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Abstract  

Ultra High Performance Fiber Reinforced Concrete (UHPFRC) is a cementitious material with 

enhanced mechanical characteristics. The superior mechanical properties of UHPFRC 

compared to conventional concrete, as well as the ease of preparation and application, make 

the use of this material attractive for strengthening applications. In the present study, an 

extensive experimental investigation on full scale Reinforced Concrete (RC) beams 

strengthened with UHPFRC layers has been conducted. Additional UHPFRC layers with and 

without steel bars have been added to the RC beams and the efficiency of the examined 

technique has been examined through flexural tests. An additional investigation has been 

conducted on the interface characteristics between UHPFRC and concrete through push-off 

tests. Finally, finite element analysis has been conducted and crucial parameters of the 

examined technique have been investigated. The results of the present study indicated that the 

strengthening with UHPFRC layers is a well promising technique, as in all the examined cases 

the performance of the strengthened elements was improved. Also, a good interface connection 

between UHPFRC and concrete was identified, with low measurements of slips at the interface.  
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1. Introduction 

Most of the new Reinforced Concrete (RC) structures which are built nowadays meet the 

criteria for safe building design. Nevertheless, we cannot claim the same for structures built in 

the past. These old structures make up the majority of the total number of existing structures 

today. The majority of these structures have been designed either without any regulations, or 

based on old code provisions which have been proved to be structurally deficient. 

Consequently, the loading carrying capacity system of these structures need to be upgraded. 

The present research is focused on the strengthening of RC elements using UHPFRC layers. 

To date, there are several published studies on the mechanical properties of UHPFRC. Kang et 

al. [1] and Yoo et al. [2] examined the effect of fiber content on the flexural strength of 

UHPFRC, and it was found that both the flexural strength and the structural ductility increased 

at increasingly fiber content. The effect fiber content on the tensile characteristics of UHPFRC 

was investigated by Paschalis and Lampropoulos [3] and for the different fiber contents, 

different stress-strain models were proposed. Also, in this study, the effect of curing regime on 

the tensile characteristics of UHPFRC was investigated and the optimum curing period was 

proposed. Neocleous et al. [4], used an inverse finite element analysis method to derive the 

tensile characteristics of Steel Fiber Reinforced Concrete (SFRC), while Nicolaides et al. [5] 

developed an optimum mixture for Ultra High Performance Cementitious Composites using 

components available in Cyprus. The fiber distribution is an important parameter affecting the 

performance of UHPFRC and this was highlighted by Ferrara et al. [6]. The study of the 

performance of UHPFRC in earthquake prone areas is of high importance. Paschalis and 
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Lampropoulos [7] investigated the response of UHPFRC under cyclic loading for different 

fiber contents, and a constitutive model which can predict the hysteretic characteristics of 

UHPFRC under cyclic loading was proposed. The unique properties of UHPFRC have also 

been extensively investigated in numerous previous studies [8-14]. 

The use of UHPFRC for repair and strengthening applications has been investigated in a limited 

number of experimental, analytical and numerical studies. Habel et al. [15] conducted an 

extensive analytical investigation on the performance of composite UHPFRC-concrete 

elements under the assumption of perfect bond between the old and the new element where the 

efficiency of this technique was highlighted. Numerical study has been presented by 

Lampropoulos et al. [16] where the structural performance of beams strengthened with 

UHPFRC layers has been studied through Finite Element Analysis and comparisons with 

conventional methods have also been presented. Bruhwiler and Denarie [17] presented a 

realistic application of the UHPFRC for the rehabilitation of RC structures, such as a road 

bridge, a bridge pier and an industrial floor, and the benefits of the application of UHPFRC for 

the rehabilitation of concrete structures were highlighted. Safdar et al. [18], investigated the 

application of UHPFRC as a repair material and the flexural response of composite UHPFRC-

RC elements was examined. The experimental results indicated that the use of UHPFRC layers 

increased the stiffness and the resistance of the elements. Talayeh and Bruhwiler [19] 

investigated the performance of reinforced UHPFRC beams subjected to bending and shear in 

a cantilever beam setup and they found that most of the specimens failed due to a flexural 

failure at a force of 2 to 2.8 higher than the resistance of the  control specimens.  

The flexural strengthening of RC members using RC layers is a popular and reliable technique. 

The use of the UHPFRC for the same purposes is a well promising technique which can 

increase the performance of the technique. However, further research on this topic is consider 

necessary in order to investigate all these crucial parameters concern the examined technique. 
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According to Tsioulou et al. [20], in case of RC elements strengthened with additional concrete 

layers, one of the most crucial parameters is the behaviour of the interface between the old and 

the new concrete since inadequate bonding may lead to premature failure of the strengthened 

elements. The behavior of the interface between the existing RC elements and the new 

UHPFRC layers is a crucial topic which has not been studied to date and needs investigation. 

The present study aims to investigate in depth the performance of UHPFRC for the 

strengthening of existing RC members and to provide useful information to both the scientific 

community and practitioners through an extensive experimental and numerical investigation. 

Crucial parameters which have never been investigated before, such as the interface 

characteristics between UHPFRC and concrete, the effect of layer depth and steel ratio on the 

performance of the examined technique, are investigated in the present study. Also, in the 

present study, suggestions for the application of the examined technique in real practice are 

presented. 

The experimental part of the present study is focused on the flexural strengthening of RC beams 

using different strengthening configurations. More specifically, the performance of full scale 

RC beams strengthened with additional UHPFRC layers was investigated. UHPFRC layers 

with and without steel bars were cast to the tensile side of beams and the specimens were tested 

under 4 point flexural loading. During the testing, measurements of the slip at the interface 

between the UHPFRC layer and the existing RC beams were recorded and the results were 

compared with available data in the literature for concrete to concrete interfaces. Additionally, 

push-off tests were conducted in order to evaluate the characteristics of conventional concrete 

to UHPFRC interfaces. Finally, finite element analysis was conducted and crucial parameters 

of the examined technique were investigated numerically.  
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2. Experimental program  

2.1 Experimental program for the strengthening of existing RC beams and the push-off 

tests 

In the present study, six identical full scale RC beams were constructed and used for evaluation 

of the performance of RC beams strengthened with UHPFRC layers. Two RC beams were used 

as control beams for the evaluation of the performance of existing beams prior to strengthening, 

while four beams were strengthened with layers at the tensile side. In case of the strengthened 

beams, the additional UHPFRC layers were applied two months after the casting of the initial 

beams and the strengthened beams were tested over four months. For this investigation, two 

beams were strengthened with UHPFRC layers and two beams were strengthened with 

UHPFRC layers and steel bars (Table 1).  

The geometry and the reinforcement of the initial beams are presented in Figure 1. As shown 

in this figure, the existing RC beams were reinforced at the tensile side with two longitudinal 

ribbed steel bars with a diameter of 12 and a length of 2150 mm. On the contrary, the 

reinforcement at the compressive side of beams was used to support the stirrups. In order to 

avoid shear failure of the beams, shear reinforcement, according to Eurocode 2 [21] was placed 

along the whole length of the beams. More specifically, stirrups with a diameter of 10 mm and 

a spacing of 150 mm were placed as shear reinforcement. Plastic spacers were used in order to 

ensure the required concrete cover of 25 mm of the reinforcement. The constructed UHPFRC 

layers had a depth of 50 mm, a breadth of 150 mm and were cast along the whole length of the 

tensile side of the beams (Figure 2). Two ribbed steel bars with a diameter of 10 mm, a length 

of 2150 mm and a concrete cover of 25 mm were used as a reinforcement of the UHPFRC 

layers. All the steel bars of the present investigation were grade B 500C.  
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Finally, for the push-off tests two concrete cubes with side length of 100 mm were prepared 

first and placed in the molds, and later on, the UHPFRC cube was cast. The geometry of the 

specimens is presented in Figure 3. The specimens were tested two months after casting.  

2.2 Preparation of the materials 

For the preparation of the examined beams, the reinforcement was assembled first, and then 

the reinforcement was placed in the moulds. Once the reinforcement was ready, the concrete 

was poured in the moulds. The concrete mixture design used for the initial beams is presented 

in Table 2. All the initial beams were wet cured daily for 28 days, while after this period the 

beams were wet cured every two days and until the casting of the layers. For the preparation 

of the UHPFRC, silica sand with a maximum particle size of 500μm was used together with 

silica fume, Ground Granulated Blast Furnace Slag (GGBS) and cement class 52.5 R type I. 

Low water/cement ratio of 0.28 was also used together with polycarboxylate superplasticizer. 

A percentage of 3% per volume steel fibers was used for the preparation of the UHPFRC 

mixture. In this investigation straight steel fibers with a length of 13 mm, a diameter of 0.16 

mm, and a tensile strength of 3000 MPa were used, while the modulus of elasticity was 200 

GPa. The examined mixture design is presented in Table 3. 

Before the casting of the layers the surface of the RC beams was roughened to a depth of 2-2.5 

mm, which according to fib bulletin 55 [22] can be classified as rough interface. For the 

preparation of the surface, a pistol grip needle scaler was employed (Figure 4), and the sand 

patch method was used to quantify the concrete surface texture. Before the casting of the layers, 

the surface was cleaned carefully using high pressure water. Then, the additional layers were 

cast (Figures 5a-5c) and after the demoulding, two days casting, the specimens were wet cured 

daily for 28 days. After this period the beams were wet cured every two days and until the 

testing of the strengthened beams.  
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Finally, for the roughening of the cubes’ surface , for the push-off tests, a pistol grip needle 

scaler was used following exactly the same procedure which was used for the interface 

preparation of the interface of the full scale beams. The roughness depth was equal to 2-2.5 

mm, similar to the one of the full scale beams.  

In the present study the layer was cast upside down. This procedure is different compared to 

the procedure which is followed in real practice. One parameter which could be affected, is the 

distribution of the fibers in the layers. However, this is not expected to affect the experimental 

results. Based on Paschalis and Lampropoulos [13] the fiber distribution and the overall 

performance of the UHPFRC layers is not significantly affected in small layer depths, like the 

layer depths investigated in the present study. 

The first step for the application of the technique in real practice is to roughen the interface 

between the new layer and the existing beam until the aggregates are exposed. In cases of 

damaged beams in bending, the existing reinforcement should be exposed and the new 

reinforcement must be connected to the old one [23]. This can be achieved using connection 

bars between the existing and the new bars as presented in Figure 6.  

An important parameter for the application of the technique in real practice is the casting of the 

layers. The new layers can be cast, either by spraying as shotcrete or in-situ with the appropriate 

arrangement of the formwork.  Shotcrete is commonly used for the casting of concrete layers 

and jackets and the same procedure can be followed for the UHPFRC layers. There are studies 

which have investigated the application of UHPFRC as shotcrete [24] and this technique has 

been successfully applied in real practice [25], [26]. Also, the casting of the layers can take 

place in-situ with the appropriate arrangement of the formwork. UHPFRC is a material with 

excellent rheological properties [3], similar to self-compacting concrete. The construction of 

existing concrete layers, is also described in detail by the Technical Chamber of Greece [23] 

and similar procedure can be followed for UHPFRC. 
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2.3 The properties of the materials 

For the evaluation of the compressive strength of concrete, standard cube specimens with side 

length of 100 mm were prepared from the same mixture used for the preparation of the existing 

RC beams. The tests were performed under a loading rate of 0.6 MPa/s, according to BS EN 

12390-3:2009 [27]. The average compressive strength of three concrete cubes was found to be 

equal to 30.9 MPa and the standard deviation was 2.34 MPa. 

For the investigation of the properties of the UHPFRC layers, dog bone shaped and cube 

specimens were prepared from the same mixture used for the construction of the layers. The 

specimens were wet-cured daily for twenty-eight days and tested in the same time frame with 

the layers, namely two months after casting. For the direct tensile tests a displacement rate of 

7 μm/s was adopted. The experimental setup together with the dimensions of the specimens are 

presented in Figures 7a and 7b. As illustrated in Figure 7b, the extension of the specimens was 

recorded using a Linear Variable Differential Transformer (LVDT) connected to a special steel 

frame. This setup was used in order to measure directly the average of the extensions on both 

sides of the specimens. As can be seen in the same figure, the specimens failed due a singe 

crack which was localized in the middle of the length of the specimens. The tensile stress-strain 

results are illustrated in Figure 8.   

The average maximum stress was found to be equal to 11.5 MPa and the standard deviation 

was equal to 1.26 MPa. From the linear part of the stress-strain curve the modulus of elasticity 

was calculated equal to 51 GPa. For the investigation of the compressive strength of the 

examined UHPFRC mixture, three standard cubes were prepared and tested in the same time 

frame (two months) and the average compressive strength was found to be equal to 136.5 MPa 

and the standard deviation was 5.5 MPa.   
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Finally, according to BS 4449:2005 [28], the yield stress of steel bars B 500 C is equal to 500 

MPa, while the ratio of the maximum tensile stress to the yield stress, is in the range of 1.15-

1.3. The elongation at the maximum load is equal to 7.5%. 

2.4 The testing of the specimens 

For the testing of the examined beams, a four point loading test under a constant displacement 

rate of 8 μm/s was conducted, which is in agreement with the loading rate used by Tsioulou et 

al. [20], leading to comparable results. The experimental setup for these tests is presented in 

Figure 9. As can be seen in Figure 9 two roller supports were used for the testing of the beam. 

During the testing, the load was recorded alongside with the deflection at the middle of the 

span length and both sides of the beam. As shown in Figure 9, the deflection was measured 

using Linear Variable Differential Transformers (LVDTs) with an accuracy of 1 μm. For the 

beams strengthened with layers, the slip at the interface was also measured using nine LVDTs, 

in total, which were placed on both sides. The position of the LVDTs is presented in Figures 

10a and 10b. As can be seen in Figure 10a, the LVDTs on side 1 were placed symmetrically 

between the supports and the two loading points, while on side 2 (Figure 10b) 3 more LVDTs 

were used. The LVDTs on side 2 were used for the validation of the results obtained on side 1. 

As can be seen in Figures 10a and 10b, LVDTs 7 and 9 were placed in the same position with 

LVDTs 5 and 1 respectively, but at the opposite side. On the contrary the LVDT 8 was placed 

in between the two loading points. The recordings of each one of these LVDTs during the 

testing are presented in the following sections. As shown in Figure 10c, the LVDTs were 

attached on the RC beam using metal angle sections, which were glued on the existing RC 

beams and the layers.  

In Figure 11, the experimental setup for the push off tests is presented. During the testing, a 

constant stress equal to 1 MPa was applied to the specimens through a hydraulic jack. As can 
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be seen in Figures 3 and 11, a load cell in contact with the specimens was also used to record 

the load and to secure a constant value during the testing. At the same time, a vertical load was 

also applied to the UHPFRC cube through an actuator under a constant displacement control 

of 1 μm/s. Finally, two LVDTs were placed on each side of the specimens for the measurement 

of slip at the interface.  

2.5 The experimental results from the full scale testing  

The experimental results for the load and the deflection of the control beams, the beams 

strengthened with UHPFRC layers and the beams strengthened with UHPFRC layers and steel 

bars are presented in Figure 12. 

The experimental results of Figure 12 indicate that there is a positive agreement between the 

experimental results of the two identical specimens for all the examined cases. The values for 

the maximum load and the stiffness, which was calculated from the linear part of the load-

deflection curve, together with the average results are presented in Table 4.  

From the results of Figures 12 and Table 4, it is clear that the addition of UHPFRC layers at 

the tensile side of the RC beams resulted in a large increase of the stiffness of the RC beams, 

while the load carrying capacity was also increased. The addition of steel bars to the UHPFRC 

layer, resulted in a significant increase of the load carrying capacity. Thus, comparing the 

average curves, the load carrying capacity of the strengthened beams with UHPFRC layers and 

steel bars was increased by 90% compared to the load carrying capacity of the control beams.  

The crack pattern and the failure mode of the existing RC beams and the strengthened beams, 

at the failure load (80% of the maximum load) are presented in Figures13a-13d. The failure 

mode of beams P1 and P2 was identical.The failure mode of beam P1 is presented in Figure 

13a. As shown in this figure, a crack in the middle of the span length was crucial for the failure 

of the beam. The first flexural cracks were visible when the load was equal to 24 kN, and the 



11 
 

crucial crack for the failure of the beam appeared when the load was equal to 31 kN in the 

middle of the span length. After this point, a localization of the damage could be distinguished 

while more flexural cracks propagated along the whole length of the beam. As shown in the 

same figure, a failure at the compressive side of the beam occurred during the testing. This 

failure started once the beam had reached its maximum load carrying capacity, and it was at 

the descending branch of the load-deflection curve. This resulted in the damage of the beam on 

both the compressive and the tensile sides at the end of the test. Identical was the failure mode 

of beam P2. The first minor cracks were visible for a value of load equal to 20 kN, while the 

crucial cracks start appearing at 25 kN. After this point, the damage localised, while more 

flexural cracks propagated progressively along the whole the length of the beam. Both the 

compressive and the tensile sides of the beam were damaged at the end of the test.  

Identical was also the failure mode of beams U1 and U2. The first crack during the testing of 

beam U1 (Figure 13b), which was also crucial for the failure of the beam, was visible for a 

value of load equal to 32 kN on the UHPFRC layer and progressively propagated along the RC 

beam. During the testing, more flexural cracks propagated along the whole length of the beam. 

For a value of load equal to 48 kN and before the beam reached its maximum load capacity, a 

local de-bonding began at the interface. This local de-bonding can be attributed to the poor 

bonding at the interface between the UHPFRC layer and the existing beam at this area. From 

the examination of the specimen at the end of the test it was noticed that the roughness depth 

at this area was lower. As the beam reached its maximum load carrying capacity and was at the 

descending branch of the load-deflection curve, a failure at the compressive side of the beam 

commenced, which had as a result the damage of the compressive side at the end of the test. 

The failure mode of beam U2, is presented in Figure 13c. As can be seen in this figure, the 

bonding at the interface for beam U2 was effective. The first crack during the testing, start 

appearing for a value of load equal to 28 kN on the UHPFRC layer and progressively 
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propagated on the RC beam. During the testing and for the higher values of a load, more 

flexural cracks appeared on the strengthened beam. At the descending branch of the load-

deflection curve, a failure at the compressive side commenced.  

The failure mode of beams UB1 and UB2 was identical but different compared to beams 

P1,P2,U1 and U2. In Figure 13d the failure mode of beam UB1 is presented. Crucial for the 

failure of the beam was the failure at the compressive side of the beam. Accordingly, once the 

maximum load carrying capacity of the beam at the compressive side was reached, the damage 

at this side commenced and the beam could not carry any more load. The steel bars, on the 

other hand, improved the load carrying capacity of the strengthened beam significantly. The 

first cracks during the testing start appearing when the value of the load was equal to 57.5 kN 

on the RC beam, and once the beam had reached its maximum load carrying capacity, a single 

crack progressively propagated along the UHPFRC layer. This crack resulted in the failure of 

the layer at a later stage. The bonding at the interface was strong, and there was not any 

debonding even at the failure of the beam. The failure mode of beam UB2 was identical to 

beam UB. Therefore, the failure at the compressive side of the beam was crucial for the failure 

of the strengthened beam. The first cracks during the testing could be distinguished for a value 

of load was equal to 65 kN; after this point, more cracks propagated along the whole length of 

the beam. At the point at which the beam had reached its maximum load carrying capacity, the 

crack in the middle of the span length spread along the UHPFRC layer. Therefore, it led to the 

progressive failure of the layer. 

During the testing of the strengthened beams, measurements were taken for the slip at the 

interface in different positions (Figures 10a and 10b). Due to the local de-bonding at the 

interface of beam U1, the measurements of slips were affected. Therefore, these measurement 

were ignored. The results for the load versus the slip  for beam U2 are presented in Figure 14. 
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The slip close to the supports was equal to zero. Hence, slips were recorded at the positions of 

the LVDTs 2, 3, 4, 7 and 8 (see Figures 10a and 10b), areas where the interface stresses were 

significantly higher. Low readings, were recorded at the position of LVDT 5.  

The results for the load versus the slips for the beams UB1 and UB2 are presented in Figures 

15a-15b.  

From the measurements of slip for beam UB1, it was noticed that the slip close to the supports 

was almost zero, and small values were recorded at the positions of the LVDTs 5 and 7. By 

contrast, values between 0.13 mm and 0.15 mm were recorded at the positions of LVDTs 3 and 

4, which are located close to the two loading points. Finally, a high value of the slip was 

recorded at the position of LVDT 8, located in the area between the two loading points, and a 

value of the slip equal to 0.32 mm was also recorded at the position of LVDT 2. The 

measurements of beam UB2 indicated that the slip in the area close to the supports was equal 

to zero, and that the higher values were obtained in the area close to the two loading points 

(positions of LVDTs 3 and 4). The maximum value of slip was recorded at the position of 

LVDT 8 in between the two loading points. The difference in values of slip is attributed to the 

variation of the shear strength which is considerably affected by the normal to the interface 

stress. In case of high normal to the interface stress, such as the areas near the support, the shear 

strength is higher than the shear stress and therefore interface slip is prevented. Also, the 

difference in the values of slip can be attributed to the different level of preparation of the 

interface. Despite the fact that in the present study the sand patch method was used to quantify 

the concrete surface texture, it is possible that there were local imperfections and variations of 

the level of roughening along the interface.  

In existing codes [29, 30], limit state values for the design of composite structures, are 

proposed. According to the Greek Code of Interventions [29], a maximum slip value of 0.2 mm 

is proposed for the immediate occupancy performance level, while values of 0.8 mm and 1.5 
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mm are proposed for the life safety performance level and the collapse prevention performance 

level, respectively. According to the fib Bulletin 43 [30] on the other hand, a maximum 

interface slip of 0.2 mm is suggested for the serviceability limit state and 2.0 mm for the 

ultimate limit state. The measurements of slip at the interface of the present study indicate an 

effective bonding between the UHPFRC layer and the existing RC beam. Hence, in all the 

examined cases and for both the examined techniques (with and without steel bars), the 

recorded values in different positions were lower than 0.35 mm which according to the Greek 

Code of Interventions [29], corresponds to the life safety performance level. Since, the values 

of slippage are highly affected by the shear stress, the bond at the interface and the crack 

development, it is assumed that the recorded values of slip would not be much dissimilar for 

member for higher dimensions. 

The effective bonding between the UHPFRC layer and the existing RC beams is also evident 

comparing the recorded values of slip at the interface, with the reported values in the literature 

for concrete to concrete interfaces. Tsioulou et al. [20], recorded values of slip equal to 1.1 mm 

for concrete to concrete interfaces for strengthening of full scale RC beams with RC layers at 

tensile side and along the whole length of the beam. This value corresponds to the collapse 

prevention performance level and it is significantly higher compared to the recorded values of 

the present study. It is worth mentiong that the loading conditions, the loading rate and the 

dimensions of the specimens of this study were identical with the present study. Therefore, the 

results are comparable.  

2.6 Evaluation of the interface characteristics 

In Figure 16, the results for the shear stress versus the interface slip together with the average 

curve are presented. In this figure only the results of the successful tests are presented. Some 

of the examined specimens failed in an undesired way (for example due to significant flexural 
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stress) and these results were eliminated from the graphs. However, several examined 

specimens were successfully tested with high shear stresses acting at the interface and without 

any significant flexural stresses which was evidenced by the load slip results and by the failure 

mode. In Figure 17a  the failure mode of a successful test with high shear stresses is presented, 

while in Figure 17b is presented an example of the failure mode of an successful test. The 

experimental setup of the present investigation has been used by Vitzilaiou [32] for the 

investigation of conventional concrete to concrete interfaces. Finally, it worth mentioning that 

as the number of the tests is quite low, they can be used to give an indication of the interface 

conditions. Further extensive experimental study is required in order to evaluate the interface 

characteristics. 

According to Eurocode 2 [21], shear strength of an ordinary concrete can be calculated using 

Equation 1.  

τud=c∙fctd+μ∙σN≤0.5∙v∙fcd (1) 

Where: τud is the shear strength at the interface; c is the adhesion factor; μ is the coefficient of 

friction; σN is the external normal to the interface stress; ν is equal to 0.6 *(1-fck/250); fck is the 

characteristic compressive strength of the concrete; fctd is the design tensile strength of concrete 

with the lower strength (between the old and the new concrete) and is given by its concrete 

tensile strength; γc = 1.5 for concrete and fcd is the concrete compressive strength and is given 

by fck/γc. 

Coefficients of friction and cohesion were calculated using Equation 1. Cohesion (c·fctd) was 

considered as the shear stress at the interface for slip value equal to 0.01 mm following the 

available code provisions (GRECO [29] , CEB Fib Model Code [31]). Coefficients of friction 

were then calculated using equation 1 and by substituting cohesion and maximum shear 

strength values obtained from the push-off tests while σN is the value of the externally applied 
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normal to the interface stress which in the current study was equal to 1 MPa. The same value 

of stress has also been adopted by Vitzilaiou [32], for the investigation of the characteristics of 

RC interfaces through push off tests, leading to comparable results.  

The interface characteristics for all the examined specimens calculated using the procedure 

aforementioned are presented in Table 5. Based on these results a value of 1 was calculated for 

the coefficient of friction and a value of 1.8 MPa for the cohesion. In Eurocode 2 [21], and for 

normal concrete, there are suggested values for both the coefficients of friction and coefficient 

of adhesion. More specifically, for a rough interface, a value of 0.45 is proposed for the 

coefficient of adhesion and a value of 0.7 is proposed for the coefficient of friction. It can be 

noticed that the obtained values of the present research were found to be higher compared to 

the proposed values in Eurocode 2 [21] for concrete to concrete interfaces. This is in agreement 

with the measurements of the slip at the interface of the strengthened beams, in which case, 

better connection between UHPFRC and concrete was identified compared to  concrete to 

concrete interfaces. 

Based on the results of the present investigation and for the numerical modeling of the 

examined technique, a value of 1 will be used for the coefficient of friction and a value of 1.8 

MPa for the cohesion. 

3. The numerical modelling of Ultra High Performance Fiber Reinforced Concrete 

(UHPFRC)  

3.1 The modelling of the materials 

In the experimental investigation, the existing RC beams were strengthened with a layer depth 

of 50 mm, while the diameter of the steel bars was 10 mm,  while a fiber content of 3% was 

used for the preparation of the UHPFRC. Based on Paschalis and Lampropoulos [14] the 

optimum fiber content of UHPFRC, in terms of workability and mechanical performance, was 
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achieved for a fiber content in the range of 3-4%. Preliminary studies have been conducted 

using UHPFRC layers with fiber contents 3% and 4% and it was found that the results are not 

significantly affected by the fiber content. Therefore, in the present study are examined the 

most significant parameters which were found to be the thickness and the steel ratio. 

The selection of the appropriate dimensions of the layer can be related with parameters such as 

the geometry of the existing members, the decision to increase or not the stiffness of the 

existing members and the type and the dimensions of the fibers. Based on the target behavior 

of the strengthening technique, it is of high importance that the optimum decision for the 

selection of the appropriate layer depth and the amount of reinforcement is taken. In the present 

section, different alternatives for the selection of the appropriate layer depth and the amount of 

reinforcement of the layer are investigated numerically. The finite element model used in the 

present investigation, has been validated according to the experimental results of the full-scale 

beam testing.  

For the finite element analysis, ATENA software was used. Concrete was simulated with an 

eight node element, with nonlinear behavior and softening branches under both tension and 

compression, using SBETA constitutive model [33] and the properties of concrete of a previous 

section were adopted for the numerical modeling of concrete The ascending compressive 

branch is based on the formula recommended by CEB-FIP model code 90 [34] while its 

softening law is linearly descending from the peak stress until a limit compressive strain, which 

was defined by the plastic displacement and the band size, using fictitious compression plane 

model. The constitutive model in tension and compression adopted in ATENA software is 

presented in Figure 18. For the numerical modelling of UHPFRC the material properties of the 

previous section were adopted. Therefore, a compressive strength of 136.5 MPa and Young’s 

modulus equal to 51 GPa were used for the modelling in compression using the SBETA 

constitutive model. In tension, the response of UHPFRC was considered linear up to stress 
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level equal to 5 MPa, and it was modelled with an elastic behavior up to initiation of the 

microcracking, followed by a second part into the phase of strain hardening with 

microcracking. After the formation of the macrocrack at the ultimate resistance, there is the 

strain softening phase which was modelled with a bi-linear model. The stress-strain and stress-

crack opening behaviour of UHPFRC in tension have been investigated in depth by Paschalis 

and Lampropoulos [3]. Based on this study, and for a fiber content 3%, the most appropriate 

model to simulate the stress-crack opening behaviour was the one using a bi-linear function. 

The tensile function adopted in the Atena is presented in Figure 19. Finally, for the modelling 

of UHPFRC, the shrinkage of the material was considered using a negative volumetric strain 

value to the UHPFRC elements. More specifically, based on the measurement of shrinkage of 

a previous study [16] an ultimate value of shrinkage equal to 565 microstrain for a fiber content 

of 3%, was applied to the elements of the UHPFRC layers. The steel bars, were simulated using 

linear elements with bilinear behavior and the yield stress of the steel bars was 500 MPa, while 

the cover of the steel bars was 25 mm. The interface between the initial beam and the UHPFRC 

layer was modelled using two dimensional contact elements with a coefficient of friction equal 

to 1 and cohesion equal to 1.8 MPa. These values were obtained from the push off tests of the 

previous section.  

The mesh size was approximately two times the maximum aggregate size and was selected 

based on the proposed optimum mesh sizes [35]. However, when the Atena software [33] is 

used the results are not significant influenced by the FE mesh size. 

3.2 Validation of the numerical model 

In Figure 20, a comparison between the numerical and the experimental results for the different 

strengthening configurations is presented. 
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The results of Figure 20 indicate a positive agreement between the numerical and the 

experimental results. Hence, similar elastic and post elastic behavior can be distinguished in 

all the examined cases and similar values for the maximum load. However, it can be noticed 

that the post peak branch of strengthened beam with layers and steel bars drops more suddenly 

compared to the numerical results. This can be attributed to sudden failure of the compressive 

side of the beams of the experimental investigation once the maximum compressive strength 

of the compressive side was reached. In Table 6, the numerical and the experimental results for 

the maximum load are presented. 

The results of Table 6 indicate positive agreement between the experimental and the numerical 

results. The crack pattern and the strain distribution at the maximum load is presented in 

Figures 21a-21c. 

The results of Figures 21a and 21b indicate high values of strain and localization of the damage 

at the tensile side of the beams and in the middle of the span length. On the contrary, from 

Figure 21c it is clear the steel bars in the layer had as result a different rensponse of the 

strengthened beam and the layer was in tension along the whole length, which indicates the 

effectiveness of steel bars to increase the resistance to the imposed loads. Also, high values of 

strain can be distinguished at the compressive side. This is in agreement with the failure mode 

of the strengthened beams of the experimental investigation.  

3.3 Strengthening with different layer depths and different amounts of reinforcement of 

the layer 

Crucial parameters which affect the performance of the examined technique are the depth of 

the layer and the amount of the reinforcement of the layer. In the present investigation, three 

different layer depths were examined, namely 30 mm, 50 mm and 70 mm, while the layers 

were reinforced with steel bars with diameters of 10 mm and 16 mm. The grade of the steel 
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bars in all the examined cases was the same with the experimental investigation, namely B 500 

C. All the numerical results for the different diameters and the different depths are presented 

in the same graph in Figure 22 and the results of for the yield and the maximum load are 

presented in Table 7. The increment of the yield and maximum load for the different layer 

depths and the different diameter of steel bars are presented in Figure 23.  

From the numerical results of the present investigation it is clear that the amount of the 

reinforcement of the layer is a very important parameter affecting the performance of the 

strengthened beams. Also, in terms of the maximum resistance to the imposed loads, it seems 

that the amount of reinforcement of the layer is a more important parameter than the depth of 

the layer. Therefore, it can be noticed that the performance of the strengthened RC beam with 

a 30 mm layer and steel bars with a diameter of 16 mm was better compared to the performance 

achieved for strengthening with UHPFRC layers with depths 50 mm and 70 mm and steel bars 

with a diameter of 10 mm. As expected, the optimum performance was achieved for the 70 mm 

layer depth and steel bars with a diameter of 16 mm, in which case the maximum load was 

found to be equal to 156.7 kN. However, it should be noted that before the decision for the 

selection of the appropriate layer depth, parameters such as the geometry of the existing 

member, the minimum required cover of the reinforcement and the type and the dimension of 

the fibers, should be taken into consideration.  

4. Conclusions 

In the present study an extensive experimental and numerical investigation on the performance 

of UHPFRC for the strengthening of RC beams was conducted. UHPFRC was applied for the 

strengthening of full scale RC beams using different configurations. During the testing, 

measurements for the slip at the interface between UHPFRC and concrete were recorded. An 

additional investigation was conducted on the study of interface between UHPFRC and 
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concrete through push-off tests. Finally, certain significant parameters, such as the effect of the 

layer depth and the amount of the reinforcement of the layer were investigated numerically.  

Based on the experimental results of the present study the following conclusions can be drawn: 

 The addition of UHPFRC layers at the tensile side of the RC beams resulted in a large 

increase in the stiffness of the RC beams and the formation of the cracks was delayed while 

the load carrying capacity was also slightly increased. 

 The addition of steel bars to the UHPFRC layer had as a result a big increase in the load 

carrying capacity of the strengthened beams. Therefore, the average maximum load of the 

strengthened beams with UHPFRC layers and steel bars was increased by 87%, with the 

addition of steel bars to the layer. Consequently, this technique can be applied in cases that the 

target behavior of the strengthening technique is the high resistance to the imposed loads. 

 The bonding between UHPFRC and concrete was effective and small values of slip at the 

interface were recorded. Also, comparing the recorded values of slip with reported values in 

the literature for concrete to concrete interfaces, it was noticed that the values of slip for 

UHPFRC to concrete interfaces were significant lower. This indicates a more effective bonding 

between UHPFRC and concrete compared to concrete to concrete interfaces. However,  further 

investigation  on  the interface characteristics between UHPFRC and RC is considered 

necessary.  

 The amount of reinforcement of the layer is an important parameter affecting the 

performance of the strengthened elements significantly. Hence, high load carrying capacity can 

be achieved with higher amount of reinforcement of the layer and even with lower layer depths.  
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Figure Captions 

Figure 1 Geometry and reinforcement of the initial RC beams 

Figure 2 Geometry and reinforcement of the strengthened beams with UHPFRC layers and 

UHPFRC layers and steel bars 

Figure 3 Geometry and experimentl setup for the push off tests 

Figure 4 Roughening of the surface with a pistol grip needle scaler  

Figure 5 Preparation of the beams: a) beam ready for the casting of the layer b) reinforcement 

of the layer c) casting of the layers 

Figure 6 Application of UHPFC layers in real practice  

Figure 7 a) Dimensions of the dog-bone shaped specimens b) experimental setup for the 

tensile tests 

Figure 8 Experimental results of the direct tensile tests of UHPFRC 

Figure 9 Experimental setup for the four point loading tests 

Figure 10 a) Positions of the LVDTs for the measurement of slips on side 1 b) positions of 

the LVDTs for the measurement of slips on side 2 c) LVDT used for the measurement of slip 

at the interface 

Figure 11 Experimental setup for the push off tests 

Figure 12 Load-deflection results for all the examined beams 

Figure 13 Failure mode of: a) beam P1 b) beam U1 C) beam U2 c) beam UB1 
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Figure 14  Load versus slip in different positions of beam U2  

Figure 15 a) Load versus slip in different positions of beam UB1 b) load versus slip in 

different positions of beam UB2  

Figure 16 Shear stress versus interface slip from the push off tests 

Figure 17 a) Failure mode of a successful push off test  b) Example of the failure mode of an 

unsuccessful push off test 

Figure 18 Constitutive model in tension and compression adopted in ATENA software 

Figure 19 Tensile function adopted in ATENA software for the UHPFRC 

Figure 20 Numerical versus experimental results for the initial beams, the beams 

strengthened with UHPFRC layers and the beams strengthened UHPFRC layers and steel 

bars 

Figure 21 Crack Pattern at the maximum load for: a) the control beam b) the beam 

strengthened with UHPFRC layer c) the beam strengthened UHPFRC layers and steel bars 

Figure 22 Load versus deflection results for different layer depths and different diameters of 

the steel bars 

Figure 23 Increment of the yield and the maximum load for the different layer depths and the 

different diameters of the steel bars 
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Figure Captions 

 

Figure 1 Geometry and reinforcement of the initial RC beams 

 

Figure 2 Geometry and reinforcement of the strengthened beams with UHPFRC layers and 

UHPFRC layers and steel bars 
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Figure 3 Geometry and experimentl setup for the push off tests 

 

Figure 4 Roughening of the surface with a pistol grip needle scaler  
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c)  

Figure 5 Preparation of the beams: a) beam ready for the casting of the layer b) reinforcement 

of the layer c) casting of the layers 

 

Figure 6 Application of UHPFC layers in real practice  
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Figure 7 a) dimensions of the dog-bone shaped specimens b) experimental setup for the 

tensile tests 
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Figure 8 Experimental results of the direct tensile tests of UHPFRC 

 

Figure 9 Experimental setup for the four point loading tests 
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Figure 10 a) Positions of the LVDTs for the measurement of slips on side 1 b) positions of 

the LVDTs for the measurement of slips on side 2 c) LVDT used for the measurement of slip 

at the interface 

 

Figure 11 Experimental setup for the push off tests 
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Figure 12 Load-deflection results for all the examined beams 
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Figure 13 Failure mode of: a) beam P1 b) beam U1 C) beam U2 c) beam UB1 
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*Figure 14  Load versus slip in different positions for beam U2  
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Figure 15 a) Load versus slip in different positions for beam UB1 b) load versus slip in 

different positions for beam UB2  



42 
 

 

Figure 16 Shear stress versus interface slip from the push off tests 
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Figure 17 a) Failure mode of a successful test  b) Example of the failure mode of an 

unsuccessful test 

 



44 
 

 

 

 

 

 

 

 

 

Figure 18 Constitutive model in tension and compression adopted in ATENA software 
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Figure 19 Tensile function adopted in ATENA software for the UHPFRC 
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Figure 20 Numerical versus experimental results for the initial beams, the beams 

strengthened with UHPFRC layers and the beams strengthened UHPFRC layers and steel 

bars 
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Figure 21 Crack Pattern at the maximum load for: a) the control beam b) the beam 

strengthened with UHPFRC layer c) the beam strengthened UHPFRC layers and steel bars 

 

Figure 22 Load versus deflection results for different layer depths and different diameters of 

the steel bars 
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Figure 23 Increment of the yield and the maximum load for the different layer depths and the 

different diameters of the steel bars 

 

 


