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Abstract 36 

The investigation of neural circuits is important for interpreting both healthy brain function and 37 

psychiatric disorders. Currently, the architecture of neural circuits is always investigated with 38 

fluorescent protein encoding neurotropic virus and ex vivo fluorescent imaging technology. 39 

However, it is difficult to obtain a whole-brain neural circuit connection in living animals, due to 40 

the limited fluorescent imaging depth. Herein, the non-invasive, whole-brain imaging technique of 41 

MRI and the hypotoxicity virus vector AAV (adeno-associated virus) were combined to investigate 42 

the whole-brain neural circuits in vivo. AAV2-retro are an artificially-evolved virus vector that 43 

permits access to the terminal of neurons and retrograde transport to their cell bodies. By expressing 44 

the ferritin protein which could accumulate iron ions and influence the MRI contrast, the neurotropic 45 

virus can cause MRI signal changes in the infected regions. For mice injected with the ferritin-46 

encoding virus vector (rAAV2-retro-CAG-Ferritin) in the caudate putamen (CPu), several regions 47 

showed significant changes in MRI contrasts, such as PFC (prefrontal cortex), HIP (hippocampus), 48 

Ins (insular cortex) and BLA (basolateral amygdala). The expression of ferritin in those regions 49 

were also verified with ex vivo fluorescence imaging. In addition, we demonstrated that changes in 50 

T2 relaxation time could be used to identify the spread area of the virus in the brain over time. Thus 51 

the neural connections could be longitudinally detected with the in vivo MRI method. This novel 52 

technique could be utilized to observe the viral infection long-term and detect the neural circuits in 53 

a living animal.  54 

 55 
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Introduction 58 

The brain is the most complex organ in the body, and more than 70 billion neurons exist in the 59 

human brain to form a complicated network (Grandjean, et al., 2020). More and more preclinical 60 

studies have shown that neural networks play an essential role in instinctive behaviors such as fear 61 

(Wei, et al., 2015), reward (Zhang, et al., 2017) and mating (Wei, et al., 2018). In addition, the 62 

alteration of neural networks may lead to abnormal animal behaviors, such as epilepsy-like (Citraro, 63 

et al., 2013) or depression-like behaviors (Rozov, et al., 2001), suggesting that human brain diseases 64 

may emerge from neural network dysfunction. Dissecting neural networks is important for 65 

understanding brain function in a physiological or pathological state. 66 

Currently, neurotropic viral vectors have been widely used to investigate the neural networks. 67 

As a series of artificially modified neurotropic viruses, neurotropic viral vectors can transport 68 

exogenous genes along the synapses-connected neural networks. Numerous virus vectors were 69 

constructed to dissect the structure of neural networks after genetic modifications, such as herpes 70 

simplex virus (HSV), pseudorabies virus (PRV), rabies virus (RV), etc. (Nassi, et al., 2015; Rao and 71 

Wang, 2020; Ugolini, 2010). However, most of them can only be used for ex vivo imaging due to 72 

their virulence. Recombinant adeno-associated virus (rAAV) vectors are effective tools for 73 

exogenous gene delivery for living animal studies due to their advantages of high-level transgene 74 

expression and low cell toxicity (Kaplitt, et al., 2007). Recently an artificially-evolved AAV series 75 

vector (rAAV2-retro) was introduced to mediate retrograde access to neurons (Tervo, et al., 2016). 76 

It is a powerful tool to image neural circuits when combined with the fluorescent protein gene 77 

(Zheng, et al., 2020). However, due to limitation of the fluorescent imaging depth, it is hard to 78 

observe the whole-brain neural circuit in a living animal, which also impedes our understanding of 79 



 

the virus infection procedures. Thus, it was valuable to develop a novel method for in vivo neuronal 80 

network detection. 81 

A vast amount of impressive work has been done for living animal imaging. Near-infrared 82 

(NIR) fluorescence imaging methods have been used to increase the imaging depth of fluorescent 83 

protein (Frangioni, 2003) and allow for in vivo imaging (Hong, et al., 2017). However, the NIR 84 

signal is only reliable within the depth of 3 mm (Hong, et al., 2014). Luciferase has also been used 85 

as an in vivo imaging strategy because, with a highly sensitive detector, the imaging depth can be 86 

up to 40 mm. While this has been valuable for labeling cancer cells and gene expression (Li, et al., 87 

2017), the spatial resolution of luciferase imaging is not sufficient enough for tracing neural circuits 88 

(Cook and Griffin, 2003). Magnetic resonance imaging (MRI) is a commonly used clinical image 89 

technique, which has the advantages of non-invasive and large-scale imaging (Van Leemput, et al., 90 

2009; Wu, et al., 2003). The MRI also provides a good compromise of moderately high spatial 91 

resolution (~100 µm) while covering the entire brain (Pagani, et al., 2016; Ullmann, et al., 2013). 92 

Thus, with a proper MRI contrast agent encoded by the virus vector, MRI could be an excellent tool 93 

to trace the whole-brain neural networks in living animals. 94 

Ferritin is a ubiquitous iron storage protein found in most organisms. In general, it protects the 95 

cell from damaging active oxide Fe2+ and stores the iron ion in the shell of ferritin as Fe3+. As Fe3+ 96 

is a paramagnetic MRI contrast agent, the overexpression of ferritin is able to change the transverse 97 

magnetic relaxation rate (1/T2) of the surrounding tissue. Thus, at sufficiently high concentration 98 

and with sufficient access to biological iron, ferritin can change the contrast of the MRI signal and 99 

show its presence with hypointensity on T2-weighted MRI images (Iordanova and Ahrens, 2012; 100 

Wu, et al., 2018). In our previous work, the ferritin gene was loaded onto the  VSV (Vesicular 101 



 

stomatitis virus) and a multi-synaptic neural network connected to sensory cortex was illustrated 102 

(Zheng, et al., 2019). However, the result was obtained using ex vivo MRI due to the virulence of 103 

the VSV. Here, we tried to display the whole-brain neural network in a living animal with 104 

hypotoxicity virus vector AAV. 105 

Herein, a novel tool for in vivo whole-brain neural network imaging was developed. We loaded 106 

the ferritin gene onto a retrograde transporting AAV vector, delivered it to the caudate-putamen 107 

(CPu) of mice and imaged these mice with in vivo MRI. In doing so, we were able to visualize a 108 

CPu-connected network that includes the upstream brain regions sending projection to the CPu. The 109 

ferritin-encoding retrograde transporting AAV vector enabled the investigation of neural network in 110 

living animals and long-term observation of the virus infection.  111 

 112 

Results 113 

MRI signal changes of the regions with ferritin transduction 114 

Firstly, the function of rAAV2-retro-CAG-Ferritin to label the neural networks and express 115 

ferritin was investigated. To this end, a control virus vector rAAV2-retro-CAG-EGFP was 116 

constructed for comparison (Fig. 1A). These two virus vectors were injected into the CPu region of 117 

mice with similar titers (5*1012 vg/mL) and volumes (2.8 μL). Sixty days after receiving the 118 

injection the animals were firstly scanned with MRI. Then all animals were sacrificed and the brain 119 

slices were performed with immunohistochemical staining and fluorescence imaging. The brain 120 

slices of these two groups with same stereotaxic coordinates were chosen for comparison (Fig. 1B). 121 

Similar to the rAAV2-retro-CAG-EGFP infected group, the expression of ferritin could be found in 122 

multiple brain regions other than the injection site CPu, such as the PFC (prefrontal cortex), HIP 123 



 

(hippocampus), Ins (insular cortex), and BLA (basolateral amygdala). Most of those areas were 124 

directly connected to CPu (Tervo, et al., 2016). Secondly, the MRI signals were also compared in 125 

the whole brain of mice infected with these two virus vectors. In rAAV2-retro-CAG-Ferritin infected 126 

group, the hypointensity MRI signals (compared to the surrounding tissue) were observed at ferritin 127 

expressed regions (Fig. 1B, lower). Meanwhile, there was no discernible signal changes observed 128 

on the T2-weighted MRI image in the same regions with EGFP overexpression in the control group 129 

(Fig. 1B, upper). 130 

In order to dissect the neural circuit, the resolution and SNR (signal to noise ratio) of the MRI 131 

image should be sufficient enough to distinguish the structural regions or even the sub-regions of 132 

the brain. The fluorescence and MRI images of similar brain structures were expanded to illustrate 133 

the details of ferritin-encoding AAV expression (Fig. 2). For fluorescence imaging, the red 134 

fluorescent was used to illustrate the expression of ferritin and the changes in MRI signal intensity 135 

were regard as the MRI contrast effect caused by ferritin expression and iron ions aggregation. 136 

Overlapping with a stereotaxic atlas of the mouse brain (Paxinos and Franklin), the location of 137 

ferritin could be plainly identified. Seven representative regions with obvious ferritin expression 138 

were collected for comparison, such as CPu, BLA, HIP, PFC, Tha (Thalamus), Ins and posterior 139 

HIP (Fig. 2B). Although the resolution and SNR of the MRI were much lower than fluorescence 140 

imaging, the same ferritin expressing regions could be observed by both MRI and fluorescence 141 

imaging.  In addition, a more detailed brain partition map of the Ins region was used to explore 142 

whether subtle localized changes could be detected with in vivo MRI (Allen mouse brain atlas, 143 

http://atlas.brain-map.org/). Using this, the distribution of ferritin could be located in the fifth layer 144 



 

of the insular cortex. Thus, the subtle localized changes could also be detected using the MRI 145 

method.  146 

Long term observation of T2-weighted images with ferritin/EGFP expression 147 

The longitudinal recording of rAAV2-retro-CAG-Ferritin and rAAV2-retro-CAG-EGFP 148 

infected groups were performed at different time points (0d, 10d, 30d, 60d) in the same animal using 149 

T2-weighted MRI (Supplementary material, Fig. S1). Based on the fluorescent imaging, the changes 150 

in MRI contrasts of the virus infected areas could be longitudinally monitored, such as PFC, BLA, 151 

Ins, and HIP. In the rAAV2-retro-CAG-Ferritin group, the changes in MRI contrast of those regions 152 

were directly observed after 30 days’ infection and became stronger at 60 days. Meanwhile, there 153 

were no significant changes observed in the rAAV2-retro-CAG-EGFP group during the whole 154 

period of infection.  155 

To quantitatively measure changes in MRI contrast, six regions (CPu, PFC, BLA, Ins, HIP and 156 

Tha) with ferritin/EGFP expression were selected as ROIs (regions of interest) based on an open 157 

source MRI template (TMBTA), and the other two regions CSF (cerebrospinal fluid) and SC 158 

(superior colliculus) were chosen for comparison due to limited ferritin/EGFP expression 159 

(Supplementary material, Fig. S2). Signal intensity normalization (with CSF) were performed 160 

before statistical comparison, and the one-way ANOVA (LSD post hoc test) method was used to 161 

evaluate changes in signal intensity in the T2-weighted images following the infection days 162 

(Supplementary material, Fig. S3). In the rAAV2-retro-CAG-Ferritin infected group (0d, N=14; 10d, 163 

N=11, 30d, N=8; 60d; N=5), statistical differences in MRI contrast were observed in the virus 164 

infected regions following virus infection, such as CPu, BLA, HIP, PFC, Ins and Tha (p<0.05), 165 

while no significant signal changes were detected in SC among different infection time points. 166 



 

Moreover, there were no significant MRI signal changes in all these brain regions of the rAAV2-167 

retro-CAG-EGFP group during the entire virus infected periods (0d, N=3; 10d, N=3, 30d, N=3, 60d; 168 

N=3).  169 

Tracing CPu connected regions using changes in T2 relaxation time  170 

To show the neural network in vivo with a whole-brain view, voxel-wise changes in T2 171 

relaxation time were performed based on the normalized T2 relaxation time maps (Fig. 3A). The 172 

multi-echo T2-weighted images were converted to T2 relaxation time maps and then normalized to 173 

a standard space base on the transformation matrix of T2-weighted images. The differences between 174 

T2 relaxation time maps before injection (0d, Fig. 3B) and after injection (10d, 30d, 60d) were 175 

calculated voxel by voxel (Fig. 3B) and then filtered by a threshold of 4-15ms (Fig. 4).  176 

The mapping of T2 relaxation time changes was compared with fluorescent images and T2-177 

weighted images with similar brain structures. The comparisons among three different time points 178 

are illustrated (Fig. 4). Ten days after the injection, ferritin expression was observed in CPu and 179 

PFC with fluorescence imaging. The same regions were also detected in mapping of T2 relaxation 180 

time changes (10d), although the area was not as wide as the fluorescence imaging. Thirty days after 181 

infection, stronger signals were detected in PFC, CPu, Tha, BLA, HIP, and Ins from the fluorescence 182 

images, and wider signals were also found in PFC, CPu, BLA and Ins from the T2 relaxation time 183 

change mapping (30d). Sixty days after infection, the fluorescent signal spread across the whole-184 

brain through the fluorescence imaging, particularly in the PFC, CPu, Tha, BLA, HIP and Ins. 185 

Consistently, the T2 relaxation time change mapping (60d) showed more similar labeled patterns 186 

compared to the fluorescence imaging. Overall, similar signal tendency was obtained from both the 187 

fluorescence imaging and the T2 relaxation time change mappings over the four infected periods. 188 



 

Thus, the changes in T2 relaxation time can be used to identify in vivo the spreading area of the 189 

virus in the brain over time. 190 

Furthermore, the mapping of T2 relaxation time changes was utilized to investigate the CPu 191 

connected regions with the in vivo MRI approach in the same animal at different time points after 192 

the rAAV2-retro-CAG-Ferritin injection. The dynamic changes in MRI contrast were almost similar 193 

in all individual subjects (Fig. 5). During the early stage of virus infection (10d), changes in T2 194 

relaxation time was only observed at the injection site (CPu). Thirty days after the infection, more 195 

regions showed distinct changes in all the subjects, such as PFC, HIP and BLA. After 60 days, most 196 

of CPu single synapse connected regions were detected at the mapping of T2 relaxation time 197 

changes, such as PFC, BLA, Ins and Tha. Although the signals were unstable during the early stage 198 

of the infection, the changes in MRI contrast became stronger and more consistent after 60 days’ 199 

infection. Thus, this method could be a promising way for investigating the neural circuits in living 200 

animals. 201 

Quantification of T2 relaxation time changes in ferritin transduction regions 202 

 The T2 relaxation time of ferritin overexpressed regions were further quantitatively measured 203 

to assess the MRI signal change along with the infection periods. Six regions with ferritin 204 

overexpression (CPu, BLA, HIP, Ins, PFC and Tha) and two regions without ferritin overexpression 205 

(CSF and SC) were chosen for comparison (Supplementary material, Fig. S2). One-way ANOVA 206 

(LSD post hoc test) was used to test for changes in T2 relaxation time among eight regions as well 207 

as infection days (0d, N=14; 10d, N=11, 30d, N=8 60d; N=5). As shown in Fig. 6, there was no 208 

significant change in the T2 relaxation time detected at CSF or SC where no ferritin was 209 

overexpressed during the whole infection period (p>0.05, marked with same lowercase). Among 210 



 

the other six regions, significant changes were only found at CPu after 10 days’ infection (p<0.05, 211 

marked with different lowercase). When enough time was given for virus infection and ferritin 212 

expression, all six regions that ferritin overexpressed showed significant changes after 30 days’ 213 

infection compared to 0 days’ infection . More significant differences could be found in those 214 

regions after 60 days’ infection time compared to 0 days’ or 30 day’.  215 

 216 

Discussion 217 

Fluorescence imaging is one of the most commonly used method to visualize results of virus-218 

based neural circuit tracing. However, the depth of fluorescence imaging is always limited by the 219 

light transmittance of animal tissues. Although much effort has been made to improve the detection 220 

depth of animal fluorescence imaging, it is difficult to show the labeled regions in living animals 221 

with a whole-brain view (Cook and Griffin, 2003; Frangioni, 2003; Helmchen and Denk, 2005; Zhu, 222 

et al., 2020). Herein, the retrograde virus vector AAV that express MRI contrast protein (ferritin) 223 

was used to illustrate the neural network in living animals. By injecting the virus into the CPu, we 224 

observed a network that directly connected to the CPu using in vivo MRI during three different 225 

periods after the virus injection. Moreover, the network was confirmed by the fluorescence imaging 226 

method. This method could be a powerful approach for exploring the neural circuits in vivo. 227 

Resolution and SNR of MRI in dissecting neural circuits 228 

Although MRI has the advantages of non-invasive and large imaging scale, the resolution and 229 

signal-to-noise ratio are much lower than fluorescence imaging. For fluorescence imaging, the 230 

resolution could reach 0.2 µm, and there is little interference in the background. Since the diameter 231 

of neurons is usually ~5µm, the fluorescence imaging can easily distinguish the neuron cells 232 



 

(Cunnane, et al., 2019). In MRI it is hard to distinguish an individual neuron, due to limited 233 

resolution and SNR. However, the resolutions and SNR of MRI are sufficient to distinguish the 234 

brain regions for neuronal network detection. In the current study, the distributions of ferritin were 235 

always aggregated with significant boundaries, where the T2-weighted images could be utilized to 236 

distinguish the change in MRI contrast, such as BLA, Ins and HIP (Fig. 2). For the regions of PFC, 237 

CPu and Tha, it was not easy to distinguish the ferritin expressed regions from the T2-weighted 238 

images, due to the dispersive distribution of ferritin and the low signal intensity of the background. 239 

For these regions, the ROIs based statistics analysis of signal intensity and the changes in T2 240 

relaxation time were capable of illustrating the MRI contrast effect caused by ferritin expression. 241 

There were also some regions with lower fluorescence where the ferritin expression was weak and 242 

sparse. For these regions, it was very difficult to distinguish the change in T2-weighted MRI signal 243 

intensity. This was probably caused by the low SNR and resolution of MRI, as the weak and sparse 244 

ferritin expressions were not sufficient enough to generate the detectable MRI contrast. 245 

 246 

MRI signals at different infection times 247 

In these experiments, ferritin was overexpressed in a CPu related network through a AAV2-248 

retro virus vector, and three time points (10d, 30d, 60d) were selected to evaluate the ferritin 249 

expression and MRI signal. Different ferritin expressions and MRI signals were found at the three 250 

time points, and the characteristics of rAAV vector could be the main reason for the differences. The 251 

expression of AAV-carrying genes usually increases over time and reaches a plateau within 3-12 252 

weeks (Tenenbaum, et al., 2004) and most of the AAV2-retro labeled results are obtained within 3-253 

8 weeks as reported. Three weeks (Itoga, et al., 2019) and four weeks (Itoga, et al., 2019) are the 254 



 

most commonly used waiting time for AAV2-retro expression and it is reported that more labeled 255 

information can be obtained using eight weeks waiting time rather than four weeks (Cunnane, et al., 256 

2019).  257 

Comparing ferritin expression and MRI signals, incomplete synchronization was detected 258 

between ferritin expression and MRI signal changes, especially in the early stage of the virus 259 

infection. The incomplete synchronization probably results from the characteristics of ferritin. 260 

Ferritin itself is not an MRI contrast agent and it influences the MRI signal by recruiting iron ions. 261 

There are several parameters influenced by the recruiting iron ions: the quantity of ferritin expressed 262 

in the infected region, the distribution of ferritin in cells, the iron enrichment in the intracellular 263 

environment, the supplement rate of iron ions and the degradation rate of ferritin. These differences 264 

could be the source of the incomplete synchronization between ferritin expression and MRI signals 265 

at 10 days and 30 days after the injection. Moreover, the difference between these two signals 266 

became smaller when the infection time reached 60 days, as enough time was given to enrich the 267 

iron ions. Further work is needed to shorten the time delay between ferritin expression and MRI 268 

contrast generation, such as supplementing iron ions. 269 

Relationship between ferritin expression and MRI contrast 270 

Although ferritin is reported to recruit iron ions and influence the MRI signals, there were 271 

many factors that influence the MRI signal changes. Ferritin is an autologous protein which is 272 

involved in inflammation reaction (Namaste, et al., 2017), the infection of AAV could hypothetically 273 

lead to regional inflammation which could also cause overexpression of ferritin (Vande Velde, et al., 274 

2011). Therefore, the expression of ferritin in the infection of rAAV2-retro-CAG-EGFP was also 275 

investigated, and no obvious ferritin expression was found (Supplementary material, Fig. S4). 276 



 

Furthermore, Prussian Blue staining was also utilized to verify the accumulation of Fe3+. The blue 277 

complexes were found at the regions where ferritin was overexpressed (Supplementary material, 278 

Fig. S5). Thus, the change in MRI contrast mediated by infection of rAAV2-retro-CAG-Ferritin 279 

might have been caused by ferritin overexpression and Fe3+ accumulation, rather than inflammation. 280 

Degradation of ferritin could hypothetically cause ferroptosis (Xie, et al., 2016), leading to 281 

cell death when a mass of unbound iron ions are released to the cell. However, overexpression of 282 

ferritin can result in an iron-deficiency intracellular environment (Naumova and Vande Velde, 283 

2018), which could lead to the suppression of ferroptosis (Hou, et al., 2016). Prior studies also 284 

demonstrated that there is no obvious influence on cells when ferritin is overexpressed (Iordanova 285 

and Ahrens, 2012; Iordanova, et al., 2013). Other than ferroptosis, changes in iron balance of the 286 

surrounding tissue around the regions with ferritin overexpression are another potential concern. 287 

While this may be a concern for short time periods, iron deficiency could be rebalanced by the 288 

blood supply for long time tracing work (more than 10 days). Besides, the expression of apoptosis 289 

and inflammation marker, caspase-3 and Iba1, were tested, and no noticeable abnormalities were 290 

found in regions BLA, HIP and PFC, where ferritin was overexpressed (Fig. 7).  291 

Perspective and limitations 292 

Using the ferritin encoding virus, we observed the structural neural network in living mice for 293 

a long period after the virus injection. However, the entire neural network was presented in MRI 294 

images 60 days after the virus injection. At earlier time points only part of the network was displayed. 295 

Our future work could focus on shortening the latency time between the virus injection and MRI 296 

detection. Although the ferritin used in our experiment is already an MRI contrast enhanced version 297 

(Iordanova, et al., 2010), it is possible to make further improvements on the ferritin protein structure 298 



 

for better MRI contrast effect. Besides, exogenous iron ions supplements could be a possible method 299 

for providing better MRI contrast effect in shorter latency time (Vande Velde, et al., 2011). In 300 

addition, the ferritin-encoding virus and in vivo MRI could be used to investigate the expression 301 

levels of optogenetic (e.g. ChR2) or chemogenetic (e.g. hM3Dq or hM4Di) proteins encoded by a 302 

virus. Through MRI imaging, it is easier to know the spread and expression levels of the virus that 303 

can guide further manipulation or operation. For non-human primates or other big laboratory 304 

animals which are expensive and used for many years, it is important to know the transfected 305 

functional protein expression level, especially after a long time. This new technique will make it 306 

much easier to operate and reduce the usage of non-human primates or big animals in brain research. 307 

 308 

Materials and methods 309 

Animal preparation 310 

All animals involved in this study were treated in accordance with protocols approved by the 311 

Animal Ethics Committee at the Wuhan Institute of Physics and Mathematics, Chinese Academy of 312 

Sciences (approval number APM20016A). Male C57BL/6J mice (6–8 weeks old) were purchased 313 

from Hunan SJA Laboratory Animal Co., Ltd (Hunan, China) and allowed to acclimate three days 314 

before the experiment. All the animals were raised under 12h/12h light-dark cycle room with 315 

appropriate temperature, food and water were available ad libitum. 316 

Construction of Virus 317 

The rAAV2-retro-CAG-Ferritin and the rAAV2-retro-CAG-EGFP virus vector were packaged 318 

by a commercial company (BrainVTA, Wuhan, China). This virus will infect neurons in a network 319 

in a retrograde manner, moving from axon to soma. Briefly, the plasmids carrying exogenous genes 320 



 

and AAV2-retro packaging components were cotransfected into 293T cells. After three days’ 321 

cultivation, the AAV virions were collected and purified to a titer of 5-10*1012 vg/mL. In particular, 322 

the ferritin gene used in this experiment was a chimeric ferritin gene (L*H) which comes from the 323 

Mus musculus ferritin light chain and heavy chain (Gift from Prof. Xiaoming Li's lab in Zhejiang 324 

University). 325 

Stereotaxic injection 326 

Male C57BL/6J mice were anesthetized with 1.0% pentobarbital sodium (50 mg/kg) and fixed 327 

in a stereotaxic injection system (RWD, ShenZhen, China). The skull of each mouse was exposed 328 

after being locally anesthetized with lidocaine lincomycin gel (Xinya, Shanghai, China) and 329 

smeared with erythromycin eye ointment to prevent drying. A small hole about 1 mm in diameter 330 

was drilled in the skull to allow accessing the glass micropipette. The glass micropipette was 331 

stereotaxically injected into the CPu (Fig. 8, Caudate Putamen: 0.51 mm anterior to Bregma, 2 mm 332 

lateral from midline, 3.3 mm depth relative to Bregma) based on the stereotaxic coordinates of the 333 

mouse brain atlas (Paxinos and Franklin). Then, the virus suspension (2.8 μL) with titration of 5-334 

10*1012 vg/mL was infused into the CPu at a rate of 0.14 μL/min. After the injection, the 335 

micropipette was kept at the injection site for 10 min to prevent reflux and then it was slowly 336 

withdrawn. The head skin was surgical sutured after treatment with lidocaine lincomycin gel. At the 337 

end of the experiment, the animal was recovered from anesthesia on the heating pad and returned to 338 

its home cage. 339 

MRI scanning 340 

The in vivo MRI experiment was performed using a 7.0 Tesla Biospec small animal magnetic 341 

resonance imaging system (Bruker, Ettlingen, Germany). The animals were initially anesthetized 342 



 

with 4.0-5.0% isoflurane (RWD, Shenzhen, China) for induction and 1.0-1.5% for maintenance with 343 

a mixture of 30% O2 and 70% N2. The body temperature of animals was maintained with a 344 

thermostatic water cycle system under the animal bed. The breathing rate of the animal was 345 

monitored and maintained at 60±15 breaths/min to achieve the state of deep anesthesia. In addition, 346 

two ear bars and a tooth bar were used to minimize motion effect of MRI data acquisition. A 20cm 347 

birdcage coil was used for transmission, combined with a 20 mm surface coil for receiving (Bruker, 348 

Ettlingen, Germany). Multi-echo T2-weighted anatomical images were obtained using an MSME 349 

sequence (TR = 3000 ms; Effective TEs = 11, 22, 33, 44, 55, 66 ms; Number of Averages = 6; FOV 350 

= 17.5 *17.5 mm2; Slice thickness = 0.5 mm; Spatial resolution, 0.137 mm *0.137 mm). The T2 351 

relaxation time maps were obtained by processing the MSME image using Paravision 5.0 software 352 

(Bruker, Germany).  353 

The expression of the rAAV2 in living animals can last for more than two months and its 354 

expression can reach a maximal level after 30 days (Cunnane, et al., 2019). Thus, MRI scans were 355 

performed at four time points to study the longitudinal effects of the virus infection. The time points 356 

were: the day before the virus injection (0d, n=14), 10 days (10d, n=11), 30 days (30d, n=8) and 60 357 

days after injection (60d, n=5), respectively. The number of animals was reduced by 3 in each 358 

succeeding group as 3 animals were euthanized for the fluorescence study at each time point. 359 

Fluorescence imaging and immunohistochemistry 360 

Virus-infected mice were anesthetized with 1.0% pentobarbital sodium (50 mg/kg) and cardiac 361 

perfusion was applied with 0.9% saline followed by 4% paraformaldehyde solution. The brain was 362 

extracted and dehydrated with 30% (w/v) sucrose solution. After that, the dehydrated brain was 363 



 

sectioned into 40 μm slices using freezing microtome (Leica, German) and one of twelve slices were 364 

selected for fluorescence imaging (approach to the MRI slice thickness 0.5 mm). 365 

For the imaging of EGFP, the fluorescence imaging was directly performed. For the imaging 366 

of ferritin, caspase3, Iba1 or cell nucleus, immunohistochemistry staining was performed before the 367 

fluorescence imaging. For immunohistochemistry, the slices were first rinsed with PBS and then 368 

blocked with blocking solution buffer (PBS+0.3% TritonX-100+10% goat serum, 37℃, 1h). For 369 

ferritin staining, the rabbit anti-ferritin light chain antibody (Abcam, ab69090, UK) and Cy3-labeled 370 

goat anti-rabbit secondary antibody were utilized. For caspase3 staining, the rabbit anti anti-371 

caspase3 antibody (Cell Signaling Technology, #9661) and 488-labeled goat anti-rabbit IgG were 372 

used. For Iba1 staining, the goat anti anti-Iba1 antibody (Abcam, ab5) and Cy3-labeled donkey anti 373 

goat antibody were utilized. For cell nucleus staining, the fluorescent dye DAPI was used.  374 

For fluorescence imaging, the brain slices were transferred to microslide and scanned with an 375 

Olympus VS120 virtual microscopy slide scanning system (Olympus, Japan). For the filters, Leica 376 

U-MRFPHQ fluorescence mirror unit was used for the red fluorescence imaging, which included a 377 

535-555nm excitation filter, a 575-625nm emission filter and a 565nm dichromatic mirror; Leica 378 

U-MWIBA3 fluorescence mirror unit was used for green fluorescence imaging, which included a 379 

460-495nm excitation filter, a 510-550nm emission filter and a 505nm dichromatic mirror. 380 

Furthermore, the Perls' Prussian Blue staining method was utilized to verify the accumulation 381 

of iron ions. It was performed following a previous study (Kim, et al., 2010) with a commercial 382 

staining kit (Solarbio, G1422, Beijing, China). 383 

Data analysis 384 



 

The T2-weighted images and T2 relaxation time maps were transformed to NIFTI format using 385 

Bru2anz (Bruker, Germany). MRI images were normalized to a homemade mouse MRI template 386 

using spm12 (www.fil.ion.ucl.ac.uk). The heavily T2-weighted images (TE/TR = 55ms/3000ms) 387 

were used to show the MRI signal change in ferritin expressed regions (Fig. 8).  388 

For comparison between MRI images and fluorescence images, similar brain slices were 389 

chosen based on structural features and the slice position. The anterior commissure was used for 390 

feature recognition and the slice with the same axial distance from the anterior commissure was 391 

used for these comparisons. The MRI images and fluorescence images were matched with the mouse 392 

brain atlas. 393 

For calculating the variation within T2 relaxation times, all the T2 relaxation time maps firstly 394 

used nonlinear transformation to determine a homemade mouse brain template with spm old-395 

normalise. The T2 relaxation times mapping was obtained by comparing the T2 relaxation time map 396 

to the map from the same animal before injection (0d) (Fig. 3). The T2 relaxation time changes 397 

higher than 15ms or lower than 4ms were considered as outliers and deleted.  398 

To quantitatively describe changes in T2 relaxation times, all the MRI images were normalized 399 

to a publicly available mouse brain template TMBTA (www.nitrc.org/projects/tmbta_2019) and 400 

smoothed. Six regions with ferritin expression (CPu, HIP, BLA, Ins, PFC, Tha) and two regions 401 

without ferritin expression (SC, CSF) were chosen as ROIs based on the TMBTA mouse brain atlas 402 

(Supplementary material, Fig. S2). The average T2 relaxation times for the eight ROIs were 403 

obtained and these average values were compared using one-way ANOVA. Least significant 404 

difference (LSD) was used for post hoc multiple comparisons, with statistical significance at p<0.05. 405 

Data availability 406 



 

All data and the implementation code in this article are available upon request from the 407 

corresponding author (jie.wang@wipm.ac.cn). 408 

 409 

Conclusion 410 

We developed a novel neural network tracing method using a combination of in vivo MRI and 411 

virus tracing techniques. It enabled the detection of the neural network in a living animal with a 412 

whole-brain view. Besides, we measured the virus infection progress over a period of time in the 413 

same animal. This technology provides a totally different perspective for our understanding of the 414 

neural network. It may lead to a different explanation of the brain network when combining the 415 

results of in vivo virus tracing and in vivo detection technologies. The technology may also benefit 416 

the neural circuit tracing in animals with larger-size brains, of which the whole-brain fluorescence 417 

imaging is tremendous amount of work, but easy when using MRI. 418 

 419 

Author contributions: Fuqiang Xu, Jie Wang, Ning Zheng, Aoling Cai designed the research. Peng 420 

Su, Kunzhang Lin, Ling-Qiang Zhu gave advice on the research. Ning Zheng, Aoling Cai, Yang Wu 421 

performed experiments. Aoling Cai, Ning Zheng, Binbin Nie, Jinfeng Wu analyzed data. Aoling Cai, 422 

Jie Wang, Garth J. Thompson, Ning Zheng, Anne Manyande wrote the manuscript. 423 

 424 

Funding: This work was supported by grants from the National Natural Science Foundation of 425 

China (31970973, 31771193, 21921004), National Natural Science Foundation (NSF) of Hubei 426 

Province (2020CFA059), the Strategic Priority Research Program of the Chinese Academy of 427 

Sciences (XDB32030200), the Open Project Program of Wuhan National Laboratory for 428 



 

Optoelectronics (2019WNLOKF022) and the Youth Innovation Promotion Association of Chinese 429 

Academy of Sciences (Y6Y0021004). Key-Area Research and Development Program of 430 

Guangdong Province (2018B030331001). 431 

 432 

Financial Disclosure Statement: There are no financial conflicts of interest to disclose. 433 

 434 

Reference 435 

Citraro, R., Russo, E., Ngomba, R.T., Nicoletti, F., Scicchitano, F., Whalley, B.J., Calignano, A., De 436 

Sarro, G. (2013) CB1 agonists, locally applied to the cortico-thalamic circuit of rats with 437 

genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res, 106:74-82. 438 

Cook, S.H., Griffin, D.E. (2003) Luciferase imaging of a neurotropic viral infection in intact animals. 439 

J Virol, 77:5333-8. 440 

Cunnane, K., Alvarado, A., Gwak, Y., Peters, C., Romero-Sandoval, E., Martin, T., Eisenach, J. (2019) 441 

Studying Pain Neural Circuits with Viral Vector rAAV2-Retro in the Brain. J Pain, 20:S36-442 

S36. 443 

Frangioni, J.V. (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol, 7:626-34. 444 

Grandjean, J., Canella, C., Anckaerts, C., Ayranci, G., Bougacha, S., Bienert, T., Buehlmann, D., 445 

Coletta, L., Gallino, D., Gass, N., Garin, C.M., Nadkarni, N.A., Hubner, N.S., Karatas, M., 446 

Komaki, Y., Kreitz, S., Mandino, F., Mechling, A.E., Sato, C., Sauer, K., Shah, D., Strobelt, S., 447 

Takata, N., Wank, I., Wu, T., Yahata, N., Yeow, L.Y., Yee, Y., Aoki, I., Chakravarty, M.M., 448 

Chang, W.T., Dhenain, M., von Elverfeldt, D., Harsan, L.A., Hess, A., Jiang, T., Keliris, G.A., 449 

Lerch, J.P., Meyer-Lindenberg, A., Okano, H., Rudin, M., Sartorius, A., Van der Linden, A., 450 

Verhoye, M., Weber-Fahr, W., Wenderoth, N., Zerbi, V., Gozzi, A. (2020) Common 451 

functional networks in the mouse brain revealed by multi-centre resting-state fMRI 452 

analysis. Neuroimage, 205:116278. 453 

Helmchen, F., Denk, W. (2005) Deep tissue two-photon microscopy. Nat Methods, 2:932-40. 454 

Hong, G., Diao, S., Chang, J., Antaris, A.L., Chen, C., Zhang, B., Zhao, S., Atochin, D.N., Huang, P.L., 455 

Andreasson, K.I., Kuo, C.J., Dai, H. (2014) Through-skull fluorescence imaging of the brain 456 

in a new near-infrared window. Nat Photonics, 8:723-730. 457 

Hong, G.S., Antaris, A.L., Dai, H.J. (2017) Near-infrared fluorophores for biomedical imaging. Nat 458 

Biomed Eng, 1. 459 

Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., 3rd, Kang, R., Tang, D. (2016) Autophagy 460 

promotes ferroptosis by degradation of ferritin. Autophagy, 12:1425-8. 461 

Iordanova, B., Ahrens, E.T. (2012) In vivo magnetic resonance imaging of ferritin-based reporter 462 

visualizes native neuroblast migration. Neuroimage, 59:1004-12. 463 

Iordanova, B., Goins, W.F., Clawson, D.S., Hitchens, T.K., Ahrens, E.T. (2013) Quantification of HSV-464 

1-mediated expression of the ferritin MRI reporter in the mouse brain. Gene Ther, 20:589-465 



 

96. 466 

Iordanova, B., Robison, C.S., Ahrens, E.T. (2010) Design and characterization of a chimeric ferritin 467 

with enhanced iron loading and transverse NMR relaxation rate. J Biol Inorg Chem, 468 

15:957-65. 469 

Itoga, C.A., Chen, Y., Fateri, C., Echeverry, P.A., Lai, J.M., Delgado, J., Badhon, S., Short, A., Baram, 470 

T.Z., Xu, X. (2019) New viral-genetic mapping uncovers an enrichment of corticotropin-471 

releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-472 

related brain regions. J Comp Neurol, 527:2474-2487. 473 

Kaplitt, M.G., Feigin, A., Tang, C., Fitzsimons, H.L., Mattis, P., Lawlor, P.A., Bland, R.J., Young, D., 474 

Strybing, K., Eidelberg, D., During, M.J. (2007) Safety and tolerability of gene therapy with 475 

an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, 476 

phase I trial. Lancet, 369:2097-105. 477 

Kim, H.S., Cho, H.R., Choi, S.H., Woo, J.S., Moon, W.K. (2010) In vivo imaging of tumor transduced 478 

with bimodal lentiviral vector encoding human ferritin and green fluorescent protein on 479 

a 1.5T clinical magnetic resonance scanner. Cancer Res, 70:7315-24. 480 

Li, X.F., Li, X.D., Deng, C.L., Dong, H.L., Zhang, Q.Y., Ye, Q., Ye, H.Q., Huang, X.Y., Deng, Y.Q., Zhang, 481 

B., Qin, C.F. (2017) Visualization of a neurotropic flavivirus infection in mouse reveals 482 

unique viscerotropism controlled by host type I interferon signaling. Theranostics, 7:912-483 

925. 484 

Namaste, S.M., Rohner, F., Huang, J., Bhushan, N.L., Flores-Ayala, R., Kupka, R., Mei, Z., Rawat, R., 485 

Williams, A.M., Raiten, D.J., Northrop-Clewes, C.A., Suchdev, P.S. (2017) Adjusting ferritin 486 

concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional 487 

Determinants of Anemia (BRINDA) project. Am J Clin Nutr, 106:359S-371S. 488 

Nassi, J.J., Cepko, C.L., Born, R.T., Beier, K.T. (2015) Neuroanatomy goes viral! Front Neuroanat, 489 

9:80. 490 

Naumova, A.V., Vande Velde, G. (2018) Genetically encoded iron-associated proteins as MRI 491 

reporters for molecular and cellular imaging. Wires Nanomed Nanobi, 10. 492 

Pagani, M., Damiano, M., Galbusera, A., Tsaftaris, S.A., Gozzi, A. (2016) Semi-automated 493 

registration-based anatomical labelling, voxel based morphometry and cortical thickness 494 

mapping of the mouse brain. J Neurosci Meth, 267:62-73. 495 

Rao, X., Wang, J. (2020) Neuronal Network Dissection with Neurotropic Virus Tracing. Neurosci 496 

Bull, 36:199-201. 497 

Rozov, A., Jerecic, J., Sakmann, B., Burnashev, N. (2001) AMPA receptor channels with long-lasting 498 

desensitization in bipolar interneurons contribute to synaptic depression in a novel 499 

feedback circuit in layer 2/3 of rat neocortex. J Neurosci, 21:8062-71. 500 

Tenenbaum, L., Chtarto, A., Lehtonen, E., Velu, T., Brotchi, J., Levivier, M. (2004) Recombinant AAV-501 

mediated gene delivery to the central nervous system. J Gene Med, 6 Suppl 1:S212-22. 502 

Tervo, D.G., Hwang, B.Y., Viswanathan, S., Gaj, T., Lavzin, M., Ritola, K.D., Lindo, S., Michael, S., 503 

Kuleshova, E., Ojala, D., Huang, C.C., Gerfen, C.R., Schiller, J., Dudman, J.T., Hantman, A.W., 504 

Looger, L.L., Schaffer, D.V., Karpova, A.Y. (2016) A Designer AAV Variant Permits Efficient 505 

Retrograde Access to Projection Neurons. Neuron, 92:372-382. 506 

Ugolini, G. (2010) Advances in viral transneuronal tracing. J Neurosci Meth, 194:2-20. 507 

Ullmann, J.F., Watson, C., Janke, A.L., Kurniawan, N.D., Reutens, D.C. (2013) A segmentation 508 

protocol and MRI atlas of the C57BL/6J mouse neocortex. Neuroimage, 78:196-203. 509 



 

Van Leemput, K., Bakkour, A., Benner, T., Wiggins, G., Wald, L.L., Augustinack, J., Dickerson, B.C., 510 

Golland, P., Fischl, B. (2009) Automated segmentation of hippocampal subfields from 511 

ultra-high resolution in vivo MRI. Hippocampus, 19:549-57. 512 

Vande Velde, G., Rangarajan, J.R., Toelen, J., Dresselaers, T., Ibrahimi, A., Krylychkina, O., Vreys, R., 513 

Van der Linden, A., Maes, F., Debyser, Z., Himmelreich, U., Baekelandt, V. (2011) Evaluation 514 

of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain 515 

using lentiviral and adeno-associated viral vectors. Gene Ther, 18:594-605. 516 

Wei, P., Liu, N., Zhang, Z., Liu, X., Tang, Y., He, X., Wu, B., Zhou, Z., Liu, Y., Li, J., Zhang, Y., Zhou, X., 517 

Xu, L., Chen, L., Bi, G., Hu, X., Xu, F., Wang, L. (2015) Processing of visually evoked innate 518 

fear by a non-canonical thalamic pathway. Nat Commun, 6:6756. 519 

Wei, Y.C., Wang, S.R., Jiao, Z.L., Zhang, W., Lin, J.K., Li, X.Y., Li, S.S., Zhang, X., Xu, X.H. (2018) Medial 520 

preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of 521 

gender. Nat Commun, 9:279. 522 

Wu, E.X., Wong, K.K., Andrassy, M., Tang, H. (2003) High-resolution in vivo CBV mapping with MRI 523 

in wild-type mice. Magn Reson Med, 49:765-70. 524 

Wu, Q., Ono, K., Suzuki, H., Eguchi, M., Yamaguchi, S., Sawada, M. (2018) Visualization of Arc 525 

promoter-driven neuronal activity by magnetic resonance imaging. Neurosci Lett, 526 

666:92-97. 527 

Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., Kang, R., Tang, D. (2016) Ferroptosis: process 528 

and function. Cell Death Differ, 23:369-79. 529 

Zhang, Z., Liu, Q., Wen, P., Zhang, J., Rao, X., Zhou, Z., Zhang, H., He, X., Li, J., Zhou, Z., Xu, X., 530 

Zhang, X., Luo, R., Lv, G., Li, H., Cao, P., Wang, L., Xu, F. (2017) Activation of the 531 

dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-532 

preference and reward. Elife, 6. 533 

Zheng, N., Su, P., Liu, Y., Wang, H., Nie, B., Fang, X., Xu, Y., Lin, K., Lv, P., He, X., Guo, Y., Shan, B., 534 

Manyande, A., Wang, J., Xu, F. (2019) Detection of neural connections with ex vivo MRI 535 

using a ferritin-encoding trans-synaptic virus. Neuroimage, 197:133-142. 536 

Zheng, N., Wang, Z.Z., Wang, S.W., Yang, F.J., Zhu, X.T., Lu, C., Manyande, A., Rao, X.P., Xu, F.Q. 537 

(2020) Co-localization of two-color rAAV2-retro confirms the dispersion characteristics 538 

of efferent projections of mitral cells in mouse accessory olfactory bulb. Zool Res, 41:148-539 

156. 540 

Zhu, J., Yu, T., Li, Y., Xu, J., Qi, Y., Yao, Y., Ma, Y., Wan, P., Chen, Z., Li, X., Gong, H., Luo, Q., Zhu, D. 541 

(2020) MACS: Rapid Aqueous Clearing System for 3D Mapping of Intact Organs. Adv Sci 542 

(Weinh), 7:1903185. 543 

  544 



 

Figure Legend 545 

 546 

Fig. 1. Detection of EGFP/Ferritin expression with fluorescence imaging and T2-weighted MRI 547 

(TE=55ms), 60 days after the virus injection. A: Virus genomes of rAAV2-retro-CAG-EGFP and rAAV2-548 

retro-CAG-Ferritin, Ftl1: Mus musculus ferritin light chain, Fth1: Mus musculus ferritin heavy chain. B: 549 

Upper, fluorescence images (green, EGFP) and corresponding MRI images (grey) of one representative 550 

mouse brain infected with rAAV2-retro-CAG-EGFP; Lower, fluorescence images (red, Ferritin) and 551 

corresponding MRI images (grey) of one representative mouse brain infected with rAAV2-retro-CAG-552 

Ferritin. 553 

 554 

Fig. 2. Signal comparison of the fluorescence imaging and MRI with brain region segmentation. A: the 555 

sketch map of virus infected regions after the rAAV2-retro injection (shown in fluorescence image). B: 556 

The distribution of Ferritin expression (red) and MRI signal changes (dark) compared at seven regions, 557 

CPu, BLA, HIP, PFC, Tha, Ins and post HIP. The mouse brain stereotaxic atlas is overlapped (white) to 558 

distinguish the brain structure. 559 

 560 

Fig. 3. The schematic diagram of the processing of multi-Echo T2-weighted images, and the calculation 561 

of T2 relaxation time change mapping. A: The multi-Echo T2-weighted images were firstly transformed 562 

to the T2 relaxation time map and then normalized to a template. The normalized T2 relaxation time 563 

maps (right) were subtracted with the map of 0d (left) and then screened with a threshold to form a T2 564 

relaxation time change mapping. B: The voxel-by-voxel T2 relaxation time change mappings in different 565 

infection periods. 566 



 

 567 

Fig. 4. The comparison of fluorescence image, T2 relaxation change mapping and T2-weighted image 568 

on a different infection day. Three time points after injection are shown (10d, 30d, 60d). Fluorescence 569 

images (top) are displayed to show the location and expression quantity of Ferritin at different time 570 

points. Corresponding images of the T2 relaxation time change mapping (middle) and the T2-weighted 571 

images (bottom) are displayed for comparison. The voxels in T2 relaxation time change mappings are 572 

shown with pseudo color (red-yellow) when the value is between 4ms and 15ms. Data was obtained from 573 

three different representative mice, as the fluorescence imaging was obtained from brain slices. 574 

 575 

Fig. 5. The longitudinal study of the rAAV2-retro-CAG-Ferritin infection at three different time points 576 

(10d, 30d, 60d) using in vivo MRI. The change in T2 relaxation times before versus after virus injection 577 

are used to represent the infected regions of the virus at three time points. The voxels in T2 relaxation 578 

time change mappings are shown with pseudo color (red-yellow) when the value is between 4ms and 579 

12ms. 580 

 581 

Fig. 6. Statistics analysis of T2 relaxation times at different time points after rAAV2-retro-CAG-Ferritin 582 

injection (0d, 10d, 30d, 60d). The T2 relaxation times of six ferritin expressed regions (CPu_R, BLA_R, 583 

HIP_R, Ins_R, PFC_R and Tha_R) and two negative control regions without ferritin expressed (CSF and 584 

SC) were extracted for comparison. Note: Significant changes among the four time points were calculated 585 

using one-way ANOVA with LSD post hoc test, and significant differences between each time point are 586 

illustrated with lowercase letters a, b, c, d (a different letter represented p<0.05 and the same letter 587 

represented p>0.05). 588 



 

 589 

Fig. 7. The expression of caspase-3 and Iba1 was investigated at the regions that ferritin was 590 

overexpressed (red, left). For caspase-3 staining (green, middle), obvious caspase-3 expression can only 591 

be observed at the injection site (CPu), and no signal was found at the other three regions (BLA, HIP, 592 

and PFC). For Iba1 staining (red, right), no abnormality was observed in the morphology and distribution 593 

of microglia. 594 

 595 

Fig. 8. Illustration of the schedule of the experiment.  596 


