at a distance of 73 — 231m from the
Aft Peak of FPSO, followed by locations 60 — 72.9m, 231.1 — 250m and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the Consequences of not doing the tasks — Financial Risk for
Full load condition of the FPSO, it could be observed that the highest priority is to allocate
resources to the locations on the FPSO at a distance of 209 — 231m from the Aft Peak of
FPSO, followed by locations 195 — 208.9m, 231.1 — 253m and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the Consequences of not doing the tasks — Financial Risk for
Medium load condition of the FPSO, it could be observed that the highest priority is to
allocate resources to the locations on the FPSO at a distance of 209 — 231m from the Aft
Peak of FPSO, followed by locations 187 — 208.9m, 231.1 — 253m, and so on.

When the time required to complete the maintenance activities have been considered along
with the priorities based on the Consequences of not doing the tasks — Financial Risk for
Light load condition of the FPSO, it could be observed that the highest priority is to allocate
resources to the locations on the FPSO at a distance of 209 — 231m from the Aft Peak of
FPSO, followed by locations 195 — 208.9m;, 231.1 — 253m and so on.

The benchmarking of the algorithm has been carried out by comparing the resource alloca-
tions, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
The evaluation of the model carried out by comparing the resource allocations based on 3
different loading conditions of the FPSO — Full load, Medium load, and Light load condi-
tions, as indicated in Figure 4.17, demonstrates the performance of the greedy algorithm, in
terms of the personnel resource allocation based on Financial Risk over the time required to

complete tasks.
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Weighted task completion time, based on Financial Risk
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Figure 4.18: Weighted task completion time, based on Consequences of not doing the tasks
— Financial Risk over Time required to complete task, Y. P[i|/ T[i] * C (i)
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In this simulation in Figure 4.18, the performance of the greedy algorithm is being evalu-
ated in terms of the personnel resource utilisation, in terms of the weighted task completion
time, based on Consequences of not doing the tasks — Financial Risk over Time required to
complete tasks, > P[i|/ T[i] * C (i),
where, Task Completion Time, C(i) = > T[j].

The benchmarking of the algorithm has been carried out by comparing the resource util-
isations, with and without considering the time required to complete the task, which reflects
influence of the time required to carry out the activity, on the prioritisation of activities.
To evaluate the satisfaction of resource utilisation, it could be observed that the higher
weighted sum of the completion times at as short time as possible, would lead to higher
resource utilisations. The evaluation of the model carried out by comparing the resource
utilisations based on 3 different loading conditions of the FPSO — Full load, Medium load,
and Light load conditions, as indicated in Figure 4.18, demonstrates the performance of
the greedy algorithm, in terms of the variation in personnel resource utilisation, based on

Financial Risk over the time required to complete tasks.

4.4 Analysis on maintenance priorities and productiv-
ity if no maintenance is carried out

This section evaluates the proposed Greedy Algorithm, to optimise maintenance personnel
resources based on knowledge of the design, equipment condition, operating condition, de-
terioration mechanisms involved, rate of deteriorations, inspection and maintenance history,
involved risks. Towards this, the changes in maintenance priorities and productivity if no
maintenance is carried out within a period - years’ time and two years’ time - have been

simulated and compared with the present planned priorities and productivities.
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Figure 4.19: FPSO system evaluation on maintenance priorities and productivities over a
period of time

The schematic representation of the FPSO system evaluation on maintenance priorities and

productivities over a period of time has been shown in Figure 4.19.

4.4.1 Resource allocation based on design features — Stress Unity

Check over Time required to complete task

In this simulation in Figure 4.20, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on Stress Unity

Check over Time required to complete tasks, ( P[]/ T[1] ).



BENCHMARKING AND ANALYSIS OF NOVEL GREEDY ALGORITHM FOR
PROBLEM FORMULATION OF FPSO MAIN DECK MAINTENANCE 174

Recommended Task Execution Order along the length of FPSO, based on Stress Unity Check
over the time required to complete task;
Present priority & Priorities in a years time and two years time if no maintenance is carried

out
Distance from aft peak, m
25
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310 49
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275 1 60
253 73
231 99
209 ha |
187 143
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B Present priority B Priorityin a year's time if no maintenance is carried out B Priority in two year’s time if no maintenance is carried out

Figure 4.20: Changes in resource allocations if no maintenance is carried out, based on
normalised Stress Unity Check over the time required to complete task

The recommended resource allocation order along the length of FPSO, based on design
feature — normalised Stress Unity Check over the time required to complete task has been
indicated in Figure 4.20. The resource allocation priority with reference to the distance from
the aft peak of the FPSO has been shown.

The simulation of predicted changes in priorities for resource allocations in a year’s time
and in two years’ time if no maintenance is carried out has also been indicated in Figure
4.20. This is based on an estimated annual deterioration rate of 8% on the coating break-
down and the corresponding impact on the resource required for completion of activity,
taking into account the ( P[i]/ T[i] ) change based on change in 7" only, as a function of

coating break down, and ignoring the effect of coating breakdown on other decision variables.
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Figure 4.21: Changes in resource utilisations if no maintenance is carried out, based on
normalised Stress Unity Check over the time required to complete task
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The changes in resource allocations and resource utilisations, if no maintenance is carried
out in a years’ time and two years’ time has been simulated and compared with the present
planned priorities and productivities based on normalised Stress Unity Check over the time
for task completion, as indicated in Figure 4.21.

The simulation of predicted changes in cost functions by way of productivity and the cor-
responding resource utilisations in a year’s time and in two years’ time if no maintenance
is carried out has also been indicated in Figure 4.21. This is based on an estimated an-
nual deterioration rate of 8% on the coating breakdown and the corresponding impacts on
the weighted sum of the completion times based on the priorities, taking into account the
( P[i]/ T[i] ) change based on change in T" only, as a function of coating break down, and

ignoring the effect of coating breakdown on other decision variables.

4.4.2 Resource allocation based on design features — Fatigue Dam-

age Ratio over Time required to complete task

In this simulation in Figure 4.22, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on fatigue

damage ratio over Time required to complete tasks, ( P[i] / T[] ).

The recommended resource allocation order along the length of FPSO, based on design
feature — normalised fatigue damage ratio over the time required to complete task has been
indicated in Figure 4.22. The execution priority with reference to the distance from the aft
peak of the FPSO has been shown.

The simulation of predicted changes in priorities for resource allocations in a year’s time
and in two years’ time if no maintenance is carried out has also been indicated in Figure
4.22. This is based on an estimated annual deterioration rate of 8% on the coating break-

down and the corresponding impact on the resource required for completion of activity,
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Recommended Task Execution Order along the length of FPSO, based on Fatigue
Damage Ratio over the time required to complete task;
Present priority & Priorities in a years time and two years time if no maintenance is
carried out
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Figure 4.22: Changes in resource allocations if no maintenance is carried out, based on
Fatigue Damage Ratio over the time required to complete task
taking into account the ( P[:]/ T[i] ) change based on change in T only, as a function of

coating break down, and ignoring the effect of coating breakdown on other decision variables.

The changes in resource allocations and resource utilisations, if no maintenance is carried
out in a years’ time and two years’ time has been simulated and compared with the present
planned priorities and productivities based on normalised fatigue damage ratio over the time
for task completion, as indicated in Figure 4.23.

The simulation of predicted changes in cost functions by way of productivity and the cor-
responding resource utilisations in a year’s time and in two years’ time if no maintenance
is carried out has also been indicated in Figure 4.23. This is based on an estimated an-
nual deterioration rate of 8% on the coating breakdown and the corresponding impacts on
the weighted sum of the completion times based on the priorities, taking into account the

( P[i]/ T[i] ) change based on change in T only, as a function of coating break down, and
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Figure 4.23: Changes in resource utilisations if no maintenance is carried out, based on
Fatigue Damage Ratio over the time required to complete task



BENCHMARKING AND ANALYSIS OF NOVEL GREEDY ALGORITHM FOR
PROBLEM FORMULATION OF FPSO MAIN DECK MAINTENANCE 179

Recommended Task Execution Order along the length of FPSO, based on Bending Moment
Ratio over the time required to complete task;
Present priority & Priorities in a years time and two years time if no maintenance is
carried out
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Figure 4.24: Changes in resource allocations if no maintenance is carried out, based on
Strength, Bending Moment Ratio over the time required to complete task

ignoring the effect of coating breakdown on other decision variables.

4.4.3 Resource allocation based on operating conditions — Strength,

Bending Moment Ratio over Time required to complete task

In this simulation in Figure 4.24, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on strength,

Bending Moment Ratio over Time required to complete tasks, ( P[]/ T[1] ).

The recommended resource allocation order along the length of FPSO, based on Strength,
normalised Bending Moment Ratio over the time required to complete task has been indi-

cated in Figure 4.24. The execution priority with reference to the distance from the aft peak
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Figure 4.25: Changes in resource utilisations if no maintenance is carried out, based on
Strength, Bending Moment Ratio over the time required to complete task

of the FPSO has been shown.

The simulation of predicted changes in priorities for resource allocations in a year’s time
and in two years’ time if no maintenance is carried out has also been indicated in Figure
4.24. This is based on an estimated annual deterioration rate of 8% on the coating break-
down and the corresponding impact on the resource required for completion of activity,
taking into account the ( P[:]/ T[i] ) change based on change in T only, as a function of

coating break down, and ignoring the effect of coating breakdown on other decision variables.
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The changes in resource allocations and resource utilisations, if no maintenance is carried
out in a years’ time and two years’ time has been simulated and compared with the present
planned priorities and productivities based on normalised Bending Moment Ratio over the
time for task completion, as indicated in Figure 4.25.

The simulation of predicted changes in cost functions by way of productivity and the cor-
responding resource utilisations in a year’s time and in two years’ time if no maintenance
is carried out has also been indicated in Figure 4.25. This is based on an estimated an-
nual deterioration rate of 8% on the coating breakdown and the corresponding impacts on
the weighted sum of the completion times based on the priorities, taking into account the
( P[i]/ T[i] ) change based on change in T" only, as a function of coating break down, and

ignoring the effect of coating breakdown on other decision variables.

4.4.4 Resource allocation based on operating conditions — Strength,

Shear Force Ratio over Time required to complete task

In this simulation in Figure 4.26, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on Strength,

Shear Force Ratio over Time required to complete tasks, ( P[i]/ T'[i] ).

The recommended resource allocation order along the length of FPSO, based on operat-
ing condition — normalised Strength, Shear Force Ratio over the time required to complete
task has been indicated in Figure 4.26. The execution priority with reference to the distance
from the aft peak of the FPSO has been shown.

The simulation of predicted changes in priorities for resource allocations in a year’s time
and in two years’ time if no maintenance is carried out has also been indicated in Figure
4.26. This is based on an estimated annual deterioration rate of 8% on the coating break-

down and the corresponding impact on the resource required for completion of activity,
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Recommended Task Execution Order along the length of FPSO, based on Shear Force
Ratio over the time required to complete task;
Present priority & Priorities in a years time and two years time if no maintenance is
carried out
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Figure 4.26: Changes in resource allocations if no maintenance is carried out, based on
normalised Strength, Shear Force Ratio over the time required to complete task
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Figure 4.27: Changes in resource utilisations if no maintenance is carried out, based on
Strength, Shear Force Ratio over the time required to complete task
taking into account the ( P[]/ T[] ) change based on change in 7" only, as a function of

coating break down, and ignoring the effect of coating breakdown on other decision variables.

The changes in resource allocations and resource utilisations, if no maintenance is carried
out in a years’ time and two years’ time has been simulated and compared with the present
planned priorities and productivities based on normalised Strength, Shear Force Ratio over
the time for task completion, as indicated in Figure 4.27.

The simulation of predicted changes in cost functions by way of productivity and the cor-
responding resource utilisations in a year’s time and in two years’ time if no maintenance
is carried out has also been indicated in Figure 4.27. This is based on an estimated an-
nual deterioration rate of 8% on the coating breakdown and the corresponding impacts on

the weighted sum of the completion times based on the priorities, taking into account the
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Recommended Task Execution Order along the length of FPSO, based on Degree of
Corrosion Scale over the time required to complete task;
Present priority & Priorities in a years time and two years time if no maintenance is carried
out
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Figure 4.28: Changes in resource allocations if no maintenance is carried out, based on
Degree of Corrosion Scale over the time required to complete task

( P[i]/ T|i] ) change based on change in T only, as a function of coating break down, and

ignoring the effect of coating breakdown on other decision variables.

4.4.5 Resource allocation based on deterioration mechanisms —
Degree of Corrosion Scale over Time required to complete

task

In this simulation in Figure 4.28, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on Degree of

Corrosion Scale over Time required to complete tasks, ( P[]/ T[] ).

The recommended resource allocation order along the length of FPSO, based on deterio-
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ration mechanisms — normalised Degree of Corrosion Scale over the time required to complete
task has been indicated in Figure 4.28. The execution priority with reference to the distance
from the aft peak of the FPSO has been shown.

The simulation of predicted changes in priorities for resource allocations in a year’s time
and in two years’ time if no maintenance is carried out has also been indicated in Figure
4.28. This is based on an estimated annual deterioration rate of 8% on the coating break-
down and the corresponding impact on the resource required for completion of activity,
taking into account the ( P[:]/ T[i] ) change based on change in T only, as a function of

coating break down, and ignoring the effect of coating breakdown on other decision variables.

The changes in resource allocations and resource utilisations, if no maintenance is carried
out in a years’ time and two years’ time has been simulated and compared with the present
planned priorities and productivities based on normalised Degree of Corrosion Scale over the
time for task completion, as indicated in Figure 4.29.

The simulation of predicted changes in cost functions by way of productivity and the cor-
responding resource utilisations in a year’s time and in two years’ time if no maintenance
is carried out has also been indicated in Figure 4.29. This is based on an estimated an-
nual deterioration rate of 8% on the coating breakdown and the corresponding impacts on
the weighted sum of the completion times based on the priorities, taking into account the
( P[i]/ T[i] ) change based on change in T only, as a function of coating break down, and

ignoring the effect of coating breakdown on other decision variables.

4.4.6 Resource allocation based on deterioration mechanisms —

Degree of Metal Loss over Time required to complete task

In this simulation in Figure 4.30, the performance of the greedy algorithm is being evaluated

in terms of the personnel resource allocation, in terms of the priorities based on Degree of
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Figure 4.29: Changes in resource utilisations if no maintenance is carried out, based on
Degree of Corrosion Scale over the time required to complete task
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Recommended Task Execution Order along the length of FPSO, based on Degree of
Metal Loss over the time required to complete task;
Present priority & Priorities in a years time and two years time if no maintenance is
carried out
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Figure 4.30: Changes in resource allocations if no maintenance is carried out, based on
Degree of Metal Loss over the time required to complete task

Metal Loss over Time required to complete tasks, ( P[i] / T[1] ).

The recommended resource allocation order along the length of FPSO, based on deteri-
oration mechanisms — normalised Degree of Metal Loss over the time required to complete
task has been indicated in Figure 4.30. The execution priority with reference to the distance
from the aft peak of the FPSO has been shown.

The simulation of predicted changes in priorities for resource allocations in a year’s time
and in two years’ time if no maintenance is carried out has also been indicated in Figure
4.30. This is based on an estimated annual deterioration rate of 8% on the coating break-
down and the corresponding impact on the resource required for completion of activity,
taking into account the ( P[i]/ T[i] ) change based on change in T only, as a function of

coating break down, and ignoring the effect of coating breakdown on other decision variables.



BENCHMARKING AND ANALYSIS OF NOVEL GREEDY ALGORITHM FOR
PROBLEM FORMULATION OF FPSO MAIN DECK MAINTENANCE 188

Cost based on Degree of Metal Loss over the time for task

completion
450
400
350 Cost function based on priorities to
address the locations with high
300 Degree of Metal Loss over the time
for task completion
g
S 250
o Cost function based on priorities to
= address the locations with high
E 200 Degree of Metal Loss overthe time
fortask completion, in a year's time if
150 no maintenance is carried out
Cost function based on priorities to
100 address the locations with high
Degree of Metal Loss over the time
) for task completion, in two year's
time if no maintenance is carried out
0
0 10 20 30 40 50 60

Time required

Figure 4.31: Changes in resource utilisations if no maintenance is carried out, based on
Degree of Metal Loss over the time required to complete task
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The changes in resource allocations and resource utilisations, if no maintenance is carried
out in a years’ time and two years’ time has been simulated and compared with the present
planned priorities and productivities based on normalised Degree of Metal Loss over the time
for task completion, as indicated in Figure 4.31.

The simulation of predicted changes in cost functions by way of productivity and the cor-
responding resource utilisations in a year’s time and in two years’ time if no maintenance
is carried out has also been indicated in Figure 4.31. This is based on an estimated an-
nual deterioration rate of 8% on the coating breakdown and the corresponding impacts on
the weighted sum of the completion times based on the priorities, taking into account the
( P[i]/ T[i] ) change based on change in T" only, as a function of coating break down, and

ignoring the effect of coating breakdown on other decision variables.

4.4.7 Resource allocation based on Consequences of not doing the

tasks — Safety Risk over Time required to complete task

In this simulation in Figure 4.32, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on Safety Risk

over Time required to complete tasks, ( P[]/ T[1i] ).

The recommended resource allocation order along the length of FPSO, based on Conse-
quences of not doing the tasks — normalised Safety Risk over the time required to complete
task has been indicated in Figure 4.32. The execution priority with reference to the distance
from the aft peak of the FPSO has been shown.

The simulation of predicted changes in priorities for resource allocations in a year’s time
and in two years’ time if no maintenance is carried out has also been indicated in Figure
4.32. This is based on an estimated annual deterioration rate of 8% on the coating break-

down and the corresponding impact on the resource required for completion of activity,



BENCHMARKING AND ANALYSIS OF NOVEL GREEDY ALGORITHM FOR
PROBLEM FORMULATION OF FPSO MAIN DECK MAINTENANCE 190

Recommended Task Execution Order along the length of FPSO, based on Safety Risk over
the time required to complete task;
Present priority & Priorities in a years time and two years time if no maintenance is carried
out
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Figure 4.32: Changes in resource allocations if no maintenance is carried out, based on
Consequences of not doing tasks—normalised Safety Risk over time required to complete task
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Figure 4.33: Changes in resource utilisations if no maintenance is carried out, based on
Consequences of not doing the tasks — Safety Risk over the time required to complete task
taking into account the ( P[:]/ T[i] ) change based on change in T only, as a function of

coating break down, and ignoring the effect of coating breakdown on other decision variables.

The changes in resource allocations and resource utilisations, if no maintenance is carried
out in a years’ time and two years’ time has been simulated and compared with the present
planned priorities and productivities based on normalised Safety Risk over the time for task
completion, as indicated in Figure 4.33.

The simulation of predicted changes in cost functions by way of productivity and the cor-
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responding resource utilisations in a year’s time and in two years’ time if no maintenance
is carried out has also been indicated in Figure 4.33. This is based on an estimated an-
nual deterioration rate of 8% on the coating breakdown and the corresponding impacts on
the weighted sum of the completion times based on the priorities, taking into account the
( P[i]/ T|i] ) change based on change in T only, as a function of coating break down, and

ignoring the effect of coating breakdown on other decision variables.

4.4.8 Resource allocation based on Consequences of not doing the

tasks — Financial Risk over Time required to complete task

In this simulation in Figure 4.34, the performance of the greedy algorithm is being evaluated
in terms of the personnel resource allocation, in terms of the priorities based on Financial

Risk over Time required to complete tasks, ( P[]/ T[1] ).

The recommended resource allocation order along the length of FPSO, based on design
feature — normalised Financial Risk over the time required to complete task has been indi-
cated in Figure 4.34. The execution priority with reference to the distance from the aft peak
of the FPSO has been shown.

The simulation of predicted changes in priorities for resource allocations in a year’s time
and in two years’ time if no maintenance is carried out has also been indicated in Figure
4.34. This is based on an estimated annual deterioration rate of 8% on the coating break-
down and the corresponding impact on the resource required for completion of activity,
taking into account the ( P[i]/ T[i] ) change based on change in T only, as a function of

coating break down, and ignoring the effect of coating breakdown on other decision variables.

The changes in resource allocations and resource utilisations, if no maintenance is carried

out in a years’ time and two years’ time has been simulated and compared with the present
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Recommended Task Execution Order along the length of FPSO, based on Financial Risk
over the time required to complete task;
Present priority & Priorities in a years time and two years time if no maintenance is
carried out
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Figure 4.34: Changes in resource allocations if no maintenance is carried out, based on Con-
sequences of not doing tasks— normalised Financial Risk over the time required to complete
task
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Figure 4.35: Changes in resource utilisations if no maintenance is carried out, based on
Consequences of not doing the tasks — normalised Financial Risk over the time required to
complete task
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planned priorities and productivities based on normalised Financial Risk over the time for
task completion, as indicated in Figure 4.35.

The simulation of predicted changes in cost functions by way of productivity and the cor-
responding resource utilisations in a year’s time and in two years’ time if no maintenance
is carried out has also been indicated in Figure 4.35. This is based on an estimated an-
nual deterioration rate of 8% on the coating breakdown and the corresponding impacts on
the weighted sum of the completion times based on the priorities, taking into account the
( P[i]/ T|i] ) change based on change in T only, as a function of coating break down, and

ignoring the effect of coating breakdown on other decision variables.

4.5 Overall objective maintenance optimisation

The main objective of this work was to maximise the maintenance personnel resource util-
isation and enable FPSO condition enhancement, considering the priorities with respect to
design features, operating conditions, deteriorations, and the consequences of not doing the
maintenance, taking into consideration the personnel resource time required for activity com-
pletion.

Objective Function,

Fo= X Gy cli) (1.1)

where, P[] is the Priority based on the objectives, and T[] is the time required to complete

a maintenance activity, and C[i] = > T[j]| the cumulative task completion time.

The objective functions, Fy, Fy, F3, Fy, Fj5, Fg, F, Fy corresponding to maintenance
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priorities with respect to normalised Stress Unity Check z;, Fatigue Damage Ratio x5 ,
Bending Moment Ratio x3, Shear Force Ratio x4, Degree of Corrosion Scale x5 , Degree of
Metal Loss z¢ , Safety Risks in the event of not doing maintenance x; and Financial Risks in
the event of not doing maintenance xg respectively, taking into consideration the personnel
resource time required for activity completion, were combined into an overall objective op-
timisation problem. Depending on the priority of the objective function when compared to
other objective functions, a relative weight has been associated to the prioritised objective

function, using the weighted sum approach, such that

{yi} = ) (Fa; * F) (4.2)

where, «; indicate the relative weight of the prioritised objective function when com-
pared with the priority of other objective functions. The positive weight, Sign +, means
the corresponding objective function would be maximised, and negative weight, Sign —,
means the corresponding objective function would be minimised. This formulation provides
flexibility to direct the focus of the overall objective function, y;, towards any one or more
of the objective functions by adjusting their respective weight according to the maintenance

strategy followed.

The schematic representation of the FPSO system overall multi-objective optimisation

problem has been shown in Figure 4.36.

In the simulation in Figure 4.37, the performance of the greedy algorithm is being eval-
uated in terms of the personnel resource utilisation, based on an overall objective function

developed by linear combinations of the multiple objective functions.
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Figure 4.36: FPSO system overall multi-objective optimisation problem
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Figure 4.37: Overall objective optimisation depending on Priorities

The optimisation simulation results obtained for the various scenarios of priorities have been

presented in figure 4.37.

In the simulation Figure 4.37, the performance of the greedy algorithm has been demon-

strated in terms of the personnel resource utilisation, based on an overall objective function
developed by linear combinations of the multiple objective functions ) (da; * F;). This sim-
ulation demonstrates the performance evaluation of proposed multi-objective optimisation
employing weighted sum approach for maintenance planning, in terms of personnel resource
utilisation.
The Objective functions of the design features, operating conditions, deteriorations, conse-
quences of not doing the maintenance have been combined in into a single objective maximi-
sation problem using the weighted sum approach, such that depending on the priority of the
objective function when compared to other objective functions, a weighting factor has been
associated to the prioritised objective function. The higher weighted sum of the completion
times at as short time as possible, would lead to higher resource utilisation.

It could be observed from the gradient of the simulations, when equal priorities are provided
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to all the objective functions, the resource utilisation is much higher than that for individual
prioritisation of objective functions. Also, no significant changes to the resource utilisations

have been noted when the objective functions were prioritised individually.

4.6 Conclusion

Based on the formulation of multi-objective optimisation carried out in Chapter 3, a novel
greedy algorithm has been proposed in this Chapter that incorporate the impact of time
required to complete the activities on the optimisation objectives of FPSO design features,
operating conditions, deteriorations, consequences of not doing the maintenance and the per-
sonnel resource availability for activity completion. Also, the benchmarking of the algorithm
has been carried out by comparing the parameters, with and without considering the time
required to complete the task, which reflects influence of the time required to carry out the
activity, on the prioritisation of activities.

The evaluation of the model has been carried out by comparing the priorities for each sce-
nario based on 3 different loading conditions of the FPSO — Light load condition, Medium
load condition and Full Load condition. The performance of the greedy algorithm has been
evaluated in terms of the personnel resource allocation and resource utilisation. To evaluate
the satisfaction of resource allocation, the weighted sum of the task completion times based
on the priorities have been considered. To evaluate the satisfaction of resource utilisation, it
has been considered that the higher weighted sum of the completion times at as short time
as possible, leads to higher resource utilisations.

The changes in priorities and productivity, if no maintenance is carried out in 1 years’ time
and 2 years’ time has been simulated and compared with the present planned resource allo-
cations and resource utilisations, taking into account the (P[i] / T[i]) change based on change

in T only, as a function of coating break down, and ignoring the effect of coating breakdown
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on other decision variables.

Also, an overall objective optimisation problem has been proposed in this paper, by linear
combinations of the multiple objective functions, using the weighted sum approach. This
formulation provides flexibility to direct the focus of the overall objective function towards
any one or more of the objective functions by adjusting their respective weight according
to the maintenance strategy followed, which would supplement the Regulatory oversight re-

quirements of the FPSO.



Chapterb

Novel Multi-objective Optimisation with
Deep Q-Reinforcement Learning (DQN)
for Maintenance Activities of Floating
Production Storage and Offloading Fa-

cilities

5.1 Introduction

Through an extensive literature survey carried out, it has been identified that the current
state-of-the-art literature does not incorporate site constraints of the asset related to offshore
resource availability for the maintenance activity, the impact of time required to carry out
activities and its impact on other activities due to this maintenance. There exists scope
for further research works that addresses the afore-mentioned gaps by examining machine
learning and Deep Q- reinforcement learning (DQN) network based artificial intelligence ap-
proach, considering the design features, actual condition of the component, site constraints,
deterioration factors, consequences of not doing the activities, time required to complete the
activities and investigating the impact on key maintenance performance indicators regarding

resource allocations and resource utilisations.

201
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In summary, the following contributions are made in this Chapter:

e A novel work management framework has been proposed that comprises of DQN prob-
lem formulation as a solution to multi-objective optimisation problem, to enable carrying
out activities that have minimal site constraints, considering the design features, operat-
ing conditions, deteriorations, consequences of not doing the activities and time required to
complete the activities, to get higher weighted sum of the completion times at short time
as possible, whereby achieving higher resource utilisations. The goal is to achieve the best
trade-off between the turnaround time for the activities and liquidating the risks to the as-
set’s performance, based on completion of activities in the work management system.

e A greedy algorithm benchmarks the performances of DQN model and a hybrid model
comprising of greedy and DQN parameters, with respect to average number of timesteps
per episode — the smaller number of timesteps per episode means agent take minimum step-
s/shortest path to reach the target; average rewards per timestep — the larger the reward
means the agent is doing the right thing; the solution provides execution of maintenance ac-
tivities having minimal site constraints leading to better resource utilisation and completion
of activities; average number of penalties per episode — the smaller the number, the bet-
ter performance of agent. It has been noted that overall, the hybrid and the DQN models
achieve better results when compared with the Greedy model, towards task completion time

and liquidating the risks to the asset’s performance.

5.2 Related work

The current state-of-the-art literature related to analyses techniques to develop the mainte-
nance strategies for various systems have been reviewed and the highlights in the literature

have been summarised in Table 5.1.
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Table 5.1: Analyses techniques to develop maintenance strategies
Ref./ Equipment Analyses
Year
Modelling/ | Objective Decision Constraints
Optimisatio | functions variables
n technique
W. Zhu et | Offshore Bayesian Ensure Failure Uncertainties
al. 2019 wind turbine | Network! performance modes, related to
Monte-Carlo | of the wind Logistic logistic
simulations | turbine, delays, delays and
maximize Weather weather
short- and conditions conditions
long-term
profits, and
optimize
maintenance
grouping,
minimize
logistic cost
and downtime
loss.
Z Linet | Offshore Linear and
al. 2020 wind turbine | Non-linear
models
A Mentes | Offshore Resilience | Ability to Human and | Maintenance
and O wind turthine | Engineering | learn organization | failures
Turan. anticipate. al factors
2019 monittor and
respond to
etnergency
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Y. Liand | Offshoreocil | Regression | Asset Features of | Potential
Z Hu. and gas and Multi- retirement Environment | ecosystem
2021 facilities criteria obligations of | al, Health impacts, and
Decision liabilities and | and Safety, | gamnor
Analysis expenses to be | Technic/ damage to
settled Feasibility, | hydrodynamm
Socio- ¢ state
ECONOMIC
and Financial
MN. Offshore Eisk-bazed | Minimise Failure System
Scheu et | wind turbine | model operaticnal modes of the | criticality
al. 2019 expenditure, components
Downtime
reduction
ML Offshore Linear and | Additional Degradation | Detection
Zagorows | turbomachine | exponential | operational indicator window
ka et al Iy non-linear profits and
2020 regression in | reduced
an energy
expanding consumption
moving
window
framework
M Liet Offzhore Non- Minimnize the | Maintenance | Maintenance
al. 2020 wind turhine | homogeneou | total cost per umit | schedule
3 maintenance of time,
Continuous- | cost Degradations
Time
Markow
Process
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MP. Marne and | Fuzzy- Identify the Fehability., | Costs and
Asuquo et | offshore TOPSIS best, most Equipment benefits for
al 2019 machinery appropriate and Labour | their

and acceptable | Cost subsequent
maintenatce Effectiveness | implementats
strategy to be | | Safety, on
adopted Availability
and
Downtime
A Diffzhore FLEA,
Jamshidi | wind turbine | FMECA,
etal 2019 EBL FCM
(Fuzzy
Copnitive
Maps),
Bayesian
Network
HN. Industrial Big Data
Teixeira et | applications | analytics
al. 2020 and Internet
of Things
(1eT)
Y. Luet | Offshore Artificial Deetermining Conditional | Defined
al 2013 wind turthine | Neural optimal failure mzpection
Network life | maintenance probabilities | intervals
percentage | interval value
prediction to minimise
model the total
maintenatnce
cost
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EdO. Well Becurrent Well Production Production
Werneck | production Neural production and | data, impacts
et al 2021 Networks pressure Injection

forecasting data,
Well's
pressure
H. Seiti et | Process Units | D-Fuzzy Evaluate the Best Expected
al 2019 Axiomatic alternatives for | Beplacement | cost fanction,
Design (D- | replacement Time Availability,
FAD) mtervals with Safety
methed, isa | respect to
combination | criteria with
of fuzzy the associated
axiomatic rizks.
design and | Cost function
D numbers
0. Atmospheric | Fuzzy Determination | Failures, Hot | Risk
Ahmadi et | storage tanks | Decision- of leading work influence
al. 2020 making trial | indicators factors
and validity,
evaluation importance
laboratory and
(DEMATEL | practicability
) outputs in
Bayesian
network
M. Yazdi |Process Non-linear | Minimise the | Health & Budget
et al 2019 | facibities model / Bi- | safety Safety limitation,
objective mvestment and | importance, | Safety
fuzzy accident Time factors
structure probability allocation,
optimization Cost,
model Environment
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al
enhancement
. Reputation
importance
D.Fanet | Subsea Eeliability Optimal group | Maintenance | System
al. 2021 Equipment model with | maintenance Cost, avatlability,
stochastic plan PM duration, | Fatlure rate
dependency PM interval
Corrective
Collaborativ maintenance
e particle duration
SWarm
optimization
algorithm
NN Exploration | Structuring
Ferreira et | & Production | the process
al. 2020 (E&P) in stages
platforms in
o1l and gas
industry
J. Matias | Gas lift ol Femamning | Maximise Equipment System
etal 2020 | well Useful Life | production and | health dynamics,
{RUL) economic indicators, Safety
estimation objectives Plant data constraints,
model Crperational
constramnts
Y. Hanet | Safety Hybrnid Provide Drynamic Human
al 2021 Critical dynamic nisk | dynamic real | variables Brrofrs,
Equipment modelling time risk Functional
on Offshore | methodolog | profile failures
Installations | v that predictions
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combines
dynamic
Bayesian
network
(DBN)
technique
and support
vector
regression
(SVE)
algorithm
Y. Hanet | Offshore Drynamic Minimise the | Observed Degradation
al. 2019 mstallations | data model. | total nisk level | Samples, rate,
Clazsificatio | while reducing | Observed Parameter
n model, the failures, uncertainty
Mamntenance | maintenance MMamntenance
decizion cost time
model intervals
EU Offshore Onl | Spherical Technical Maintenance
Olugu et | and Gas fuzzy sets performance. improvement
al_ 2021 ndustry modified- environmental
Delphi performance, | maintenance
Model EConomic efficiency,
performance management
and social of resources,
performance waste
management.
responsibilit
v &
Eegulations,
cost-

effectiveness
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investments,
indirect
economic
impacts, skll
improvement
occupational
health &
safety,
maintenance
employee,
and social
responsibilit
v &
Fegulations
M Ibrion | Offshore Leaming
etal 2020 | installations | from
accidents
B. Yeter | Offshore Structural Techno- vironment | Life
etal 2022 | wind mntegrity eCconomic al and extension
turbines analysis feasibility of | operational | duration and
employing | life extenszion | parameters, | appropriate
Gaussian operational | discount rate
kernel for expenditures,
denoising. Structural
followed by design data,
a time- Wind load
domain data,
crack Material
growth properties
analysis /
Unsupervise
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d machine
learning
THN. Offzhore Mixed Mamtenance | Time- Cost
Schouten | wind turbine | integer optimisation varying fluctuations
et al. 2021 linear costs, Power
Programmin outputs
g model
AL Offshore o1l | Statistical Femaiming Mechanical | Component's
Bamirez- | platforms predictive usefl life properties, interaction
Ledesma model Chemical with
and J A compeosttion, | atmospheric
Juarez- hardness and | gaszes,
Islas. 2022 tensile test Non-metallic
properties inclusions
associated
with
localized
cofrosich by
pitting
COTTOS10M
mechanizm
S. Marine Copula- Microbial Geometry of | Fatlure mode
Adumene | pipelines based Monte | corrosion rate | Corrosion probabilities
et al. 2021 Carlo prediction, parameters,
{CMC) considering physio-
simulation / | the chemical
Bayesian mterrelationshi | parameters,
Network ps between pipe
with physio- variables and
Copula-
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baszed Momnte | chemical mechanical
Carlo (BN- | parameters properties
CMC)
simulation
Z Renet |Offshore Big data and
al. 2021 wind turbine | machine
learning
Y Limet |Coal Saddle pomt | Maximize the | Mamntenance | Duration
al 2018 Transportatic | approximati | probability of | budget, Uncertainties
n on/ Tailored | a system Duration of | of the
ant colomny successfully breal, maintenance
optimisation | completing the | Durations of | actions and
algorithm next mission, | maintenance | breaks
Optimal actions
maintenance
actions
C. Zhang | Wind Markon Minimise the | Life cycle Maintenance
et al. 2019 | turbines chain model, | total Maintenance | budget, wait
Weibull maintenance costs, time owing
distribution | and Inventory to weather
& mventory cost | costs restrictions
mathematica | over the life
1 models cycle horizon,
optimal
opportunistic
maintenance
reliability
threshold,
recrder stock
level
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C.Zhang | Wind Mathematica | Efficient Mamntenance | Maintenance
and T. turbines I models / maintenance costs budget,
Yang. Nondominat | planning and weather
2021 ed sorting resource restrictions
genetic allocation,
algorithm prevent
(NSGA) UANEeCESsary
downtime and
reduce

operational

costs
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Table 5.1 references:
[10], [12], [13], [16], [18], [20], [23], [26], [27], [81], [29], [31], [33], [34], [40], [41], [68], [43],
[44], [49], [50], [69], [54], [55], [57], [61], [70], [62], [64], [19].

5.3 DQN solution for FPSO main deck maintenance

Q-learning allow the agent to use the environment’s rewards to learn, over time, the best
action to take in a given state. In the Work Management System (WMS), we have the
reward table, P, from which the agent will learn from. The agent does things by receiving
a reward for taking an action in the current state, then updating a Q-value to remember if
that action was beneficial. The values store in the Q-table are termed Q-values, and then
map to a (state, action) combination.

A Q-value for a particular (state, action) combination is representative of the Quality of
an action taken from that state. Better Q-values imply better chances of getting greater
rewards.

Q-values are initialised to an arbitrary value, and as the agent exposes itself to the environ-
ment and receives different rewards by executing different actions, the Q-values are updated

using the equation:

Q(state, action) < (1—a) Q (state, action) + a (reward + I’ mazx, Q (next state, all actions) )

(5.1)

where:

« is the learning rate (0 < « < 1). This is the extent to which the Q-values are being
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updated in every iteration.

~v is the discount factor (0 < ~ < 1). This determines how much importance we want
to give to future rewards. A high value for the discount factor, nearer to 1, captures the
long-term effective award, whereas a discount factor nearer to zero makes the agent consider
only immediate reward, hence making it greedy. In the algorithm, a + value of 0.1 has been
used for the iterations considered as Greedy, a v value of 0.6 has been used for Hybrid model

of Greedy and DQN, and a ~ value of 1.0 for DQN model.

¢ is the randomness factor (0 < e < 1). This determines how much exploration we
want to have, to prevent the action from possible overfitting. Lower e value would result in

more exploring and making random decisions.

The Q-value of the agent’s current state would be updated by first taking a weight (1 — «)
of the old Q-value, then adding the learned value. The learned value is a combination of
the reward for taking the current action in the current state, and the discounted maximum
reward from the next state would be in, once the current action has been taken. Thus, the
agent is learning the proper action to take in the current state by looking at the reward
for the current (state,action) combination, and the maximum rewards for the next state.
This would eventually cause the WMS to consider the path with the best rewards strung
together. The Q-value of a (state, action) combination is the sum of the instant reward and
the discounted future reward of the resulting state. The way we store the Q-values for each
(state, action) combination would be through the Q-table.

The Q-table is a matrix where we have a Row for every state and a Column for every ac-
tion. It’s first initialised to zero, and then values are updated during training to values that
optimise the agent’s travel through the environment for maximum rewards.

For training the agent, first, the Q-table has been initialised to a 50026 matrix of zeroes.



NOVEL MULTI-OBJECTIVE OPTIMISATION WITH DEEP Q-REINFORCEMENT
LEARNING (DQN) FOR MAINTENANCE ACTIVITIES OF FPSOS 215

The training algorithm would update this Q-table as the agent explores the environment
over thousands of episodes. In the first part of while not done, it is decided whether to pick
a random action or to exploit the already computed Q-values. This is done using the € value
and comparing it to the random.uniform (0, 1) function, which returns an arbitrary num-
ber between 0 and 1. The chosen action would be executed in the environment to obtain the
next state and the reward from performing the action. Thereafter, the maximum Q-value
has been calculated for the actions corresponding to the next state, and with that, could

update the Q-value to the new q value.

5.4 DQN solution formulation for FPSO main deck
maintenance

The novelty of this work is that a deep Q-reinforcement learning has been employed in this
work for the problem formulation of FPSO main deck maintenance.

The DQN problem statement has been defined as to carry out activities that have minimal
site constraints, so as to get higher weighted sum of the completion times at short time as
possible, which leads to higher resource utilisation. The goal is to achieve the best trade-off
between the turnaround time for the activities and liquidating the risks to the asset’s per-

formance, based on completion of activities in the FPSO work management system (WMS).

5.4.1 Constraints

Similar to most literature, this work considers that the site constraints on main deck involves
shadow areas and locations with accessibility issues, restricted access spaces that require ad-
ditional risk assessment prior accessing, overside sections of the deck that need boat cover

and additional risk assessment prior accessing, locations having presence of continuous water



NOVEL MULTI-OBJECTIVE OPTIMISATION WITH DEEP Q-REINFORCEMENT
LEARNING (DQN) FOR MAINTENANCE ACTIVITIES OF FPSOS 216

and need special equipment for carrying out maintenance, locations with accessibility issues
during normal operations and need to be dealt during a pre-specified period such as plant
shut down as an opportunistic work. However, differing from the existing literature, this
work considers the new important factor, the impact of time required to carry out offshore

maintenance activities, to achieve the optimal personnel resource utilisations.

5.4.2 Decision variables

The decision variables considered in this work are the design features, operating conditions,
deteriorations experienced and the consequences of not doing the maintenance activities, as

detailed in Section 3.3.5 of Chapter 3.

5.4.3 Objective functions

The main objective of this work to carry out activities that have minimal site constraints,
so as to get higher weighted sum of the completion times at short time as possible, which
leads to higher resource utilisation. The goal is to achieve the best trade-off between the
turnaround time for the activities and liquidating the risks to the asset’s performance, based

on completion of activities in the FPSO work management system (WMS).

5.4.4 Implementation of multi-objective problem formulation and

optimisation model

The Figure 5.1 provides an overview of formulation of multi-objective optimisation with

Deep Q-Reinforcement Learning (DQN), for FPSO main deck maintenance.
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Figure 5.1: Multi-objective Optimisation with Deep Q-Reinforcement Learning (DQN), for
FPSO main deck maintenance

The DQN problem formulation model for FPSO main deck maintenance has been indi-

cated in Figure 5.2 below.

The DQN Solution Formulation for Maintenance Activities involves:

5.4.4.1 State Space

FPSO Main Deck has been split into a 5 X 5 grid, which will give 25 possible locations on
the Main Deck. For these grid locations the priority of the objective function over the time
required to complete task ( P[:]/ T[] ) has been assigned from 0.1 with increments of 0.1
up to the maximum value of 2.5 (that was found for the Safety and Financial Risks, from
the Greedy Algorithm). Four locations were assigned on the FPSO Main Deck, Aft Port,

Fwd Port, Aft Stbd and Fwd Stbd, where the resources for carrying out the maintenance
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Figure 5.2: DQN Problem formulation model for FPSO main deck maintenance

activity could be allocated and removed. This forms the (row, column) co-ordinates of (0,0),
(0,4), (4,0), (4,3). Also, a state of the resource has been accounted for carrying out the
maintenance activity while moving along the grids, between resource removal and resource
allocation periods. Thus, while considering all combinations of resource locations and the
locations where resources could be allocated and removed, the total number of states for
our Work Management System (WMS) Environment will be 4 destination locations of co-
ordinates (0,0), (0,4), (4,0), (4,3), and Five (4 + 1) resource locations. Therefore, our WMS
has a total possible States of 5 x 5 x 5 x 4 =500 states. WMS cannot perform certain actions

in certain states due to site constraints (denoted by double bold lines).

5.4.4.2 Action Space

The agent comes across one of the 500 states and takes an action. The Action is to move in

a direction along the FPSO, or to decide to remove resource and allocate resource at a loca-
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tion. The agent has six possible actions, namely, move in a direction (Aft/Fwd/Stbd/Port),
Resource Removal and Resource Allocation.

0 — Move in Aft direction

1 — Move in Fwd direction

2 — Move in Stbd direction

3 — Move in Port direction

4 — Resource removal

5 — Resource allocation

5.4.4.3 Rewards

Points considered while deciding the rewards and penalties were that the agent should receive
a high positive reward for a successful resource allocation, as this action was highly desired.
By trial and error, a +20 points reward was assigned for a successful resource allocation.
Agent should be penalised if it tries to allocate or allocate resources at wrong locations.
By trial and error, a —10 points penalty was assigned for an illegal resource allocation or
removal. Agent should receive a slight negative reward for every site constraint hit and for
not moving anywhere, and for not making it to the assigned location for resource removal/
allocation after every time-step. By trial and error, a -1-point penalty was assigned for these
actions.

The Reward table has been considered to be a matrix that has the number of states as rows
and number of actions as columns, which would be a States X Actions matrix. Since every
state is in this matrix, we could see the default reward values assigned to our WMS’s state,
as

{action : [ (probability, next state, reward, done) |}

The game environments available in Open Al Gym library have been used for providing the

resource allocation environment, to plug in the Python Code algorithm and to test the agent.
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Table 5.2: Hyperparameters for the Greedy, Hybrid of Greedy/DQN and DQN models

Greedy:
a=01vyv=01e=01
Hybrid of Greedy/DOMN:
a=01y=06 =01

DOM:
a=01yvy=10 =01

5.4.5 Benchmarking and performance evaluation

After enough random exploration of actions, the Q-values tend to converge serving our agent
as an action-value function, which it could exploit to pick the most optimal action from a
given state.
The Hyperparameters for the DQN model includes,«, v €, whereby, « is the learning rate
(0 < «a < 1). This is the extent to which the Q-values are being updated in every
iteration.
v is the discount factor (0 < ~ < 1). This determines how much importance we want
to give to future rewards. A high value for the discount factor, nearer to 1, captures the
long-term effective award, whereas a discount factor nearer to zero makes the agent consider
only immediate reward, hence making it greedy.
¢ the randomness factor (0 < € < 1) determines how much exploration we want to have,
to prevent the action from possible overfitting. Lower e value would result in more exploring
and making random decisions.
Considering the afore-mentioned points, the hyperparameters «, v € have been varied
between 0.1, 0.6 and 1 as indicated in Table 5.2, to generate the Greedy, Hybrid of
Greedy/DQN and DQN models.

The agent for Greedy, Hybrid of Greedy/DQN and DQN models were evaluated on the
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following features:

Average number of timesteps per episode — the smaller number of timesteps per episode
means agent take minimum steps/shortest path to reach the target.

Average rewards per timestep — the larger the reward means the agent is doing the right
thing. In this work, as both timesteps and penalties are negatively rewarded, a higher aver-
age reward would mean that the agent reaches the target as fast as possible with the least
penalties. i.e. the solution provides execution of maintenance activities having minimal site
constraints leading to better resource utilisation, and completion of activities.

Average number of penalties per episode — the smaller the number ideally be zero or very
close to zero, the better performance of agent.

The evaluation of Greedy, Hybrid of Greedy & DQN and DQN models for up to 25,000
training episodes have been carried out for the following 3 states:

e State 1, where current location state addressed by WMS is illustrated to be at a state of
highest P/T value of 2.5, and the maintenance activities are ongoing at location 3 (B), which
has the next highest P/T value of 2.4, and the intent is to carry out activities at location
2 (Y'), which has the next highest P/T value of 2.1, from our defined objective functions.

e State 2, where current location state addressed by WMS is illustrated to be at a state
of P/T value of 2.1, and the maintenance activities are ongoing at location 2 (Y'), and the
intent is to carry out activities at location 1 (G), which has the P/T value of 0.5, from our
defined objective functions.

e State 3, where current location state addressed by WMS is illustrated to be at a state
of P/T value of 0.5, and the maintenance activities are ongoing at location 1 (G), and the
intent is to carry out activities at location 0 (R), which has the lowest P/T value of 0.1,

from our defined objective functions.
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State 1 - Learning Curves of Greedy, Hybrid and DQN
models w.r.t no. of timesteps (smaller no. of timesteps
mean minimum steps taken to reach destination)
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Figure 5.3: Learning curves of Greedy, Hybrid and DQN models with respect to the number
of timesteps, for the state 1

5.4.6 Benchmarking and evaluation of agent’s performance in State

1

In this simulation in Figure 5.3, the learning curves of Greedy, Hybrid and DQN models
with respect to the number of timesteps taken to reach destination have been shown for
the state 1, where current location state addressed by WMS is illustrated to be at a state
of highest P/T value of 2.5, and the maintenance activities are ongoing at location 3 (B),
which has the next highest P/T value of 2.4, and the intent is to carry out activities at loca-

tion 2 (Y'), which has the next highest P/T value of 2.1, from our defined objective functions.

Figure 5.3 presents the learning curves of Greedy, Hybrid and DQN models with respect
to the number of timesteps for the state 1. The smaller number of timesteps per episode

indicates minimum time steps taken to reach the destination. It has been noted that the
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State 1 - Delta of average timesteps per episode for
Hydrid and DQN models, relative to Greedy
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Figure 5.4: Variation of average timesteps per episode for the Hybrid and DQN models
relative to Greedy model, for the state 1

Hybrid model with hyperparameters of a« = 0.1, v = 0.6, ¢ = 0.1 and the DQN model with
hyperparameters of @« = 0.1, v = 1.0, € = 0.1 achieve better results when compared with the
Greedy model with hyperparameters of « = 0.1, v = 0.1, ¢ = 0.1 , as the training episode

increases.

In the simulation in Figure 5.4, the variation of average timesteps per episode for the

Hybrid and DQN models with respect to Greedy model has been shown for the state 1.

Figure 5.4 presents the variation of average timesteps per episode for the Hybrid and
DQN models relative to Greedy model, for the state 1. It has been noted that the DQN
model with hyperparameters of a = 0.1, 7 = 1.0, € = 0.1 achieve better results when com-
pared with the Hybrid model with hyperparameters of a = 0.1, v = 0.6, ¢ = 0.1 and the

Greedy model with hyperparameters of « = 0.1, v = 0.1, ¢ = 0.1 , as the training episode
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State 1 - Learning Curves of Greedy, Hybrid and DQN
models w.r.t rewards per timestep (larger rewards per
timestep mean reaching destination faster)
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Figure 5.5: Learning curves of Greedy, Hybrid and DQN models with respect to the rewards
per timestep, for the state 1

increases.

In the simulation in Figure 5.5, the learning curves of Greedy, Hybrid and DQN models

with respect to the rewards per timestep have been shown for the state 1.

Figure 5.5 presents the learning curves of Greedy, Hybrid and DQN models with re-
spect to the rewards per timestep, for the state 1. The larger rewards per timestep indi-
cates reaching destination faster. It has been noted that the Hybrid model with hyper-
parameters ofa = 0.1, v = 0.6, ¢ = 0.1 and the DQN model with hyperparameters of
a = 0.1, v=1.0, e = 0.1 achieve better results when compared with the Greedy model with

hyperparameters of « = 0.1, v = 0.1, € = 0.1, as the training episode increases.

In the simulation in Figure 5.6, the variation of average rewards per timestep for the
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State 1 - Delta of average rewards per timestep for Hybrid
and DQN models, relative to Greedy

0.4

0.2

0 5000 100 2 30000
-0.2

-0.4

-0.6
Training Episodes

—@— Hybrid of Greedy/DQN relative to Greedy =~ —@— DQN relative to Greedy

Figure 5.6: Variation of average rewards per timestep for the Hybrid and DQN models
relative to Greedy model, for the state 1

Hybrid and DQN models with respect to Greedy model has been shown for the state 1.

Figure 5.6 presents the variation of average rewards per timestep for the Hybrid and DQN
models relative to Greedy model, for the state 1. It has been noted that the DQN model
with hyperparameters of a = 0.1, v = 1.0, ¢ = 0.1 achieve better results when compared
with the Hybrid model with hyperparameters of & = 0.1, v = 0.6, ¢ = 0.1 and the Greedy

model with hyperparameters of @« = 0.1, v = 0.1, ¢ = 0.1, as the training episode increases.
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State 2 - Learning Curves of Greedy, Hybrid and DQN
models w.r.t no. of timesteps (smaller no. of timesteps
mean minimum steps taken to reach destination)
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Figure 5.7: Learning curves of Greedy, Hybrid and DQN models with respect to the number
of timesteps, for the state 2

5.4.7 Benchmarking and evaluation of agent’s performance in State

2

In this simulation in Figure 5.7, the learning curves of Greedy, Hybrid and DQN models
with respect to the number of timesteps taken to reach destination have been shown for the
state 2, where current location state addressed by WMS is illustrated to be at a state of P/T
value of 2.1, and the maintenance activities are ongoing at location 2 (Y'), and the intent is
to carry out activities at location 1 (G), which has the P/T value of 0.5, from our defined

objective functions.

Figure 5.7 presents the learning curves of Greedy, Hybrid and DQN models with respect
to the number of timesteps for the state 2. The smaller number of timesteps per episode

indicates minimum time steps taken to reach the destination. It has been noted that the
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State 2 - Delta of average timesteps per episode for
Hydrid and DQN models, relative to Greedy
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Figure 5.8: Variation of average timesteps per episode for the Hybrid and DQN models
relative to Greedy model, for the state 2

Hybrid model with hyperparameters of & = 0.1, v = 0.6, ¢ = 0.1 and the DQN model with
hyperparameters of « = 0.1, v = 1.0, € = 0.1 achieve better results when compared with the
Greedy model with hyperparameters of & = 0.1, v = 0.1, ¢ = 0.1, as the training episode

increases.

In the simulation in Figure 5.8, the variation of average timesteps per episode for the

Hybrid and DQN models with respect to Greedy model has been shown for the state 2.

Figure 5.8 presents the variation of average timesteps per episode for the Hybrid and
DQN models relative to Greedy model, for the state 2. It has been noted that the DQN
model with hyperparameters of &« = 0.1, v = 1.0, € = 0.1 achieve better results when com-
pared with the Hybrid model with hyperparameters of a = 0.1, v = 0.6, ¢ = 0.1 and the

Greedy model with hyperparameters of & = 0.1, v = 0.1, ¢ = 0.1, as the training episode
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State 2 - Learning Curves of Greedy, Hybrid and DQN
models w.r.t rewards per timestep (larger rewards per
timestep mean reaching destination faster)
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Figure 5.9: Learning curves of Greedy, Hybrid and DQN models with respect to the rewards
per timestep, for the state 2

increases.

In the simulation in Figure 5.9, the learning curves of Greedy, Hybrid and DQN models

with respect to the rewards per timestep have been shown for the state 2.

Figure 5.9 presents the learning curves of Greedy, Hybrid and DQN models with re-
spect to the rewards per timestep, for the state 2. The larger rewards per timestep indi-
cates reaching destination faster. It has been noted that the Hybrid model with hyper-
parameters of & = 0.1, v = 0.6, ¢ = 0.1 and the DQN model with hyperparameters of
a= 0.1, v=1.0, e = 0.1 achieve better results when compared with the Greedy model with

hyperparameters of « = 0.1, v = 0.1, € = 0.1, as the training episode increases.

In the simulation in Figure 5.10, the variation of average rewards per timestep for the
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State 2 - Delta of average rewards per timestep for Hybrid
and DQN models, relative to Greedy
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Figure 5.10: Variation of average rewards per timestep for the Hybrid and DQN models
relative to Greedy model, for the state 2

Hybrid and DQN models with respect to Greedy model has been shown for the state 2.

Figure 5.10 presents the variation of average rewards per timestep for the Hybrid and
DQN models relative to Greedy model, for the state 2. It has been noted that the DQN
model with hyperparameters of &« = 0.1, v = 1.0, € = 0.1 achieve better results when com-
pared with the Hybrid model with hyperparameters of a = 0.1, v = 0.6, ¢ = 0.1 and the
Greedy model with hyperparameters of & = 0.1, v = 0.1, ¢ = 0.1, as the training episode

increases.
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State 3 - Learning Curves of Greedy, Hybrid and DQN
models w.r.t no. of timesteps (smaller no. of timesteps
mean minimum steps taken to reach destination)
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Figure 5.11: Learning curves of Greedy, Hybrid and DQN models with respect to the number
of timesteps, for the state 3

5.4.8 Benchmarking and evaluation of agent’s performance in State

3

In this simulation in Figure 5.11, the learning curves of Greedy, Hybrid and DQN models
with respect to the number of timesteps taken to reach destination have been shown for the
state 3, where current location state addressed by WMS is illustrated to be at a state of P/T
value of 0.5, and the maintenance activities are ongoing at location 1 (G), and the intent is
to carry out activities at location 0 (R), which has the lowest P/T" value of 0.1, from our

defined objective functions.

Figure 5.11 presents the learning curves of Greedy, Hybrid and DQN models with respect
to the number of timesteps for the state 3. The smaller number of timesteps per episode

indicates minimum time steps taken to reach the destination. It has been noted that the
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State 3 - Delta of average timesteps per episode for
Hydrid and DQN models, relative to Greedy
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Figure 5.12: Variation of average timesteps per episode for the Hybrid and DQN models
relative to Greedy model, for the state 3

Hybrid model with hyperparameters of &« = 0.1, v = 0.6, ¢ = 0.1 and the DQN model with
hyperparameters of « = 0.1, v = 1.0, € = 0.1 achieve better results when compared with the
Greedy model with hyperparameters of o = 0.1, v = 0.1, € = 0.1, as the training episode

increases.

In the simulation in Figure 5.12, the variation of average timesteps per episode for the

Hybrid and DQN models with respect to Greedy model has been shown for the state 3.

Figure 5.12 presents the variation of average timesteps per episode for the Hybrid and
DQN models relative to Greedy model, for the state 3. It has been noted that the DQN
model with hyperparameters of « = 0.1, v = 1.0, € = 0.1 achieve better results when com-
pared with the Hybrid model with hyperparameters of a = 0.1, 7 = 0.6, ¢ = 0.1 and the

Greedy model with hyperparameters of & = 0.1, v = 0.1, € = 0.1, as the training episode
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State 3 - Learning Curves of Greedy, Hybrid and DQN
models w.r.t rewards per timestep (larger rewards per
timestep mean reaching destination faster)
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Figure 5.13: Learning curves of Greedy, Hybrid and DQN models with respect to the rewards
per timestep, for the state 3

increases.

In the simulation in Figure 5.13, the learning curves of Greedy, Hybrid and DQN models

with respect to the rewards per timestep have been shown for the state 3.

Figure 5.13 presents the learning curves of Greedy, Hybrid and DQN models with re-
spect to the rewards per timestep, for the state 3. The larger rewards per timestep indi-
cates reaching destination faster. It has been noted that the Hybrid model with hyper-
parameters of & = 0.1, v = 0.6, ¢ = 0.1 and the DQN model with hyperparameters of
a= 0.1, v=1.0, e = 0.1 achieve better results when compared with the Greedy model with

hyperparameters of « = 0.1, v = 0.1, € = 0.1, as the training episode increases.

In the simulation in Figure 5.14, the variation of average rewards per timestep for the
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State 3 - Delta of average rewards per timestep for Hybrid
and DQN models, relative to Greedy
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Figure 5.14: Variation of average rewards per timestep for the Hybrid and DQN models
relative to Greedy model, for the state 3

Hybrid and DQN models with respect to Greedy model has been shown for the state 3.

Figure 5.14 presents the variation of average rewards per timestep for the Hybrid and
DQN models relative to Greedy model, for the state 3. It has been noted that the DQN
model with hyperparameters of a = 0.1, v = 1.0, ¢ = 0.1 achieve better results when com-
pared with the Hybrid model with hyperparameters of a = 0.1, v = 0.6, ¢ = 0.1 and the
Greedy model with hyperparameters of a = 0.1, v = 0.1, ¢ = 0.1, as the training episode

increases.
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5.5 Conclusion

A novel work management framework has been proposed in this Chapter that comprises
of Deep Q-Reinforcement Learning (DQN) algorithm implementation, to enable carrying
out activities that have minimal site constraints, considering the design features, operat-
ing conditions, deteriorations, consequences of not doing the activities and time required to
complete the activities, to get higher weighted sum of the completion times at short time
as possible, whereby achieving higher resource utilisations. Also, by using the optimal path
liquidates the risks to the asset’s performance and reach the next state.

The goal was to achieve the best trade-off between the turnaround time for the activities
and liquidating the risks to the asset’s performance, based on completion of activities in the
FPSO work management system.

The greedy algorithm benchmarks the performances of DQN model and a hybrid model
comprising of greedy and DQN parameters.

It has been noted that overall, the Hybrid model with hyperparameters of « = 0.1, ~ =
0.6, € = 0.1 and the DQN model with hyperparameters of « = 0.1, v = 1.0, ¢ = 0.1 achieve
better results when compared with the Greedy model with hyperparameters ofa = 0.1, v =
0.1, e = 0.1, as the training episode increases, towards task completion time and liquidating

the risks to the asset’s performance.



Chapter6

Conclusions and Recommendations for

further work

6.1 Introduction

The overall aim of this chapter is to summarise the conclusions of this work and propose a
further research direction incorporating DQN algorithm to position the succeeding research
that could in turn lead to the development of a comprehensive maintenance management
tool, which would be consistent, unaffected by human factors and incorporates the integra-
tion of the risks and site constraints on the overall offshore operations.

The aim of this research work was to develop an effective maintenance management approach
for offshore floating systems, governed by overall risks and site constraints and thereby en-
hancing the effectiveness and confidence of the framework. Within the frame of the overall
aim, the main objectives of this thesis have been specified to:

Research Objective 1: Investigate the maintenance frameworks and offshore operational
conditions, addressing the significance of overall risks and site constraints in better decision
making for maintenance planning, so as to develop an algorithm for multi-objective decision
making for maintenance planning.

Research Objective 2: Investigate how the logic behind qualitative risk assessment on pri-
oritisation of activities on the asset and managing the risks could be incorporated into

multi-objective decision making for maintenance planning.

235
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Research Objective 3: Investigate how to employ artificial intelligence to enhance the effec-
tiveness of maintenance frameworks for offshore floating systems, by incorporating overall
risks, operational priorities, and site constraints.

The above-mentioned objectives 1, 2 and 3 have been satisfied through the work presented

in Chapters 2 to 5 of this thesis and the following main conclusions were obtained.

6.2 Conclusions

e From the investigation work carried out in Chapter 2, it could be concluded as follows:

It has been noted that the maintenance performance indicators widely considered relates
to the asset availability, reliability, and safety compliance, whereas the site constraints and
impact of time required to carry out activities are not regarded as a performance indicator
in the existing literature, which is a major limitation of the existing frameworks, as the
availability of bed space offshore for any activity is the prime performance indicator for any
maintenance execution. It has been noted that probabilistic assessment models, Bayesian
Networks and Multi-objective optimisation techniques have been widely used in the litera-
ture for optimisation of maintenance activities. There exists scope for further research work
that would incorporate site constraints and impact of time required to carry out activities
including the Offshore resource availability into the maintenance plan and its impact on asset
condition due to the maintenance execution, in order to achieve the optimal maintenance
strategy.

The constraints of offshore personnel availability for the maintenance activity due to max-
imum allowable bed space is a factor not considered in any of the frameworks identified in
the literature review. This is a major limitation of the existing state-of-the art maintenance
frameworks. There are still research gaps in frameworks, towards incorporating the overall

risks, practical site constraints encountered mainly with regards to the availability of bed
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space onboard for the personnel, impact of time required to carry out activities and its im-
pact on other activities due to this maintenance.

Also, no dynamic and autonomous resource allocations for maintenance activities take place
in the offshore maintenance planning systems that allows each maintenance item to inde-
pendently adjust its resource allocation based on the time required to complete the activity,
to improve the resource utilisation. In that respect, the maintenance models have to incor-
porate the site operational constraints related to personnel resources, environmental factors,
and its impact on the overall activities in the maintenance planning system.

It could be concluded that there exists scope for further research work that addresses the
above-mentioned gaps by examining machine learning and deep Q- reinforcement learning
network based artificial intelligence approach, considering the design features, actual con-
dition of the component, site constraints, deterioration factors, consequences of not doing
the activities, time required to complete the activities and investigating the impact on key

maintenance performance indicators regarding resource allocations and resource utilisations.

e From investigation work carried out in Chapter 3, it could be concluded as follows:
The main objective of this Chapter was to formulate a maintenance plan optimisation prob-
lem that maximise the maintenance personnel resource utilisation and enable FPSO con-
dition enhancement, considering the priorities with respect to design features, operating
conditions, deteriorations, and the consequences of not doing the maintenance, taking into
consideration the personnel resource time required for activity completion. This has been
achieved by developing a FPSO main deck maintenance system model incorporating design
features, operating conditions, deteriorations, consequences of not doing the maintenance
and the personnel resource estimated to complete the activity. To enable the problem for-
mulation, a novel approach has been utilised such that the decision variables for each location
on the FPSO have been normalised between the maximum and minimum values along the

length of FPSO in order to bring the variables related to the functionality in proportion



CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORKS 238

with that at other locations along the FPSO, and also to enable scaling all of the decision
variables and whereby their respective objective functions to the same magnitude.

Also, a novel approach has been employed for the multi-objective optimisation of FPSO
main deck maintenance activities, such that to find the Pareto-optimal solution, an over-
all objective function has been developed as a linear combination of the multiple objective
functions corresponding to maintenance priorities with respect to normalised Stress Unity
Check, Fatigue Damage Ratio, Bending Moment Ratio, Shear Force Ratio, Degree of Cor-
rosion Scale, Degree of Metal Loss, Safety Risks in the event of not doing maintenance and
Financial Risks in the event of not doing maintenance respectively, taking into consideration
the personnel resource time required for activity completion. Depending on the priority of
the objective function when compared to other objective functions, a relative weight has been
associated to the prioritised objective function, using the weighted sum approach. Also, the
formulation enables maximisation and minimisation of the objective functions and provides
flexibility to direct the focus of the overall objective function towards any one or more of
the objective functions by adjusting their respective weight according to the maintenance

strategy followed.

e From investigation work carried out in Chapter 4, it could be concluded as follows:

A novel greedy algorithm has been proposed in this Chapter that incorporate the impact of
time required to complete the activities on the optimisation objectives of FPSO design fea-
tures, operating conditions, deteriorations, consequences of not doing the maintenance and
the personnel resource availability for activity completion. Also, the benchmarking of the
algorithm has been carried out by comparing the parameters, with and without considering
the time required to complete the task, which reflects influence of the time required to carry
out the activity, on the prioritisation of activities.

The evaluation of the model has been carried out by comparing the priorities for each sce-

nario based on 3 different loading conditions of the FPSO — Light load condition, Medium
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load condition and Full Load condition. The performance of the greedy algorithm has been
evaluated in terms of the personnel resource allocation and resource utilisation. To evaluate
the satisfaction of resource allocation, the weighted sum of the task completion times based
on the priorities have been considered. To evaluate the satisfaction of resource utilisation, it
has been considered that the higher weighted sum of the completion times at as short time
as possible, leads to higher resource utilisations.

The changes in priorities and productivity, if no maintenance is carried out in 1 years’ time
and 2 years’ time has been simulated and compared with the present planned resource al-
locations and resource utilisations, taking into account the ( P[i]/ T[i] ) change based on
change in T only, as a function of coating break down, and ignoring the effect of coating

breakdown on other decision variables.

e From investigation work carried out in Chapter 5, it could be concluded as follows:
A novel work management framework has been proposed in this Chapter that comprises
of Deep Q-Reinforcement Learning (DQN) algorithm implementation, to enable carrying
out activities that have minimal site constraints, considering the design features, operat-
ing conditions, deteriorations, consequences of not doing the activities and time required to
complete the activities, to get higher weighted sum of the completion times at short time
as possible, whereby achieving higher resource utilisations. Also, by using the optimal path
liquidates the risks to the asset’s performance and reach the next state.
The goal was to achieve the best trade-off between the turnaround time for the activities
and liquidating the risks to the asset’s performance, based on completion of activities in the
FPSO work management system.
The greedy algorithm benchmarks the performances of DQN model and a hybrid model
comprising of greedy and DQN parameters.
It has been noted that overall, the Hybrid model with hyperparameters of « = 0.1, v =

0.6, ¢ = 0.1 and the DQN model with hyperparameters of &« = 0.1, v = 1.0, € = 0.1 achieve
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better results when compared with the Greedy model with hyperparameters ofa = 0.1, v =
0.1, € = 0.1, as the training episode increases, towards task completion time and liquidating

the risks to the asset’s performance.

6.3 Recommendations for further work

Based on the insights developed from this research work, the following further work is being
proposed.

The offshore maintenance planning systems are expected to provide the capability of resource
allocations to access the resources on demand, confirm quality service on demand, and pro-
vide maintenance activities on demand as well as to provide maintenance with lower costs. It
would be challenging to have different systems served independently with a proper resource
allocation made according to their own requirements. A dynamic resource management and
deep reinforcement learning based autonomous resource allocation for the deteriorating off-
shore systems could be investigated as a further work.

The work could investigate the capability of maintenance planning systems to periodically
reserve the unused resources from the maintenance activities based on their ratio of minimum
resource requirements, and thereafter, the maintenance activity autonomously control their
resource amount using deep reinforcement learning based on the average quality of service
utility and resource utilisation of maintenance items. With the proposed framework, the
offshore systems could customise their own utility function and objective function based on
their own requirements.

A two-level framework for maintenance resource allocation could be developed in the pro-
posed work. In the top level, the work management system could dynamically reserve the
available unused resource to the appropriate maintenance systems. In the bottom level, the

maintenance systems could autonomously adjust their resource allocated to their mainte-
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nance items.

In the investigation of dynamic resource management, the work management system could
collect the unused resources from the maintenance items and reserves them back to the main-
tenance items that might need extra resource. The unused resources from the maintenance
items would be reserved back to them to prevent one maintenance activity from affecting
the performance of the other maintenance activity.

In the investigation of autonomous resource management for multiple maintenance items,
a deep reinforcement learning algorithm that autonomously adjusts resource allocated to
maintenance items based on the feedback of average quality of service utility and average
resource utilisation of their maintenance activities, could be employed.

This would in turn lead to the development of a comprehensive maintenance management
tool that would be consistent, unaffected by human factors and incorporates the integration
of the risks and site constraints on the overall Offshore operations. Also, the tool could be
adapted to predict the asset condition in future and could be used to estimate repair costs,

schedule repairs, evaluate consequences of repair strategy.
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List of Abbreviations

The abbreviations used in this thesis are:

« Learning rate
v Discount factor
€ Randomness factor

8Q 8 Quarter

BN Bayesian Network

C Diminution ratio

C(i) Total task completion time

D Fatigue Damage ratio

DQN Deep Q reinforcement learning Network
Fq Financial Risks

E; Objective Function

FPSO Floating Production Storage and O f floading Facility
M Bending Moment ratio

Pli] Priority

R Ratio of Coating Breakdown area

Ri Degree of Corrosion Scale

S Shear Force ratio

Sa Safety Risks

T[i] Time required to complete the task

e Stress Unity Check
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