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ABSTRACT 

Urbanisation often leads to the destruction of green areas in the urban environment. To this extent, urban trees help 

mitigating its detrimental effects, as well as offering a variety of socioeconomic and environmental benefits. The presence 

of root systems in built environments usually results in structural damage, as for example shrinkage of expansive soils due 

to water suction by roots, resulting in subsidence and fissures in foundations, or roots obstructing pipes and sewers and 

damaging roads and pavements. 

Ground Penetrating Radar (GPR) has been extensively used in various areas of civil and environmental engineering. 

Research has focused on implementing 3D algorithms and investigating root density, and a recent experimental research 

examined the feasibility of a novel tree root assessing methodology, that processes GPR data both in time and frequency 

domains. The aim of this research is to improve upon the above-mentioned data processing algorithm, investigating the 

variation of the frequency spectrum of the GPR signal in urban tree root systems’ surveys by means of a Short-Time 

Fourier Transform (STFT). Results proved the viability of the methodology and paved the way to further developments 

for the investigation of urban trees’ root systems using GPR. 
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1. INTRODUCTION  

More than half of the world's population lives in cities in this historical moment, and this figure is predicted to grow up to 

nearly 70 percent by the year 2050 1. The exponential growth of cities often lacks land-use planning policies, resulting in 

degradation of green areas in and around cities. If properly maintained, urban trees help mitigating the negative impact 

and social effects of urbanisation, thus making cities more resilient to these changes by offering a wide variety of 

socioeconomic and environmental benefits 2-4. To this end, the UK government has recently announced the planting of 

50,000 trees in England 5. 

However, the conflicting coexistence of tree root systems with the built environment often causes extensive structural 

damage with obvious socioeconomic implications. An example is the shrinkage of expansive soils due to water extraction 

by roots, leading to subsidence and cracks in building foundations 6. Furthermore, pipes and sewers with localised water 

leakage can be obstructed by uncontrolled roots development, as these proliferate in areas with a high concentration of 

moisture levels 7. Finally, tree roots can create cracking or uplifting of road pavements and pedestrian sidewalks, resulting 

in severe danger to vulnerable users such as pedestrians, cyclists and bikers 8.  

In this context, Ground Penetrating Radar (GPR) has long been proven to be an effective non-destructive testing (NDT) 

method in various areas of civil and environmental engineering 9-12. With regards to forestry applications, GPR is becoming 

increasingly popular due to its efficiency and the possibility of retrieving accurate information on the subsoil, moisture 

level and the root systems in a completely non-intrusive way 13-15. Recent research has focused on the implementation of 

automated algorithms for root mapping in a 3D environment 16, 17 and the investigation of root mass density 18. In addition, 

GPR was proven effective for the assessment and mapping of tree root systems’ architecture underneath road pavements 
19. Finally, a recent experimental study investigated the feasibility of a novel tree root assessment methodology, based on 

the processing of GPR data in time and frequency domains 20.  

The aim of this research is therefore to improve upon the latest developments in data processing algorithms based on 

combined time-frequency information, investigating the variation in the frequency spectrum vs propagation time response 

of the GPR signal for urban tree root systems. To this extent, the Short-Time Fourier Transform (STFT) is applied to the 



 

 
 

 

 

 

GPR data, following a dedicated pre-processing stage aimed at eliminating noise-related information and disturbances 

from manmade features (i.e., pavement layers). The strength of this methodology lies in its applicability to complex urban 

scenarios and special survey requirements, such as the need for expeditious surveys of street trees, which are often difficult 

to access. Furthermore, this method can find application in case more comprehensive assessment methods, such as the use 

of acquisition methods based on circular scans 17, are not applicable.  

2. METHODOLOGY  

2.1 Test Site and Equipment 

The survey was carried out as part of a research campaign within the premises of the University of West London, Ealing, 

London (United Kingdom) (Figure 1). A number of 17 linear scans, 50 m long and spaced 0.10 m from one another, were 

performed on the pavement next to a green area containing a row of trees. For the purposes of this research, the scan 

located closer to the green space was selected. 

 

Figure 1. The GPR survey taking place at the University of West London, London, UK 

The Opera Duo ground-coupled GPR system, manufactured by IDS GeoRadar (Part of Hexagon) and equipped with 700 

MHz and 250 MHz central frequency antennas, was used for surveying purposes. Data were collected using a time window 

of 80 ns, discretised across 512 samples. The horizontal resolution was set to 3.06 × 10-2 m. To achieve the optimal effective 

resolution for the scope of this research, the analysis was limited to data collected using the 700 MHz antenna only. This 

choice was due to the need to achieve a depth of investigation such as to analyse the whole tree root system, without 

excessively affecting the signal resolution. 

2.2 Data Processing 

The aim of this stage is the reduction of noise from the GPR data, as well as producing quantifiable information and easily 

interpretable images for a subsequent interpretation of results. To this end, data were processed following a multi-stage 

procedure, including filters working in both time and frequency domains as follows: 

• Zero-offset removal 

• Time-zero correction 

• Time-varying gain 

• Singular value decomposition (SVD) filter 

• Band-pass filtering 



 

 
 

 

 

 

Subsequently, data were processed using a STFT function 20. This method allows the frequency of local sections of a signal 

to be analysed as it changes over time, as follows: 

 STFT(𝑡, 𝜔) = ∫ [𝑥(𝑡) ∙ 𝑤(𝜏 − 𝑡)] ∙ 𝑒−𝑗𝜔𝑡𝑑𝑡
 

𝑡
 (1) 

where STFT is the frequency energy at time t and frequency ω, x is the reflected amplitude and w is the window function. 

In practice, a signal is divided into shorter segments of equal length and then the Fourier transform is calculated separately 

for each segment.  

3. RESULTS AND DISCUSSION 

3.1 Target Identification and Application Windows 

Figure 2 shows the selected B-scan after the application of the multi-stage signal processing procedure as described above. 

An area for the application of the STFT function was then selected (identified by the red square in Figure 2), as it includes 

a semi-horizontal layer crossing two reflection hyperbolas. This is likely to represent two adjacent roots growing at the 

intersection between pavement layers, a common situation in urban environments that can lead to pavement uplifting and 

compromise safety of drivers and pedestrians 21, 22.  

 

Figure 2. The B-scan analysed in this study. The red square identifies the selected application area. 

Figure 3 shows the selected area, which was then divided into 5 application windows. Such windows were designed to be 

comparable in size and as wide as the investigated hyperbolas. In more detail, each application window includes 11 A-

scans, covering about 0.34 m in length, for a total investigated longitudinal distance of 1.70 m. The hyperbolas are 

contained in windows 2 and 4, respectively. Each window was finally reduced to its average signal value, for the 

subsequent application of the STFT function. 

 

Figure 3. The selected area (left) and its partition into application windows. 



 

 
 

 

 

 

3.2 Application of the STFT Function 

Following the pre-processing phase, the STFT function was applied to the application windows’ average trace. Figure 4 

shows the resulting time-frequency analysis carried out using this approach. 

 

Figure 4. STFT outputs for the selected application windows 

From the analysis of the STFT outputs of windows 2 and 4 (which are related to the reflection hyperbolas), it is evident 

how the energy peaks are concentrated in peaks centred at an arrival time of about 5 ns for window 2 and 4 ns for window 

4. The centroids of such energy peaks, located in a frequency range between 500 and 700 MHz, are in both cases of small 

dimensions and regular shape. Also, in both cases it can be noted that the energy rapidly decreases between 11 and 12 ns, 

with a sudden drop in case of window 4, likely related to a hyperbola with smaller dimension and greater amplitude than 

the one in window 2. This proves that most of the energy is concentrated in the position of the hyperbolas, and that the 

STFT method is capable to identify the presence of tree roots correctly even in the presence of a horizontal layer that 

intersects them. 

As for the STFT outputs 1 and 5, i.e., those referring to the layer’s reflections only, the energy peaks are concentrated at 

an arrival time of about 5 ns and 4 ns, respectively. It is worth noting how the energy peaks have an irregular shape and 

can have a significant size, as in the case of window 5 where the peak is located in a frequency range between 300 and 900 

MHz. Also, in both cases the energy decreases less rapidly, so much that at an arrival time of 14 ns the magnitude remains 

stable at around 40 dB.  

Finally, regarding the STFT output 3, which refers to the window between the two investigated hyperbolas, the attenuation 

of the energy is not substantially different from the ones of windows 2 and 4. Also, the shape of the energy peak centroid 

is fairly regular. Such response could be misleading, as they present similar features to those observed in the case of spectra 

with presence of hyperbolas. This could be due to the fact that window 3 is located between two hyperbolas in close 

proximity, and the reflection of the pavement layer could have been magnified by the superimposition of these hyperbolas’ 

tails. Nevertheless, it is worth noting how the energy peak centroid covers a wider frequency range than the windows 

containing the hyperbolas’ apices. Furthermore, while for higher frequencies (i.e. 1500 MHz and above) the hyperbola-

related spectra show a similar pattern and a positive magnitude, the spectrum of window 3 has a different shape and a 

negative magnitude of around -10 dB.  



 

 
 

 

 

 

3.3 Error Maps 

To further investigate the differences between different STFT outputs, error maps have been produced. These were given 

by the difference between the outputs of the examined map and those of a reference map. As a representative scenario, 

Figure 5 shows the error maps created for the investigated application windows, with reference to the window 2 STFT 

output. 

 

Figure 5. Error maps for the STFT spectra, with reference to the window 2 STFT spectra. 

It is worth noting how the 4-2 error map, i.e., the difference between the hyperbola in window 4 and the hyperbola in 

window 2, shows a different pattern compared to the rest of scenarios. In fact, an area of negative magnitude extends 

uninterrupted from an arrival time of 2 ns up to 14 ns, with a negative peak ranging from about 7 to 9 ns. Conversely, in 

all the other error maps it is possible to see an alternation of areas with positive and negative magnitude, covering the range 

of frequencies from 0 to about 1000 MHz. In particular, when comparing window 2 with the others, it is noteworthy that 

an area of positive error is always present for lower frequencies and arrival times greater than 10ns (and also for early 

arrival times in error map 5-2). This is particularly evident for maps 1-2 and 5-2 (i.e., difference between the hyperbola 

and the layer), while is very limited for windows 3-2 and 4-2. 

To further investigate this trend, and to observe the trend of the error maps’ characteristics compared with the response of 

the time-frequency analysis in the presence of a root, the spectra of the energy in the error maps were evaluated. A time 

window was therefore selected, with size comparable to the reference hyperbola (i.e., between 2 and 4.5 ns), as shown in 

Figure 6. The average spectra trend of the error maps within the selected time window is shown in Figure 7.  



 

 
 

 

 

 

 

Figure 6. Identification of the time window for the analysis of the error maps’ spectra trend 

 

Figure 7. Average spectra trend of error maps between 2 and 4.5 ns 

It is evident that all the error maps' average spectra have a similar trend, decreasing towards 600 MHz and rising again to 

form a peak around 700 MHz. The only spectrum not following this trend is the one related to the difference between the 

two hyperbolas. In fact, in this case the trend rises up from a negative magnitude, forming an ascending trend and then a 

peak at 700 MHz. This demonstrates that the methodology is capable of recognising hyperbolic features related to tree 

roots, and to distinguish them from the pavement layers in which these are embedded. 



 

 
 

 

 

 

4. CONCLUSIONS AND FUTURE PERSPECTIVES 

This study shows the latest developments of a novel approach for detection of tree roots in urban environments with Ground 

Penetrating Radar (GPR) technology. To this end, a Short-Time Fourier Transform (STFT), based on the analysis of data 

in both time and frequency domain combined, was applied to GPR data collected on urban trees, following a pre-processing 

stage aimed at removing both noise-related information and disturbances caused by manmade features, such as pavement 

layers. 

Results demonstrated the effectiveness of the presented approach in identifying signal features associated to tree roots and 

clearly distinguish them from the response obtained by the surrounding pavement layers. The analyses of the data have 

showed recurring patterns in the STFT outputs, which can be connected to different features (i.e., roots, pavement, etc.). 

The outcomes of this research confirm that the presented method can be suitable for use in urban environments, allowing 

to assess and monitor street trees in a rapid and non-invasive way. Further investigations and developments are envisaged 

to minimise risk of false alarms and automate the procedure, thus paving the way for a more systematic monitoring process 

with scopes in terms of protection of urban trees, the maintenance of the built environment and the safety of its users. 
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