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Completion Time Minimization for UAV-Assisted 
Mobile-Edge Computing Systems

Yu Xu, Graduate Student Member, IEEE, Tiankui Zhang, Senior Member, IEEE, Jonathan Loo,
Dingcheng Yang, Member, IEEE, and Lin Xiao, Member, IEEE

Abstract—The explosive computation demands in the Inter-
net of Things (IoT) have triggered the research interests on 
unmanned aerial vehicle (UAV) assisted mobile-edge computing 
(MEC) systems even though there are still many challenges, such 
as computing delay requirement, multi-UAV cooperation, and 
resource management. This letter focuses on the computing delay 
issue in MEC systems assisted by multiple UAVs with the goal of 
task completion time minimization. In particular, both the partial 
offloading a nd b inary o ffloading mo des ar e co nsidered by  jointly 
optimizing time slot size, terminal devices scheduling, computation 
resource allocation, and UAVs’ trajectories. Particularly, an non-
LoS channel model is adopted for UAV-ground communication. To 
handle the formulated problems, we develop alternating optimiza-
tion algorithms by invoking the successive convex approximation 
method, Karush-Kuhn-Tucker conditions and penalized method. 
Numerical results show that the completion time is significantly 
decreased by the proposed algorithms.

Index Terms—Internet of Things, mobile edge computing, tra-
jectory optimization, UAV communication.

I. INTRODUCTION

Mobile edge computing (MEC) has emerged as a promising
technology to cater to the explosive computation demands of
many computation-hungry and latency-sensitive applications in
Internet of things (IoT), such as augmented reality and automat-
ic pilot [1]. In MEC networks, two offloading m odes, partial
offloading m ode a nd b inary c omputation m ode, a re usually
adopted according to the application scenario [2]. For the partial
offloading m ode, t he c omputation t ask i s d ivided i nto several
parts. One part is computed locally, while the other parts are
computed by offloading to MEC server(s). For example, in high
computation requirement scenarios such as facial recognition,
the lower computation part can be computed locally and the
higher computation part is computed by offloading. F or the
binary offloading m ode, t he c omputation t ask i s computed
locally or offloaded a ltogether. For example, i f p erforming the
channel state information estimation, the collected raw data
samples have to be computed as a whole for ensuring the
estimation accuracy [3].

Although a lot of attention has been focused on MEC, the la-
tency in MEC is still an opening problem that are investigated in
few works [4]–[7]. Specifically, the authors in [4] and [5] study
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the latency minimization problem in MEC by communication
and computation resource allocation. Next, they investigate the
latency minimization of all mobile devices in collaboration
between cloud computing and edge computing scenarios [6].
The works [4]–[6] only consider the partial offloading mode.
To fully utilize the spectrum resource, the work in [7] studies
the latency in full-duplex MEC systems. However, the devices
in [7] are unable to perform local computing. Note that the MEC
servers in these existing latency-related works are deployed
fixedly, which leads to many limitations in terms of flexibility.
Also, the computation resource in these networks is unavailable
in practice for the terminal devices (TDs) located in remote
place or “dead” zone, such as mountainous areas.

With the flexibility and low cost, unmanned aerial vehicle
(UAV) has applied in varieties of communication scenarios,
such as NOMA-UAV systems [8] [9]. Also, UAV has the
potential to provide computation for the remote devices [1],
which called as UAV-assisted/enabled MEC. By exploiting the
mobility, UAV can be utilized to shorten the transmit latency
[10]–[13], which provides the potential to tackle with the
latency issue in MEC systems mentioned above. Besides the
communication time cost, as discussed in [10]–[13], UAV-
assisted MEC incurs an additional time overhead on com-
putation that has to be carefully designed since the UAV
has limited computation capability. In addition, note that the
deterministic LoS channel following the free-space pathloss
model links are used as the UAV-ground channel model for the
literatures mentioned above, which is practically inaccurate in
urban/suburban environment. Moreover, in UAV-assisted MEC
systems, the single one UAV case is facing the issue of weak
payload, limited coverage and lacking computation capacity.
Thus, it is labored even infeasible for one UAV to satisfy the
specific scenario with large-scale users or huge amount of tasks.

Motivated by these, we study the latency problem in MEC
systems assisted by multiple UAVs in this paper. To be specific,
we consider the scenario where multiple UAVs equipped with
MEC servers aim to help TDs for computing. Each TD has a
certain number of computation requirement that is computed
locally and/or offloaded to the UAVs for execution. To the best
of our knowledge, the latency in UAV-assisted MEC has not
yet been well studied. In summary, the main contributions of
this work are presented as follows,
• We propose a new framework of UAV-assisted MEC

system to study the latency issue, in which multiple UAVs
are adopted to enhance the computation capacity. Particu-
larly, both the partial offloading and binary offloading are
considered. To fit in reality, we discard the usual simplified
LoS links, and the UAV-ground links are modeled by non-
LoS (NLoS) channel model that consists of large-scale
fading and small-scale fading.

• We formulate a novel task completion time minimization
problem, by jointly optimizing the time slot size, TDs
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Fig. 1. Illustration of the multiple UAV-assisted MEC systems.

scheduling, computation resource allocation, and UAVs’
trajectories. Different from the typical setup of fixed num-
ber of time slots and constant length of each time slot, we
propose a dynamic method to determine the total number
of time slots and the length of each time slot.

• We introduce several techniques, including successive
convex approximation (SCA) method, Karush-Kuhn-
Tucker (KKT) conditions, penalized method, and bisection
method, to optimize the formulated problems according
to their characteristics. After that, we propose the effec-
tive alternating optimization (AO) algorithms followed by
convergence and complexity analysis. Finally, numerical
result is presented to validate that our proposed algorithms
significantly decrease the completion time.

II. SYSTEM MODEL

We consider the UAV-assisted MEC systems that consist of
a set K , {1, 2, ...,K} of ground TDs, in which multiple
mobile UAVs, denoted by M , {1, 2, ...,M}, are deployed
to assist the TDs to compute the task during a period called
as task completion time, as shown in Fig. 1. For ease of
discussion, the period is divided into N > 0 time slots with
each duration of T [n], n ∈ N , {1, 2, ..., N}. Note that the
value of N is a well-chosen deterministic value. Evidently, the
task completion time is determined by

∑N
n=1 T [n]. In a 3D

Cartesian coordinate system, by giving any time instant t with
0 ≤ t ≤

∑N
n=1 T [n], the horizonal locations for TD k ∈ K and

UAV m are denoted by wk and qm(t) = qm[n], respectively,
with t =

∑n
i=1 T [i], and wk, qm[n] ∈ R2×1. Note that the

horizontal location of each TD can be always known via their
GPS information. Denote H as the UAVs’ fixed altitude. We
assume that the battery power of each UAV is adequate during
the mission. The distance between the UAV m and TD k in time
slot n can be denoted by dkm[n] =

√
H2 + ||qm[n]−wk||2.

We consider quasi-static fading channels, and the instantaneous
channel gains between the UAVs and TDs are modeled as

hkm[n] =
√
β0d
−α
km[n]gkm[n],∀k, n, (1)

where β0 is the channel gain at the reference distance d0 = 1
m, α ≥ 2 denotes the path loss exponent, gkm[n] is the complex
valued random variable with E[|gkm[n]|2] = 1 accounting for
the small-scale fading that is modeled by Rician fading [14],
given as gkm[n] =

√
Kkm[n]
Kkm[n]+1g +

√
1

Kkm[n]+1 g̃, where g

denotes the LoS channel component with |g| = 1, g̃ is a zero-
mean unit-variance circularly symmetric complex Gaussian
variable that denotes the random scattered component, and
Kkm[n] is the Rician factor.

In order to avoid the complex channel state estimation and
feedback, we consider a time division scheme for each TD
offloading task to UAVs in turns in each time slot. Let Pk

and B denote the maximum transmit power of TDs and total
bandwidth of the system, respectively. In particular, for partial
offloading mode, the task of TD k in current time slot is
divided into M + 1 sections, among which one section is
computed locally and the other sections are offloaded to UAVs
over M orthogonal sub-carriers with a constant transmit power
Pkp = Pk/M . Let Bp = B/M denote as the bandwidth of
each sub-carrier. For binary offloading mode, the task of each
TD is executed either at locally or offloaded to no more than
one UAV. Thus, the transmit power and available bandwidth in
binary offloading mode are given by Pkb = Pk and Bb = B,
respectively. Define σ2

0 as the noise power at the receiver.
Hence, the offloading rate from TD k to the UAV m in time
slot n is expressed as

R̂kmj [n] = Bj log2

(
1 +

Pkj |hkm[n]|2

σ2
0

)
, j ∈ {p, b}. (2)

Note that R̂kmj [n] is intractable due to the random variable
hkm[n] in (2). One feasible method to tackle this is to adopt the
average offloading rate, i.e., E[R̂kmj [n]], which can be further
tackled by the Jensen’s inequality. In order to close to reality
and embody the effect caused by small-scale fading, we adopt
an approximation form by logistic regression method to achieve
the effective fading power based on [14], thus the offloading rate
of R̂kmj [n] is approximately denoted as Rkmj [n], given by

Rkmj [n] = Bj log2

(
1 +

Pkjγ0vkm[n]

(H2 + ||qm[n]−wk||2)α/2

)
, (3)

where γ0 = β0/σ
2
0 , vkm[n] = C1 + C2

1+e−(B1+B2ukm[n]) , where
B1, B2, C1 and C2 are coefficients related to the logistic model,
and ukm[n] = H√

H2+||qm[n]−wk||2
is the sine of the elevation

angle. The derivation for (3) is detailedly referred in [14].
It is assumed that the total computation task/workload of each

TD in bits is Dreq , and let Dk[n] denote the number of allocated
task for TD k in time slot n, satisfying

∑N
n=1Dk[n] = Dreq .

Let ck and Fk denote the the required CPU cycles for comput-
ing each one bit and the maximum CPU frequency, respectively,
at TD k. Denote ρkm[n] as the ratio of the task offloading from
TD k in slot n to UAV m, thus the ratio of the task computed
locally for TD k in time slot n is denoted by 1−

∑M
m=1 ρkm[n].

Therefore, based on [15], the time for local computing for TD
k in time slot n is denoted as

tLk[n] =
(1−

∑M
m=1 ρkm[n])Dk[n]ck

Fk
,∀k, n. (4)

It is evident that for TD k, the amount of task ρkm[n]Dk[n]
is executed at the UAV m in time slot n. Let fmk[n] ≥ 0 denote
the CPU frequency of the UAV m to execute computation for
TD k in time slot n, which is constrained by the maximum
CPU frequency Fmax

m , i.e.,
∑K
k=1 fmk[n] ≤ Fmax

m ,∀m,n.
Specifically, the time allocated to schedule TD k in time slot n
for offloading to UAV m is denoted by tOkmj [n], which satisfies
tOkmj [n] ≥ ρkm[n]Dk[n]

Rkmj [n]
. Moreover, let cm and tUkm[n] denote the

required CPU cycles for computing each one bit and the time
for computing the task from TD k at UAV m, respectively. We
assume that the arrived task at the UAV m in current time slot
is stored in the buffer and then fully computed in the next time
slot. Therefore, we obtain the following constraint,

tUkm[n] ≥ ρkm[n− 1]Dk[n− 1]cm
fkm[n]

,∀k,m, n ≥ 2. (5)

The time for results sending back is omitted due to the
much smaller size than the offloaded task [15]. Note that
local computing, task offloading and UAVs’ computing can be
performed parallelly in our design. As a result, the duration of
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time slot n should satisfy the following constraint,

T [n] ≥ max

{
max
∀k

tLk[n],max
∀m

K∑
k=1

tOkmj [n],max
∀k,m

tUkm[n]

}
. (6)

Note that both the partial offloading mode and binary offload-
ing mode are considered for TDs. For the partial offloading,
each TD in time slot n is able to offload discretionary amount
of task to the UAVs, i.e., ρkm[n] ∈ [0, 1]. While for the binary
offloading, the task in time slot n is computed either at the
TD or at no more than one UAV, i.e., ρkm[n] ∈ {0, 1} and∑M
m=1 ρkm[n] ≤ 1.
To facilitate the assumption that the UAVs’ locations are

quasi-static within any time slot, the length of each time slot
is subject to the constraint T [n] ≤ ∆m, where ∆m is the
allowable maximum length that is predefined.

We formulate the problem that minimizes the task completion
time for partial offloading mode, which is expressed as

(P1) : min
Z

N∑
n=1

T [n]

s.t. T [n] ≥
(1−

∑M
m=1 ρkm[n])Dk[n]ck

Fk
, ∀k, n, (7a)

T [n] ≥
K∑
k=1

ρkm[n]Dk[n]

Rkmp[n]
,∀m,n, (7b)

T [n] ≥ ρkm[n− 1]Dk[n− 1]cm
fkm[n]

, ∀k,m,n ≥ 2, (7c)

0 ≤ ρkm[n] ≤ 1,

M∑
m=1

ρkm[n] ≤ 1, ∀k,m, n, (7d)

K∑
k=1

fmk[n] ≤ Fmax
m , ∀m,n, (7e)

Dk[n] ≥ 0,

N∑
n=1

Dk[n] ≥ Dreq, ∀k, (7f)

0 ≤ T [n] ≤ ∆m, fmk[n] ≥ 0,∀k,m,n, (7g)
||qm[n+ 1]− qm[n]|| ≤ VmaxT [n], ∀m,n, (7h)

||qm[n]− ql[n]||2 ≥ d2
m,∀m, l ∈M, n,m 6= l, (7i)

qm[1] = qm[N ], (7j)
where Z , {T [n], Dk[n], ρkm[n], fmk[n],qm[n]}, (7f) denotes
the minimum task requirement for TD k. The constraint in (7h)
indicates that the UAVs’ flight distance in one time slot cannot
exceed a maximum distance, and Vmax denotes the maximum
speed of each UAV. Constraint (7i) denotes that any two UAVs
always need to keep a minimum secure distance dm for collision
avoidance. The constraint in (7j) means that the UAVs need to
fly back to their initial locations after task completion for the
sake of recycling. Note that we can readily apply this work to
the case with different initial and final locations without any
impact on the following analysis. It is worth noting that (7a)-
(7c) are equivalent to (6). Evidently, problem P1 is non-convex
due to the non-convexity in (7a)-(7c) and (7i).

Similarly, the completion time minimization problem for
binary offloading mode is formulated as

(P2) : min
Z

N∑
n=1

T [n]

s.t. (7a), (7c)-(7j),

T [n] ≥
K∑
k=1

ρkm[n]Dk[n]

Rkmb[n]
,∀m,n, (8a)

ρkm[n] ∈ {0, 1},∀k,m, n. (8b)

Evidently, problem P2 is also non-convex due to the non-
convexity in the constraints (7a), (7c), (7i), (8a), and (8b).

III. PROPOSED JOINT OPTIMIZATION ALGORITHM

In this section, we propose the efficient AO algorithms to
solve the problem P1 and P2. For clarity, we first discuss the
partial offloading mode. Then the analysis for binary mode is
presented. Finally, we present the proposed algorithms.

A. Partial Offloading Mode
For the partial offloading, we solve the problem P1 by

tackling with the non-convexity in (7a)-(7c) and (7i). Define
Z̃1 , {ρkm[n], Dk[n]}, Z̃2 , {fkm[n]}, and Z̃3 , {qm[n]}.
Then, the problem is decomposed and solved by three steps in
an alternating manner.

1) Step 1: Optimizing problem P1 by fixed Z̃2 and Z̃3.
Lemma 1: The non-convex constraint (7a) can be converted

as convex form that is expressed as

T [n]sk ≥
(ρ̃k[n] +Dk[n])2

4
+

(ρ̃rk[n]−Dr
k[n])2

4

− (ρ̃k[n]−Dk[n])(ρ̃rk[n]−Dr
k[n])

2
, (9)

where sk = Fk/ck, ρ̃k[n] ≥ 1−
∑M
m=1 ρkm[n] is an introduced

auxiliary variable, ρ̃rk[n] and Dr
k[n] are the given feasible points

at the rth iteration.
Proof: Considering ρ̃km[n]Dk[n] of the right-hand side of

(7a), it can be rewritten as difference-of-convex form, i.e.,

ρ̃km[n]Dk[n] =
(ρ̃km[n] +Dk[n])2

4
− (ρ̃km[n]−Dk[n])2

4
. (10)

Next, we adopt SCA method to deal with (10). Define z ,
{ρ̃km[n], Dk[n]}, and f(z) , (ρ̃km[n] − Dk[n])2. Obviously,
f(z) is convex w.r.t. z. Thus, we can obtain its lower-bound
function by the first-order Taylor expansion at zr, expressed as

f lb(zr, z) = f(zr) + 2R{∇fH(zr)(z− zr)}
= (ρ̃km[n]−Dk[n])(ρ̃rkm[n]−Dr

k[n])

− (ρ̃rkm[n]−Dr
k[n])2. (11)

By substituting f(z) with f lb(zr, z) into (10) and via minor
transformation, (9) is obtained. This proof is completed.

Remark 1: Lemma 1 provides a technique for approximate
convex variant. When the points ρ̃rkm[n] and Dr

k[n] become
stable in iterations, the inequality ρ̃km[n] ≥ 1−

∑M
m=1 ρkm[n]

and the constraint (9) must hold with equality. Thus, at least a
sub-optimal solution is guaranteed to achieve in this step.

Let νprkmn =
(
Bp log2

(
1 +

Pkpγ0v
r
km[n]

H2+||qm[n]−wk||α/2

))−1

, ςrkmn =

frkm[n]/cm, and χrkm[n] = ρrkm[n] − Dr
k[n]. According to

Lemma 1, the constraints (7b) and (7c) can be approximately
converted into the following convex forms, expressed as

4T [n] ≥
K∑
k=1

M∑
m=1

νprkmn

(
(ρkm[n] +Dk[n])2 + (χrkm[n])2

− 2(ρkm[n]−Dk[n])χrkm[n]

)
, (12)

4T [n]ςrkmn ≥ (ρkm[n− 1] +Dk[n− 1])2 + (χrkm[n− 1])2

− 2(ρkm[n− 1]−Dk[n− 1])χrkm[n− 1]. (13)
Accordingly, by substituting (7a)-(7c) with (9), (12) and (13),

the problem P1 in Step 1 becomes convex that is efficiently
solved by the convex optimization tools.

2) Step 2: Optimizing problem P1 by fixed Z̃1 and Z̃3

In this step, the problem P1 is convex w.r.t. fkm[n]. There-
fore, via the KKT conditions, we obtain the closed-form solu-
tion of fkm[n] in Lemma 2.



4

Lemma 2: The optimal solution of fkm[n] by solving the
problem P1 is given by

f∗km[n] =

 0, if ρrkm[n− 1] = 0,√
ρrkm[n−1]Drk[n−1]F

max
m∑K

k=1

√
ρrkm[n−1]Drk[n−1]

, otherwise. (14)

Proof: For the case of ρrkm[n − 1] = 0, namely there
is no task bits from TD k at the buffer of UAV m in
current time slot n, thus the UAV m dose not allocate
any computation resource to TD k, i.e., f∗km[n] = 0. For
ρrkm[n − 1] 6= 0, define Ξ , {T [n], fkm[n], λkmn, µmn}, the
Lagrange function of P1 is expressed as L(Ξ) =

∑N
n=1 T [n] +∑K

k=1

∑M
m=1

∑N
n=2 λkmn

(
ρkm[n−1]Dk[n−1]cm

fkm[n]
− T [n]

)
+∑M

m=1

∑N
n=2 µmn

(∑K
k=1 fmk[n]− Fmax

m

)
, with λkmn, µmn ≥ 0.

As the problem P1 is convex, the Slaters condition
is satisfied. By applying KKT conditions, we obtain
∂L(Ξ)
∂fkm[n]

= 0, λkmn( ρkm[n−1]Dk[n−1]cm
fkm[n]

− T [n]) = 0,
µmn(

∑K
k=1 fmk[n] − Fmax

m ) = 0. Based on these equations, the
final result f∗km[n] is derived. This proof is completed.

Remark 2: Lemma 2 reveals that the optimal CPU frequency
for executing the task of TD k at the UAV m is absolutely de-
termined by the offloaded task in the last time slot. Specifically,
the larger value of the offloaded task bits of TD k is, the more
frequency is supposed to be allocated to execute for TD k.

3) Step 3: Optimizing problem P1 by fixed Z̃1 and Z̃2

For fixed Z̃1 and Z̃2, all the constraints of problem P1 are
affine besides the constraint (7b) and (7i). Note that constraint
(7b) is a quite complex function w.r.t. qm[n]. First, we convert
it into more tractable forms based on Lemma 3.

Lemma 3: By introducing the nonnegative auxiliary param-
eters πkmn, xkmn, ykmn, skmn and vkmn, the constraint (7b)
is equivalent to the following constraints,

T [n] ≥
K∑
k=1

ρkm[n]Dk[n]

πkmn
, (15a)

πkmn ≤ Bp log2

(
1 +

Pkpγ0C1 +
Pkpγ0C2

xkmn

y
α/2
kmn

)
, (15b)

xkmn ≥ 1 + e−skmn , (15c)

ykmn ≥ ||qm[n]−wk||2 +H2, (15d)
skmn ≤ B1 +B2ukm[n], (15e)
Proof: In order to prove the equivalence between (7b)

and (15), we just need to show that the inequalities in (15)
meet with equalities. For (15b), it has to meet with equality,
otherwise we can increase the value of πkmn, thus further
decrease T [n], which is expected. Similarly, it is known that
the rest of inequalities in (15) also must hold with equalities
and the details are omitted here. Hence, the constraint (7b) is
equivalent (15). This proof is completed.

Note that constraints (15b) and (15e) is still non-convex.
Nevertheless, the right-hand side of (15b) is a joint convex
function w.r.t. xkmn and yα/2kmn, and ukm[n] in (15e) is convex
w.r.t. ||qm[n]−wk||2 +H2, which motivates us to invoke the
SCA method to tackle with them. Specifically, for given feasible
points xrkmn and yα/2,rkmn , we get the lower-bound function of the
right-hand side of (15b) as follows,

ϕlbkm[n] =Ar1km[n]−Ar2km[n](xkmn − xrkmn)

−Ar3km[n]
(
y
α/2
kmn − y

α/2,r
kmn

)
, (16)

where Ar1km[n] = Bp log2

(
Dr

1km[n] +
Dr2km[n]

xr
kmn

)
, Ar2km[n] =

Bp log2(e)Dr2km[n]

xr
kmn(Dr1km[n]xr

kmn
+Dr

2km
[n])

, Dr
1km[n] = 1 + Pkpγ0C1/y

α/2,r
kmn ,

Dr
2km[n] = Pkpγ0C2/y

α/2,r
kmn , Ar3km[n] =

Bp log2(e)Erkm[n]

y
α/2,r
kmn

(
y
α/2,r
kmn

+Er
km

[n]
) ,

and Erkm[n] = Pkpγ0C1 + Pkpγ0C2/x
r
kmn. Then, we obtain

the lower bound of ukm[n] with qrm[n], given as
ulbkm[n] = ur1km[n]

− ur2km[n]
(
||qm[n]−wk||2 − ||qrm[n]−wk||2

)
, (17)

where ur1km[n] = H√
H2+||qrm[n]−wk||2

, and ur2km[n] =

H
2(H2+||qrm[n]−wk||2)3/2

. As a result, the constraints (15b) and
(15e) are respectively transformed as

πkmn ≤ ϕlbkm[n],∀k,m,n. (18)

skmn ≤ B1 +B2u
lb
km[n]. (19)

In (7i), we find that ||qm[n]−ql[n]||2 is jointly convex w.r.t.
qm[n] and ql[n], which motivates us to gain its lower bounded
function by using the first order Taylor expansion at given local
points qrm[n] and qrl [n], denoted by
ψlbm,l[n] = ||qrm[n]− qrl [n]||2+

2 (qrm[n]− qrl [n])
†

(qm[n] + qrl [n]− ql[n]− qrm[n]) , (20)
where (·)† denotes the transpose operation.

Therefore, by substituting (7b) with (15a), (15c), (15e), (18)
and (19), and (7i) with (20), the problem P1 in Step 3 is convex
that can be efficiently solved by the convex optimization tools.

Remark 3: The main thought of trajectory optimization in
Step 3 is that the primal non-convex problem is first ap-
proximately converted into a convex form by introducing the
auxiliary variables. Then, the trajectory is updated in each
iteration based on SCA method, until a stable local optimal
point is reached.

B. Binary Offloading Mode

For the binary offloading mode, i.e., P2, it belongs to a mixed
integer non-convex problem. In order to derive the solution, a
penalized algorithm that includes double loops is proposed.

Lemma 4: With given penalty parameter % and feasible point
ρrkm[n], the solution to problem P2 for the binary offloading
is obtained by solving the following penalized problem P2.1,

(P2.1) : min
Z̃

(
N∑
n=1

T [n]

+ %

K∑
k=1

M∑
m=1

N∑
n=1

|(2ρrkm[n]− 1)ρkm[n]− (ρrkm[n])2|2
)

s.t. (7a), (7c), (7e)-(7j), (8a).
Proof: First, the constraint ρkm[n] ∈ {0, 1} can be written

as the equivalent form of ρkm[n](ρkm[n] − 1) = 0 that holds
if and only if ρkm[n] equals to 0 or 1. Thus, we denote the
penalty term as %

∑K
k=1

∑M
m=1

∑N
n=1 |ρkm[n](ρkm[n] − 1)|2

involved in the objective function. For case of ρkm[n] 6∈ {0, 1},
the increasing penalty parameter % is imposed to the objective
function of problem P2.1, which conflicts with the goal of
problem. Therefore, ρkm[n](ρkm[n]− 1) = 0 must hold at the
optimal solution, i.e., % � 1. Then, we apply SCA method to
handle the non-convexity of the introduced penalty term. Via
the first-order Taylor expansion for the penalty term at ρrkm[n],
|(2ρrkm[n]−1)ρkm[n]−(ρrkm[n])2|2 is obtained. Thus, the proof
is completed.

It is worth mentioning that the penalized algorithm consists
of double loops. The primal variables are optimized in the inner
loop, and the penalty parameter is updated with a step size
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c > 1 in the outer loop. Note that besides the objective function,
problem P2.1 is actually identical to problem P1 for partial
offloading mode, indicating that problem P2.1 can be solved by
the foregoing Step 1 to Step 3 with any given penalty parameter.

C. Procedure of Proposed Algorithms

Based on Step 1-3 above, we propose the effective AO algo-
rithms to solve problems P1 and P2.1, which are summarized
in Algorithm 1 and Algorithm 2, respectively. In particular, the
number of time slots N is a given deterministic value that,
however, has a great impact on the algorithm complexity. To
reduce the complexity, we propose a bisection method to obtain
a minimum feasible N before starting the algorithms, which is
presented in Algorithm 3. Note that each step presented above
serves the lower bound for the previous step so that the objective
value is non-increasing in iterations. Also, it is evident that the
objective function is lower-bounded by a finite value, i.e., 0.
Hence, the proposed algorithms are guaranteed to converge.

Algorithm 1 Proposed AO algorithm for partial offloading

1: Initialize Z̃1 ,Z̃2, Z̃3. Set accuracy ε, iteration r = 0, give
the maximum number of iterations Imax.

2: Determine the value of N via Algorithm 3.
3: repeat
4: Update Z̃1 by fixed Z̃2 and Z̃3 in Step 1.
5: Update Z̃2 by fixed Z̃1 and Z̃3 in Step 2.
6: Update Z̃3 by fixed Z̃1 and Z̃2 in Step 3.
7: Update r ← r + 1.
8: until reach the accuracy or exceed the value of Imax.

Algorithm 2 Proposed AO algorithm for binary offloading

1: Initialize Z̃1 ,Z̃2, Z̃3. Set penalty parameter %l and accuracy
ε, iteration l = 0, give the maximum number of iterations
Imax, penalty step c < 1.

2: Determine the value of N via Algorithm 3.
3: repeat
4: Solve P2.1 via Step 1 to Step 3 with given %l.
5: Update %l+1 ← c%l.
6: Update l = l + 1.
7: until reach the accuracy or exceed the value of Imax.

Algorithm 3 A bisection method to determine value of N
1: Set a sufficiently large number of time slots NR that makes

the target problem feasible, and let NL = 0.
2: repeat
3: Calculate N = dNL+NR2 e.
4: if target problem is feasible with N then
5: Update NR = N .
6: else
7: Update NL = N .
8: end if
9: until reach the expected accuracy.

The complexity of Algorithm 1 in each iteration mainly lies
in the step 4 to step 6 of this algorithm. Moreover, the number
of optimization variables of Algorithm 1 mainly depends on

K, M and N . Based on [12] [16], the total complexity of
Algorithm 1 for the partial offloading mode can be roughly
given by O(LK3M3N3+KMN log2(1/εb)), where L denotes
the number of iterations of Algorithm 1, and εb denotes the
accuracy for the bisection search. Similarly, the total complexity
of Algorithm 2 for the binary offloading mode can be roughly
given by O(LiLoK

3M3N3 + KMN log2(1/εb)), where Li
and Lo denote the number of iterations of inner loop and that
of outer loop, respectively. It is obvious that the algorithm
complexity of the binary offloading mode is higher than that
of the partial offloading mode. In practice, compared with the
binary offloading mode, the partial offloading mode is more
dynamical and flexible to exploit the network resources with
a lower algorithm complexity, but it requires a more complex
circuit and protocol [3].

IV. NUMERICAL RESULTS

In this section, we present the numerical results. We consider
M = 2 UAVs serve K = 6 TDs at H = 100 m with the
maximum speed Vmax = 30 m/s. The referenced channel gain
and noise power are β0 = −60 dB and σ2

0 = −110 dBm,
respectively. Based on [14], let B1 = −4.3221, B2 = 6.0750,
C1 = 0, C2 = 1, and the path loss exponent α = 2.3. Set
ck = cm = 103 cycles/bit and the maximum CPU frequency
Fk = 0.5 GHz, Fmax

m = 10 GHz. In addition, the maximum
time slot length is set as ∆m = 1 s, the accuracy and maximum
iterations are set as ε = 10−3 and Imax = 50, respectively. The
initial value of penalty parameter is set as %0 = 0.01, and
the step c = 1.5. The transmit power Pk = 20 dBm, and the
bandwidth B = 2 MHz. The secure distance between UAVs is
dm = 10 m. In addition, for the initialization, the trajectories
of UAVs are set as circle flight with different radius of 100 m
and 80 m, the CPU frequency at UAVs is equally allocated for
each TD, and the task partition is set as ρk1[n] = ρk2[n] = 0.4.
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Fig. 2. UAVs’ trajectories under different computation requirements.

In Fig. 2, we present the UAVs’ trajectories for the the partial
offloading (PO) and binary offloading (BO) under Dreq = 30
Mb and Dreq = 50 Mb. To reflect the location changes, the
trajectories are sampled every one time slot and marked with
“?”s. We observe that with Dreq increasing, the UAVs flies
closer to the remote TDs so as to contribute to build high-
quality links, thus further decreases the offloading time. It is
expected that the UAVs’ trajectories for the PO and BO are
diverse due to the different scheduling in the two modes.

The convergence of the proposed Algorithm 1 and Algorithm
2 under different task requirements is illustrated in Fig. 3. It
shows that the proposed algorithms significantly decrease the
task completion time. Note that, at the beginning, Algorithm
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Fig. 3. Convergence performance of the proposed
algorithms.
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Fig. 4. Completion time with varying number of
TDs.
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Fig. 5. Minimum completion time with varying
task requirements.

2 has a sufficient degree of freedom for optimization because
the low-valued penalty term has little effect on the objective
value. With the increasing of penalty parameter in iterations, the
penalty term is playing a increasing impact, thus the objective
value is rising until each TD fully executes binary offloading.

In order to illustrate the general applicability of the proposed
algorithms, we compare the task completion time with different
number of TDs under different computation requirement in
Fig. 4. It observes that our proposed AO algorithms are feasible
for different network size. Moreover, the task completion time
for the binary offloading increases faster than that for the partial
offloading, which indicates that the partial mode outperforms
the binary mode, as expected. This figure also validates that the
proposed AO algorithms are feasible for the real applications
with large number of TDs.

Fig. 5 shows the task completion time versus different values
of Dreq for the PO and BO, including the following special
designs for comparison:
• Proposed algorithm (PA): Algorithm 1 and Algorithm 2.
• Static design(SD): the UAVs are fixed at two points.
• Equal computation resource allocation design (ECRAD):

The CPU frequency of each UAV is equally allocated to
each TD in each time slot.

• Only offloading for computing design (OOCD): the com-
putation task is executed only at the UAVs by offloading.

• Lower bound design (LBD): the UAVs’ speed is set as
Vmax →∞ under partial offloading mode, thus the UAVs
are over each TD all the time with the distance of H .

From Fig. 5, LBD actually gives an ideal value that measures
the optimality of our proposed algorithm. It is observed that
the partial offloading mode outperforms the binary offloading
mode because of the flexible allocation for task. Besides, PA
for these two offloading modes outperforms the corresponding
special cases, which validates the performance gain brought by
our proposed algorithms. Moreover, it is observed that OOCD
achieves a good performance because of the powerful computa-
tion ability of the UAVs. From the fact that PA overmatches the
SD and ECRAD, it indicates that the important role in trajectory
plan and computation resource optimization.

V. CONCLUSIONS

This paper investigated a problem for MEC systems assisted
by multiple UAVs with the goal of task completion time
minimization. The NLoS channel model was adopted for UAV-
ground links. We developed effective alternating optimization
algorithms for two offloading modes. Numerical results showed

the convergence of our proposed algorithms, and also validated
that the completion time can be significantly decreased. This
paper filled the gap of the latency study in multi-UAV assisted
MEC systems. This paper also laid a foundation for more
interesting and complex scenarios in future study, such as the
scenario with probabilistic LoS model.
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