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ABSTRACT This paper introduces a novel feature extraction method for biometric recognition using
EEG data and provides an analysis of the impact of electrode placements on performance. The feature
extraction method is based on the wavelet transform of the raw EEG signal. Furthermore, the logarithms
of wavelet coefficients are processed using the discrete cosine transform (DCT). The DCT coefficients
from each wavelet band are used to form the feature vectors for classification. As an application in the
biometrics scenario, the effectiveness of the electrode locations on person recognition is also investigated,
and suggestions are made for electrode positioning to improve performance. The effectiveness of the
proposed feature was investigated in both identification and verification scenarios. The identification results
of 98.24% and 93.28% were obtained using the EEG Motor movement/imagery dataset (MM/I) and the UCI
EEG database dataset, respectively, which compares favorably with other published reports while using a
significantly smaller number of electrodes. The performance of the proposed system also showed substantial
improvements in the verification scenario, when compared with some similar systems from the published
literature. A multi-session analysis is simulated using with eyes open and eyes closed recordings from the
MM/I database. It is found that the proposed feature is less influenced by time separation between training

and testing compared with a conventional feature based on power spectral analysis.

INDEX TERMS Biometrics, feature extraction, EEG.

I. INTRODUCTION

Biometric person recognition technologies have become an
active area of research in recent years, leading to significant
deployments in a range of application domains. However,
despite some considerable successes, important challenges
still hinder their widespread adoption and acceptance [1],
because of this the search for new biometric modalities con-
tinues. Using the electroencephalographic (EEG) signals for
biometric recognition has been receiving increasing attention
in recent years. The EEG signals have been widely employed
in clinical applications (such as the epileptic seizure events
detection [2]). However, as a relatively new biometric modal-
ity, they were first used for person identification in 1999 [3].
After years of research, it is now experimentally estab-
lished that EEG signals indeed contain biometric informa-
tion [4]. However, the usage of EEG for person recognition
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is still mainly restricted to laboratory environments; most
of the reported EEG-based scenarios could not be adapted
for real-life scenarios due to usability issues. For exam-
ple, many proposed EEG biometric systems require a large
amount of electrodes to achieve an acceptable recognition
performance [5].

Feature extraction is a critical step in developing EEG
biometric systems. After nearly 20 years of research, most of
the proposed systems are still using one or both of the follow-
ing features for classification: Power Spectral Density (PSD)
[6], [7] and Autoregressive Model (AR) coefficients [8], [9].
These features on their own, however, do not seem to be able
to convey enough biometric information while using a limited
number of electrodes.

Recently, Bai et al. [10] reported a system using the
visual evoked potential for person identification. A series
of techniques, including Genetic Algorithm, Fisher Dis-
criminant Ratio and Recursive Feature Elimination were
employed to reduce the number of electrodes for less intrusive
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user experience. Data from 32 out of 64 electrodes were
tested using a database of their own comprising 20 subjects.
The best identification rate of 97.25% was achieved using a
Support Vector Machine classifier.

Phung er al. [11] proposed using Shannon Entropy (SE)
as the feature for fast EEG-based person identification. Their
database consisted of 40 subjects and EEG data captured from
23 electrodes were used for feature extraction. It was found
that using SE was 2.3 to 2.6 times faster than the method
based on AR, while a comparable accuracy was achieved
(97.1% for SE versus 97.2% for AR).

Gui et al. [12] proposed to use Euclidean Distance (ED)
and Dynamic Time Warping (DTW) for the EEG data match-
ing. Their proposed methods were tested with a database
having 30 subjects using a 74-channel EEG cap. Only the
data obtained from four electrodes (Pz, O1, 02, Oz) were
used. It was found that the ED method had an accuracy of
over 80% whereas the accuracy achieved by the DTW method
was about 68%.

Ruiz-Blondet ef al. [13] reported an identification system
based on the Event-Related Potential (ERP) using a dis-
criminant function for classification, a 100% identification
accuracy was achieved in a pool of 50 users. Using the
ERPs as features, a longitudinal study of EEG biometrics
was also investigated [14]. EEG recordings from three differ-
ent sessions of 50 subjects were employed for analyzing its
repeatable characteristics. Deep convolution neural networks
have also been used for EEG biometrics [15]. Using the
open-source database (Physionet EEG Database), an Equal
Error Rate (EER) of 0.19% was reported. In terms of EER,
it surpasses by far all the previous reports using the same
database in a verification scenario.

The efforts in developing a user-friendly EEG biometrics
device recently received much attention in the community.
Nakamura et al. [16] reported a two-sensor In-Ear EEG bio-
metric system, tested in both the verification and identifica-
tion scenarios. Fifteen subjects participated in two temporally
separate sessions. Depending on the subject, the time inter-
vals between the two sessions ranged from 5 to 15 days. Three
trials of recording were obtained for each session, each trial
lasted for 180 seconds. The PSD and AR features were trained
by linear discriminant analysis (LDA) and support vector
machine classifiers. The best recognition rate was 87.2%
while using the data from the trials in the same day; whereas
when the data from the trials performed in a separated day
were used for testing, the recognition degraded to 67.8%.

The affective (emotional) state of an individual also play
a role in the EEG-biometrics ability to identify individuals.
For example, in [45], Arnau-Gonzalez et al. reported that
the identification accuracy is consistently higher when EEG
recordings are from the same emotional state. Their exper-
iment found a drop in accuracy of about 5-11% due to the
affective states depending on the feature types and classi-
fication algorithms explored. A more significant reduction
in accuracy occurred when data were picked from different
recording sessions. Key issues that emerge from this brief
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survey of relevant literature include the need for reducing the
number of electrodes for more usable biometric recognition
systems while improving accuracy rates for large cohorts
of users, as well as an understanding of the stability of
EEG-based biometric features over time.

In this paper, a novel feature extraction method based on
the Wavelet Transform is introduced for biometric recog-
nition using EEG data. The effectiveness of the proposed
feature was investigated in both identification and verifica-
tion scenarios. The paper is organized as follows: Section II
introduces the proposed feature extraction algorithm. A brief
introduction of the databases used in this study is presented
in Section III, including parameter estimations such as the
window size and the electrode placement. In Section IV,
both identification and verification tests are conducted to
evaluate the biometric performance of the proposed system.
In Section V the experimental results are compared with
other systems. Conclusion and suggestions for future work
are presented in Section VL.

Il. THE PROPOSED WAVELET-LOG-DCT FEATURE

EEG signal is considered a non-stationary modality [17],
which is, to some extent similar to human voice signals [18].
It is reported by Kawabata [17] that for EEG signals (during
both the eyes-open and the eyes-closed states), some stepwise
changes in the amplitude together with rapid changes in the
center frequency were observed. It has been claimed that
these characteristics of EEG signals are similar to human
speech [19], and therefore, it is justifiable that some well-
established feature extraction algorithms in the voice recog-
nition field can also be explored for EEG-based recognition.
Nguyen et al. [19] conducted a preliminary investigation
using the conventional Mel-frequency Cepstral Coefficients
(MFCC) features for biometric person identification. Tested
using a population of 20 subjects (subset of a public database
of 122 subjects), 92.8% identification rate was achieved
using data from eight electrodes. Their work suggests
MEFCC feature which transferred directly from voice recog-
nition is also effective in revealing the biometric information
of EEG signals.

The notion of combining Wavelet Transform (WT) and
Fourier Transform (FT) has also been reported in the speaker
recognition field [20], [21]. In the work presented in our paper
a new wavelet-based feature is proposed. Figure 1 shows
the main steps of the proposed feature extraction method.
Previously reported algorithms, however, follow the order of
computing Fourier Transform-Mel Log Powers per Window-
Wavelet Transform [20, [21] for feature extraction. This
newly proposed scheme for EEG-based biometric recogni-
tion, on the other hand, performs the wavelet transform first,
then the logarithm of the wavelet coefficients is computed.
Finally, the Discrete Cosine Transform (DCT) is computed.
A subset of the resulting coefficients for each wavelet band
are then used as the feature for pattern classification.

The main feature extraction process is divided into four
steps. The first step is to perform the Wavelet Transform of

49605



IEEE Access

S. Yang et al.: Improved Time-Frequency Features and Electrode Placement for EEG-Based Biometric Person Recognition

TABLE 1. Statistical comparison between two types of features: with and without the logarithm step. The Fisher’s linear discriminate ratios between the
12-dimensional features from Subject 1 and Subject 2 (from the MM/I database) are computed to illustrate the effectiveness of the logarithm step in the

proposed feature extraction method.

Fisher’s linear discriminate ratio
Band (Hz) 0-20 20-40 40-60 60-80 0-10 10-20
With log 1.7709 0.0524 0.2928 0.2694 11.9517 1.3647
Without log 0.0016 0.9955 0.2582 0.1415 0.0028 0.0789
Band (Hz) 20-30 30-40 40-50 50-60 60-70 70-80
With log 2.7129 0.1056 16.1299 0.1381 3.6337 1.0775
Without log 0.9323 0.0063 0.2851 2.4055 0.1289 1.6665
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FIGURE 1. Overall process of the proposed Wavelet-Log-DCT approach to
biometric identification.
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FIGURE 2. Two dimensions of the WLD feature vectors from
Subject 1 and 2, with and without the logarithm step. The
data used to generate this illustration is from the MM/1
dataset for an epoch size of 15 seconds (Cz electrode).

the EEG data: here Wavelet Packet Decomposition (WPD)
is employed [22]. The wavelet coefficients encapsulate both
the time and the frequency properties of the signal. The
Daubechies 4 wavelet function is used to decompose the
windowed signal into four levels (Level O to Level 3).
Similar to the conventional computation of the cepstrum in
the field of speech/speaker recognition [23], the second step
is to compute the logarithm of the resulting WT coefficients
for each wavelet band. The resulting WT coefficients may
contain both positive and negative values. In our implemen-
tation, we took the absolute magnitudes of the WT coeffi-
cients prior to the calculation of the logarithms. It is found
that the resulting logarithmic wavelet coefficients are better
separated in the feature space than without performing the log
step as illustrated in the Figure 2. Only two sets of features
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the logarithm step, and the other without are shown in the
same feature space. The two elements of the feature vec-
tors (8th and 9th) plotted corresponds to two wavelet bands
(30-40 Hz and 40-50 Hz respectively). It can be seen that
inclusion of the logarithm step results in feature points of each
class to be much more compact and better separated.

To statistically further analyze the effectiveness of the log-
arithm step, a series of comparisons are presented in Table 1.
The proposed EEG feature vector contains 12 dimensions
extracted from the subbands in Level 2 and Level 3. The
classical Fisher’s linear discriminate (FLD) ratios [24] of the
features for each dimension are computed; these results are
compared with the ratios obtained from the features obtained
without the log step. It is found the FLD ratios from most of
the bands with the log step were significantly higher revealing
better clustering for classification. It can be seen that for
some dimensions from the proposed feature produced lower
FLD ratios, however, the overall quality of the feature as a
vector (of 12 dimensions for the proposed method) still out
performed the features without including the log step.

The logarithm of the wavelet coefficients for each EEG
window (epoch) is subsequently fed into a discrete cosine
transform filter bank [25], resulting in a series of Wavelet-
Log-DCT (WLD) coefficients. Finally, the proposed feature
extraction process selects the most information-bearing WLD
coefficients obtained in the previous step. An empirical inves-
tigation was carried out (see Sec. IIIC for details) and for
this particular implementation of EEG biometrics, only the
first coefficients were selected for the feature vector con-
struction. Note that, these coefficients are not related to the
DC values of the time domain EEG signals due to the wavelet
decomposition, except in the subbands 0-10Hz (Level 3) and
0-20Hz (Level 2). The DCT coefficients are derived from the
wavelet transform, which have been frequency-banded in the
wavelet domain and further compressed in the log-domain.
The selected coefficients thus provide a time-frequency sig-
nature based on the information contained in the different
wavelet bands.

This proposed feature extraction strategy has some simi-
larity to the conventional MFCC algorithm [26], [27]. In the
proposed method, the Wavelet Transform with its multi-scale
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decomposition characteristics is used instead of the Fourier
transform to better distinguish the biometric information
buried in the time domain signals.

IIl. EXPERIMENTAL SETUP AND ANALYSIS OF
PARAMETERS

Data In the laboratory environment, a typical EEG-based bio-
metric recognition system often requires the users to perform
some activities, (e.g., viewing a series of pictures or making a
movement) to trigger the signals of interest. The EEG signals
are then recorded by a headset during this process.

To evaluate the effectiveness of the proposed feature,
and compare the system performance with other existing
reports, two publicly available databases namely “EEG
Motor Movement/Imagery Dataset” [28] and “UCI EEG
Database Dataset” [29] are employed in this study. For
the sake of brevity, these two databases are referred as
MM/I database and UCI database, respectively.

The MM/I dataset contains data obtained from 109 sub-
jects, acquired using the BCI2000 instrumentation system:
the headset contains 64 wet sensors acquired EEG at a sam-
pling frequency of 160 Hz [30], [31]. Subjects involved in
the data collection performed six different tasks: two resting
state baseline tasks where there was no requirement for any
specific activity (one with eyes open, one with eyes closed),
and four motor movement/imagery tasks. Only the data from
the resting states are utilized in this work. From the two
baseline datasets, 105 out of 109 subjects were selected to
ensure each recording contains at least 60 seconds of data.

The UCI database contains data obtained from 122 sub-
jects, collected by a headset with 64 electrodes. 122 subjects
were separated into two groups: alcoholic (77) and control
(45). During the data collection, subjects were viewing a
series of standard picture sets (banana, airplane etc.) [32]
while their EEG signals were recorded. Each picture was
shown for one second and the following one second’s EEG
data was recorded (at a sampling frequency of 256 Hz) as one
trial. There were between 15 to 120 such one-second trials
recorded for each subject. Therefore, the overall recording
length varied a lot for different subjects. Further details of
the data capture and preparation of the UCI database can be
found in [29]. Due to the recording length variation between
subjects, only 119 out of 122 subjects were selected for this
analysis to guarantee adequate length of recordings (at least
60 seconds) from each individual. The distinction between
two types of subjects (alcoholic and control) was ignored in
these experiments and only the biometric performances were
explored.

The raw signals were segmented into multiple time domain
windows. For each window the WPD was performed [33]:
for EEG analysis, the signals were decomposed into four
levels (Levels O to 3) of wavelet bands and the wavelet
coefficients of the 12 bands from Levels 2 and 3 are included
in the feature vector. For the MM/I database (with 160 Hz
sampling rate), the selected subbands used in the feature
extraction are of 10 Hz and 20 Hz bandwidths as in [34].
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TABLE 2. Impact of window size (samples) for feature extraction on
identification accuracy: using MM/I database, Cz location.

Window Size
3200
800 (5s) 1600 (10s) 2400 (15s) (20s)
Maximum 70.95% 72.86% 82.86% 77.14%
Minimum 65.71% 69.05% 66.67% 72.38%
Mean 67.46% 71.11% 76.66% 75.24%

For the UCI database, with 256 Hz sampling, the corre-
sponding smallest bandwidth after wavelet decomposition
was 16Hz. For classification, a standard linear LDA classifier
was used for training the MM/I and UCI databases respec-
tively [35]. The following subsections describe the efforts
towards the window size optimization, electrode subset selec-
tion, DCT coefficient selection, etc.

A. WINDOW SIZE ANALYSIS

The usability of EEG biometrics is becoming an increasingly
important factor in designing a recognition system [16], [36].
The length of the time domain windows is one of the influen-
tial factors: since such window is used for feature extraction
separately, user(s) must provide at least one continuous EEG
recording with the length of the specified window size. How-
ever, for larger window sizes, longer time from the user is
needed for testing. We did a series of analysis on the impact
of the window size toward system performance. Only the
data from sensor at Cz location was used for this parameter
estimation (10-20 electrode placement [37]). The choice of
this electrode was guided by our previous work [38]. A series
of identification tests have been conducted using the pro-
posed feature with a window size ranging from 800 samples
(5 seconds) to 3200 samples (20 seconds). The identification
accuracy performances based on the MM/I database are listed
in Table 2. The results shown are the average of the leave-
one-out cross-validation accuracies: each time one segment
(i.e. the window in Table 2) of the available data is picked for
test and the rest used to train the system. The classifications
were conducted using MATLAB PRTools (pattern recog-
nition toolbox [39]). The best identification rate achieved
was 76.66% for a window size of 15 seconds. It is found
the performance did not improve by further increasing the
window size. Taken the real-world scenario into account, it is
decided to use 15 seconds as the optimal parameter for the
window size, which is used for the subsequent experiments
reported here.

B. ELECTRODE PLACEMENT

Another critical factor that may affect the performance is the
number of the adopted electrodes and their locations on the
scalp. The goal is to reduce the number of electrodes while
maintaining the biometric recognition performance. In this
study, five different combinations of four electrodes were
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TABLE 3. Identification rates for different four-electrode combinations,
MM/I database is used for this four-electrode combination schemes.

Electrodes Recognition rate
FCz-C1-C2-CPz 90.48%
FC1-FC2-CP1-CP2 89.52%
F3-F4-P3-P4 92.38%
F7-F8-P7-P8 96.19%
FPz-T9-T10-1z 98.24%

/
AN

FIGURE 3. Five sets of electrode groups explored for optimal electrode
placement reported in the Table 3.

evaluated and the corresponding performances analysed. The
grouping of the electrodes is illustrated in Figure 3: there are
five circles of electrode combination, the distances among
these electrodes are increasing monotonically from inner
to outer circles. For each of the combinations, we tested
their recognition performances and found that the outer cir-
cles tend to perform better than the inner circle electrode
placements.

The recognition results using the MM/I dataset are listed
in Table 3. The results show a clear improvement of
almost 9% when the distant electrodes were used. This indi-
cates that the signals obtained from the isolated regions may
contain more distinctive biometric patterns, than the signals
obtained from nearby locations: the clustered electrodes may
have collected redundant information.

To statistically investigate the evidence shown in Table 3,
sensor-level functional connectivity in the time domain has
been explored between the electrodes within each placement.
For any given group in the Figure 3, the correlations of all
possible feature vector pairs were computed. For example,
for the most inner placement (FCz-C1-C2-CPz), the corre-
lation coefficients of the feature vectors between FCz-Cl1,
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FCz-C2, FCz-CPz, C1-C2, C1-CPz, C2-CPz were computed
for each subject. The mean of these coefficients was then
calculated and used as the connectivity metric for all the
electrodes within the placement. The full representations of
these similarity values are shown in Table 4. It is found
that the feature vector pairs from the inner placements tend
to have higher correlations than the vectors from the outer
placements, which indicates the features from distant elec-
trodes are much less correlated to each other compared to
the electrodes in the inner groups. This evidence suggests the
distant electrodes appear to be able to capture less redundant
information than the adjacent electrodes.

Based on the analysis in this section, the electrodes selected
for MM/I are the FPz-T9-T10-1z combination. For the case
of UCI database, since the EEG signal was visually evoked,
no empirical electrode selection was carried out and eight
electrodes clustered near the occipital lobe were selected
(i.e. the data from CPz, Pz, POz, Oz, PO3, PO4, PO7,
POS8 were used) for the feature extraction in this study.

C. DCT COEFFICIENT SELECTION FOR FEATURE VECTOR
To further explore the effectiveness of the selection of the
DCT coefficients as feature, a series of experimental analysis
were performed. Table 5 illustrates the classification results
using the first few DCT coefficients derived from MM/I
database. The first DCT coefficient on its own is found
to be most effective when used for biometric recognition.
A gradual reduction in the classification accuracy was noticed
while using additional coefficients in the feature vector. The
second DCT coefficients onwards seems barely contain any
biometric information on their own, as is indicated in Table 5.
Therefore, only the 15 DCT coefficients from each band were
selected to form the feature vector. The usage of only the
Ist DCT coefficient as feature also provides the opportunity
to significantly reduce the computational complexity of the
proposed scheme.

IV. EXPERIMENTAL RESULTS

A series of investigations using the proposed WLD feature
are presented in this section. The section is divided into two
parts: Section IV.A is devoted to analyzing identification
performance of the proposed feature, followed by a com-
parative analysis using the Cumulative Match Characteristic
(CMCQC) curve [40] [41]. The verification performances are
then reported and compared in Section IV.B using the Detec-
tion Error Trade-off (DET) curves.

In order to evaluate the performance of the proposed fea-
ture extraction algorithm, it is compared with similar fea-
tures found in the literature. All these algorithms use either
Fourier or Wavelet Transform to generate the initial coef-
ficients, the dimensionality was subsequently reduced by a
number of techniques. For example, Phung er al. [11] pro-
posed to compute the Shannon Entropy of the time domain
sequence as feature. Abdullah et al. [42] proposed to com-
pute mean and standard deviation as features to achieve the
dimension reduction after wavelet transform. Gupta et al. [43]
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TABLE 4. Correlations of all the feature vectors from the selected electrode pairs, all of the five combination schemes (from the figure 3) are shown below.

Electrodes FCz-Cl1 FCz-C2 FCz-CPz Cl1-C2 C1-CPz C2-CPz Mean
CorrCoef 0.9913 0.9887 0.9834 0.9918 0.9899 0.9880 0.9889
Electrodes FC1-FC2 FC1-CP1 FC1-CP2 FC2-CP1 FC2-CP2 CP1-CP2 Mean
CorrCoef 0.9724 0.9635 0.9603 0.9834 0.9790 0.9924 0.9752
Electrodes F3-F4 F3-P3 F3-P4 F4-P3 F4-P4 P3-P4 Mean
CorrCoef 0.9856 0.9713 0.9654 0.9690 0.9644 0.9904 0.9577
Electrodes F7-F8 F7-P7 F7-P8 F8-P7 F8-P8 P7-P8 Mean
CorrCoef 0.9737 0.9540 0.9420 0.9476 0.9389 0.9770 0.9555
Electrodes FPz-T9 FPz-T10 FPz-1z T9-T10 T9-1z T10-1z Mean
CorrCoef 0.9001 0.9034 0.8828 0.8920 0.8484 0.8479 0.8791
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FIGURE 4. CMCs of biometric systems incorporating three different
features using 105 subjects from the MM/I dataset.

TABLE 5. Impact of the classification performance of the selected DCT
coefficient(s) using the MM/I database (105 subjects).

DCT coeftficient(s) Classification accuracy

retained as feature
1 98.24%
2nd 1.00%
3 3.24%
4t 1.38%
5t 3.62%
Ist-2nd 96.86%
1st- 3 94.81%
15t - 4t 89.10%
1t - 5t 84.14%

proposed using the energy of resulting wavelet coefficient
as feature. For this study, similar features were extracted by
the authors from the two chosen databases and compared
their biometric recognition performances against the pro-
posed WLD feature.

A. IDENTIFICATION SCENARIO

The identification accuracy, when using the proposed WLD
feature set, have been investigated using the MM/I dataset
using the leave one out protocol as described in Section III.A.
The CMCs shown in Figure 4 are for 15 seconds of
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Rank

FIGURE 5. CMCs of several features, using 119 subjects from
UCI database.

EEG segments. Besides the proposed feature, two other con-
ventional wavelet-based features were explored for compar-
ative analysis. The Wavelet-SD scheme, proposed by [42],
uses the standard deviation of the wavelet coefficients as fea-
ture whereas Wavelet-Entropy scheme uses Shannon Entropy
of the time domain sequence as feature. The proposed
WLD feature produced a rank-1 identification rate of more
than 98%; the Wavelet-SD provided the second-best identifi-
cation rate.

Figure 5 shows the CMCs while using the UCI database in
the identification scenario. It can be seen that the proposed
WLD feature again provided the highest identification rate
(more than 93%). The second-best rank-1 performance of
about 85% is achieved by using the SD feature. The proposed
method reached 97% accuracy after rank-1. In comparison,
the “Wavelet-Entropy’ reached 97% at rank-10.

B. VERIFICATION SCENARIO

The effectiveness of the proposed WLD feature is also inves-
tigated in the verification scenario using the MM/I dataset
and the UCI database. The DET curves were used to illus-
trate the comparative performances. A publicly available
curve plotting package by National Institute of Standards
and Technology (NIST) [44] had been used to generate these
DET curves.
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FIGURE 6. DET curves for the MM/I dataset (using 105 subjects, 15 sec.
EEG window).

Figure 6 shows the resulting DET curves when using
the MM/I database. The proposed WLD feature again pro-
duced the best verification performance, achieving an EER
of about 0.5%. A higher EER about 1.3% was generated
by the ‘Wavelet-SD’ feature. Similar to the results found in
the identification scenario, the other wavelet-based features
demonstrated worse performances than the proposed feature.

The verification performance using the UCI dataset is
shown in Figure 7 which indicates that the proposed feature
provided about 3% of EER. However, unlike the trend found
in the MM/I database, the Wavelet-Entropy feature provided
about 4% of EER, which is better than the Wavelet-SD fea-
ture. From the trends found in Figure 6 and Figure 7 for both
the databases, it is clear that the proposed feature demon-
strated both good and stable verification performance.

V. COMPARATIVE ANALYSIS

In this section, the proposed EEG biometric system is com-
pared with other systems using non-wavelet-based features.
All the results reported here are based on using either the
MM/I database or the UCI database. The proposed system
uses only a small number of selected electrodes, the WLD
feature along with the LDA classification algorithm.

Table 6 shows the comparative results while employing
the MM/I dataset using different features. Using only four
electrodes for the proposed feature extraction, the classi-
fication rates outperformed similar schemes that are using
many more electrodes. Table 7 shows the results obtained
by different systems while using the UCI database. The
PSD and the AR coefficients are the most commonly used
features in EEG biometrics - high identification rates were
reported by researchers using these features for this dataset.
However, the large number of electrodes that were employed
likely to have contributed towards such high recognition
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FIGURE 7. DET curves for the UCI database (119 subjects).

TABLE 6. Feature sensitivity for identification scenario, MM/I eyes open
subset.

Features Spectral Power Eigenvect WLD
Coherence Spectral or
Connectivity ~ Density [4]  Centrality
(4] [45]
Subjects 108 108 109 105
Electrodes 56 56 64 4
Accuracy 75.86% 86.91% 96.9% 98.24%

TABLE 7. Feature sensitivity for identification scenario, UCI database.

PSD & AR Univariate ~ Root Mean WLD
coefficients AR model  Square [48]
[46] [47]
Subjects 20 120 116 117
Electrode 61 64 64 8
Accuracy 100% 98.96% 95.1% 93.28%

rates. Though provided somewhat lower recognition rate,
the proposed ‘WLD’ feature extraction method used only
eight electrodes (as described in Section III) and as such,
the resulting Brain Computer Interaction (BCI) system would
be much less intrusive.

To address the impact of template ageing [36], we further
selected two independent recordings in the resting state from
the MM/I database for analysis. Data from the recordings
with eyes open (R1) and eyes closed (R2) were used for
training and testing the recognition system interchangeably.
Conventional PSD (Welch’s method) of five typical EEG
bands (Delta, Theta, Alpha, Beta, and Gamma) were com-
puted to show the comparative effectiveness of the proposed
feature.
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TABLE 8. The effectiveness of PSD in classification accuracy.

Train (Tr), Test (Te) FCz-C1-C2-CPz FC1-FC2-CP1-CP2 F3-F4-P3-P4 F7-F8-P7-P8 FPz-T9-T10-1z
Tr 75% from R1, o o o N
Te 25% from R1 69.9% 74.3% 76.1% 75.3% 84.0%
Tr 75% from R2, 5 o o o o
Te 25% from R2 68.0% 65.7% 72.4% 77.9% 82.6%
Tr from R1, o o o N o
Te from R2 42.9% 39.3% 35.3% 30.1% 46.8%
Tr from R2, 41.3% 42.1% 35.7% 36.6% 43.1%
Te from R1
TABLE 9. The effectiveness of WLD in classification accuracy.
Train (Tr), Test (Te) FCz-C1-C2-CPz FC1-FC2-CP1-CP2 F3-F4-P3-P4 F7-F8-P7-P8 FPz-T9-T10-Iz
Tr 75% from R1, o o o o o
Te 25% from R1 91.2% 92.8% 96.0% 96.9% 98.3%
Tr 75% from R2, o o o o o
Te 25% from R2 88.0% 90.7% 93.7% 95.6% 98.5%
% ffrr‘;ﬁ };12’ 70.1% 66.3% 62.3% 65.1% 80.3%
Tr from R2, 70.9% 64.8% 59.6% 62.5% 84.0%
Te from R1

Table 8 shows the recognition rates using PSD features
with two different setups: first two rows are based on using
part of a single recording for training and the rest is used
for testing; the last two rows are based on using data from
one recording for training while the other recording used for
performance test. Five electrode placements (placement 1 to
placement 5 from inner to outer circle) are also included for
analysis: the electrodes located in the outer circle are also
found to provide better performance than the inner circle
electrodes for PSD features. Even a short time lapse of a few
minutes between the recordings used for training and testing
results in significant degradation of the biometric recognition
performance.

Table 9 shows the performance of the proposed WLD fea-
tures. It is found that both the PSD and WLD features suffered
significant reduction in performance while the training and
test set were separated by a few minutes. However, the pro-
posed WLD features’ performance resulted in a much smaller
drop in accuracy (14%) due to time separation compared with
the PSD features (which were degraded by 41%). The results
in Table 8 and Table 9 were obtained by averaging 10 runs.
The MFCC and AR coefficients were also investigated and it
was found that for the MM/I database the conventional MFCC
and AR features are not as effective.

VI. CONCLUSION AND FUTURE WORK

The work presented here explores the use of EEG data for
biometric identification. There are two main contributions
from this study: a wavelet-based feature is developed which is
particularly suited for such applications and the role of elec-
trode placement on recognition performance is investigated
to establish optimal electrode configuration. The proposed
scheme resulted in high accuracy rates using a reduced num-
ber of electrodes compared to other state-of-the-art schemes.

VOLUME 7, 2019

The influence of time separation between training and testing
with EEG data is also investigated to simulate template-
ageing effect and it was found that while the conventional
scheme shows a drastic drop in performance, the proposed
scheme is significantly more resilient. Future work will inves-
tigate such template ageing effect more thoroughly using data
with much longer time separation. It has also been reported
that affective (emotional) state of an individual can play a
detrimental role in the ability to identify individuals using
their EEG recordings [45] especially in cross-session studies.
Future work will also explore the effectiveness of the pro-
posed feature in such scenarios.
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