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Abstract 
Malicious web pages are an emerging security concern on 
the Internet due to their popularity and their potential 
serious impact. Detecting and analysing them are very 
costly because of their qualities and complexities. In this 
paper, we present a lightweight scoring mechanism that 
uses static features to identify potential malicious pages. 
This mechanism is intended as a filter that allows us to 
reduce the number suspicious web pages requiring more 
expensive analysis by other mechanisms that require 
loading and interpretation of the web pages to determine 
whether they are malicious or benign. Given its role as a 
filter, our main aim is to reduce false positives while 
minimising false negatives. The scoring mechanism has 
been developed by identifying candidate static features of 
malicious web pages that are evaluate using a feature 
selection algorithm. This identifies the most appropriate 
set of features that can be used to efficiently distinguish 
between benign and malicious web pages. These features 
are used to construct a scoring algorithm that allows us to 
calculate a score for a web page’s potential maliciousness. 
The main advantage of this scoring mechanism compared 
to a binary classifier is the ability to make a trade-off 
between accuracy and performance. This allows us to 
adjust the number of web pages passed to the more 
expensive analysis mechanism in order to tune overall 
performance . . 

Keywords:  Internet Security, Drive-by-download, 
malicious web page. 

1 Introduction 
A “malicious web page” refers to a web page that 

contains malicious content that can exploit a client-side 
computer system. This attack is delivered to client’s web 
browser when a malicious web page is requested. This 
type of attack is termed web-based client-side attack. The 
attack is delivered as part of the web page itself and is 
designed to exploit client-side vulnerabilities such as 
flaws in the implementation of browser functionality, 
interpreters of active content within webpages or 
scriptable client-side components such as ActiveX 
components. The result of an attack is often the 
installation of malware in the client system without the 
user’s consent and disclosure of user’s information. The 
user’s computer is often “owned” by attacker and can 
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take part in generating SPAM and Distributed Denial of 
Service (DDOS) attacks. 

Detection and blacklisting of malicious web pages has 
been the subject of several research projects. One 
effective approach is to build virtualised environments 
like high interaction client honeypots (Seifert  2007a) 
where suspicious web pages are loaded, executed and 
monitored to track potential malicious activities or 
behaviour. The virtualised environment allows this to be 
done without allowing any malware to be propagated to 
production systems. While this method shows very 
efficient results in term of detecting unknown attacks, it is 
expensive in terms of the resources required to provide a 
virtualised environment containing a complete operating 
system and is relatively slow with each visit taking up to 
10 seconds. To attempt to reduce the required resources 
and increase the speed of the detection method, previous 
work (Seifert  2007a) has proposed using a hybrid 
approach where web pages are first filtered using a 
lightweight mechanism before being passed to the more 
expensive high-interaction mechanism. Our work focuses 
on improving the efficiency and effectiveness of that 
lightweight mechanism.   

There are three main issues that we have explored in 
the design of our lightweight mechanism. Firstly, we 
want our mechanism to be lightweight in terms of its 
resource requirements. Therefore our mechanism is a 
data-mining algorithm that uses features derived from the 
static web page rather than runtime features gathered 
through the expensive process of loading the web page 
into a web browser within a virtual environment. This 
paper proposes a set of features that have been arrived at 
through analysis of known malicious web pages. These 
features are then evaluated by feature selection methods 
in order to find out the most suitable feature set to 
identify potential malicious web pages. Secondly, we 
want our lightweight mechanism to be tuneable to allow 
us to control the number of pages passed through to the 
more expensive mechanisms such as high interaction 
honeypots. This allows us to manage overall system 
performance. This has led us to develop a lightweight 
mechanism that computes a score rather than a simple 
binary malicious/benign classifier (Seifert, Welch and 
Komisarczuk  2008). By choosing the threshold that must 
be reached before passing on the web page, the overall 
performance can be tuned to reflect overall performance 
constraints. Thirdly, we believe that it is worse to miss a 
potential malicious web page (a false negative) than 
incorrectly class a web page as malicious (a false 
positive) and pass it onto the second stage for further 
analysis. Therefore, our aim has been to design a 
mechanism that minimises the number of false negatives 
whilst keeping the false positives at an acceptable level. 
Note that when taking resource usage into account that 



there will most likely be a relationship between our 
choice of threshold value and the false negative rate and 
part of our interest is in understanding this relationship. 

2 Background and Related Work  

2.1 Web-based Client-side Attacks 
As the number of Internet users has increased 

significantly, web-based attacks that use malicious web 
pages to exploit users’ system have become a primary 
concern in the Internet security. A web-based client-side 
attack happens when an Internet user visits malicious web 
pages which attempt to exploit the user’s browser 
vulnerabilities, plug-in application vulnerabilities or 
user’s operating system vulnerabilities in order to 
compromise the user’s system.  

A web  application is defined as an network 
application which is typically interacting  with the web 
browser over the Internet (Mehdi  2007). Information 
service providers use web applications to deliver their 
services to users. To do that, they implement their 
business logic through web applications at a web server 
with an advertised URL (Gollmann  2008). To enrich 
their services, the providers can use more than one web 
server and backend servers and applications which work 
in cooperation in order to deliver services to the 
customers. In the client-side, there is the main application 
– web browser which users use to access information 
services from the providers. In order to expand their 
functionalities, almost all web browsers support adding 
third-party plug-in components such as Adobe Acrobat, 
Adobe Flash, Apple QuickTime, and Microsoft ActiveX. 

To deliver malicious content to the client-side, an 
adversary first needs to publish malicious contents on the 
Internet. Compromising a web server is one of the 
common ways to deliver malicious contents. Various 
methods are reported to be used to increase attack 
effectiveness (Websense  2008, Sophos  2009, ScanSafe  
2009, Symantic  April 2009, ScienceDirect  2008, 
Websense  2009). Intruders can compromise a website by 
exploiting some vulnerabilities in the web server, 
exploiting a vulnerable web application (Symantic  April 
2009), vulnerable database applications such as SQL 
injection (Niels, Moheeb Abu and Panayiotis  2009, 
ScanSafe  2009, Microsoft  2009). The results from this 
compromising are inserting malicious contents which can 
be delivered to the client-side system (Niels, Moheeb 
Abu and Panayiotis  2009, Microsoft  2009). Some 
vulnerabilities in web server and web applications are 
reported as a very common issue(Provos, Mavrommatis, 
Abu and Monrose , Symantic  April 2009). Web 2.0 
technology, in addition,  has become a common 
environment for attackers to spread their malicious 
contents (Websense  2008, Adam and Meledath  2008). 
Visitors are allowed to put arbitrary HTML and they can 
insert malicious codes into websites, insert links to 
malicious sites or even upload malicious files (Provos, 
McNamee, Mavrommatis, Wang and Modadugu  2007, 
Adam and Meledath  2008, Patsakis, Asthenidis and 
Chatzidimitriou  2009, Lawton  2007).  

After publishing their malicious contents on the Web, 
attackers must get users to visit the malicious web pages 
in order to make exploitation (Niels, Moheeb Abu and 

Panayiotis  2009). Spam is a common technique which 
intruders use to lure user to their malicious web pages. 
For instance, spam emails can contain a links to a 
malicious web page. Web blogs and social networking 
sites are also abused to get users to visit malicious sites 
(Garrett, Travis, Micheal, Atul and Kevin  2008). In 
addition, some legitimate sites have third-party contents 
like access counters, advertisements which refer to 
malicious sites (Alme  2008, Provos, McNamee, 
Mavrommatis, Wang and Modadugu  2007, Websense  
2008, Barth, Jackson and Mitchell  2009). Moreover, 
search engine are also abused by attackers in order to get 
users to visit their malicious sites. Popular search terms 
are used to make malicious web pages be displayed in the 
search results (Keats and Koshy  2009, Alme  2008, 
Barth, Jackson and Mitchell  2009, Gyongyi and Garcia-
Molina  2004, Websense  2009) so there is a very high 
chance for their malicious sites to be visited.  

When a user visits a malicious site, malicious contents 
are delivered to exploit the user’s system. Malicious code 
is usually used to target a specific vulnerability of the 
web browser itself or plug-in applications (Jose, Ralf, 
Helen and Yi-Min  2007, Charles, John, Helen, Opher 
and Saher  2007). To discover available vulnerabilities in 
the user’s system, adversaries abuse scripting support via 
JavaScript, Visual Basic or Flash to collect information 
about the user’s computing environment (Provos, 
McNamee, Mavrommatis, Wang and Modadugu  2007). 
Moreover, obfuscation is used to hide exploit code in 
order to make malicious pages hard to be detected 
(Seifert, Welch and Komisarczuk  2008, Seifert  2007b, 
Seifert, Steenson, Holz, Yuan and Davis  2007). 

In addition, Seifert’s study about malicious web 
servers shows that there are some available web 
exploitation kits (Seifert  2007b). These web exploitation 
kits are very powerful in term of compromising web 
servers and delivering malicious contents. The result from 
this kind of attacks is usually to redirect users’ requests to 
malware distribution networks. In addition, other related 
researches also show that malicious web pages are 
delivered by malware distribution networks (Provos, 
Mavrommatis, Abu and Monrose , Wang, Beck, Jiang 
and Roussev  2006, Jianwei, Yonglin, Jinpeng, Minghua, 
Xulu, Weimin and Yuejin  2007).  

2.2 Related Work 
In this section, we preview some current analysis 

methods which are used to detect malicious web pages. 
They are classified into three main approaches: Signature 
approach, state-change approach and machine learning 
approach. 

2.2.1 Signature technique 
In the signature approach, detection systems use 

known signature to detect malicious web pages. 
Signatures can be from some well-known Intrusion 
Detection Systems (IDS) or anti-virus applications. This 
approach is commonly used in the detecting system using 
low interaction client honeypot. Snort signature is used to 
detect malicious web pages in their HoneyC system 
(Seifert, Welch and Komisarczuk  2007). The HTTP 
responses from web servers are constructed under XML 
format, and then analysed against Sport signatures. In 



Monkey-Spider system, Ikinci, Holz and Freiling also 
used signature approach to detect malicious websites. The 
contents of websites are crawled and stored in files. The 
crawled contents are then scanned by ClamAV – an anti-
virus application (Ikinci, Holz and Freiling  2008).  

2.2.2 State-change technique (rule-based 
technique) 

In addition, state-change approach is commonly used 
in the detecting systems using high interaction client 
honeypot – one of the efficient instruments to detect 
malicious web pages. The main idea of this approach is 
monitoring the state change in the client system during 
visiting an URL time. If there is any unauthorized state 
change during visitation, the visit URL is classified as 
malicious. In the Strider HoneyMonkeys system, a 
monkey program loads a browser, instruct it to visit each 
URL and wait for a few minutes for downloading 
process. The state changes in the system is then detected 
against unauthorized creating executable files or registry 
entries in the system (Wang, Beck, Jiang and Roussev  
2006). Moreover, to detect drive-by-download attack, 
Moshchuk, Bragin, Gribble and Levy use event triggers. 
They create some trigger conditions to track unauthorized 
activities in process creation, file system and registry 
system. The trigger conditions also include any event that 
makes browser or the system crash. During visitation, if 
an URL make a trigger fire, it is classified as unsafe 
(Moshchuk, Bragin, Gribble and Levy  2006). The state 
change approach is also used by Xiaoyan, Yang, Jie, 
Yuefei and Shengli in their client honeypot system to 
collect Internet-based malware. A behaviour monitoring 
module is conducted to track malicious behaviour. It 
hooks native API, DLL functions and TDI in order to 
monitor all activities causing buffer overflow, accessing 
system resources such as process, network, file, and 
registry (Xiaoyan, Yang, Jie, Yuefei and Shengli  2008).  

2.2.3 Machine Learning Approaches 
Seifert et al. (Seifert, Welch and Komisarczuk  2008) 

proposed a novel classification mechanism to detect 
malicious web pages. This method is based on HTTP 
responses from potential malicious web servers which are 
then analysed to extract potential malicious 
characteristics. The method was used in a hybrid system 
in which all URLs are classified by static heuristic 
method and sent to high interaction client honeypot for 
verification. To classifying URLs by static heuristics 
method, some common attributes are chosen based on 
three proposed main elements in malicious web pages: 
exploit, exploit delivery mechanism and obfuscation. The 
first step in this method is collecting malicious and 
benign web pages and then extracting potential attributes 
from these web pages. In learning step, all attributes 
extracted from 5,678 instances of malicious and 16,006 
instances of benign web pages were fed into Weka with 
J4.8 decision tree learning algorithm implementation. The 
outcome classifier from learning step was used to classify 
61,000 URLs. This classifier had very good false positive 
rate (5.88%) but very high false negative rate (46.15%).  

Hou et al proposed a machine learning approach to 
detect malicious web content (Hou, Chang, Chen, Laih 
and Chen  2009). The key point in this research is the 

method used to choose features according to the usages of 
DHML knowledge. The chosen features have to meet the 
requirement for abilities against obfuscation vs. accuracy. 
Three groups with 171 features were chosen. There are 
154 features used to count the use of native Java 
functions. Nine features are also used to measure some 
elements inside a HTML documents. There is 8 advanced 
features are used to count the use of ActiveX object. In 
the first step, 965 benign and 176 malicious web pages 
were collected, analysed and labelled manually. The 
malicious web pages were then categorized into nine pre-
defined types based on the skill used by attackers. In 
order to study about choosing type of features, the authors 
took some experiments with different chosen features. 
Decision tree algorithm is used in these experiments. 
While using all features cannot get high true positive and 
low false positive result, the combination of three features 
can get very good result. The authors also compared the 
results of different classification algorithms with the use 
of all the features. Four classification algorithms used in 
this comparison are decision tree, Naïve Bayes, SVM and 
boosted decision tree. The result showed that the boosted 
decision tree got the best performance with high true 
positive rate and low false positive rate.   

To detect malicious web pages, Liang (Bin, Jianjun, 
Fang, Dawei, Daxiang and Zhaohui  2009) proposed the 
concept of abnormal visibilities. According to their 
studies, malicious web pages are usually changed in their 
display modes in order to be invisible or almost invisible. 
The authors showed three main forms of abnormal 
visibility. The first one is changing the width and height 
attributes of iframe in order to make embedded malicious 
codes invisible or almost invisible. Setting the display 
style of iframe ‘display: none’ is the second form of 
abnormal visibility. The last form is generating iframe tag 
dynamically in order to make obfuscation. Abnormal 
visibility fingerprints are created and used to detect 
malicious web pages. Each web page is scanned to detect 
any form of abnormal visibility. The detected value in 
any kind of abnormal visibility is compared with a 
threshold value. If the detected value is less than the 
threshold value, the web page has an abnormal visibility 
and is considered as a possible malicious page. To carry 
out the experiment, the authors detect 60 websites 
reported malicious by StopBadWare.org. They scanned 
66882 pages from these websites and found 30561 
malicious one. They also figured out that their system has 
low false positive (1.99%) and false negative rates 
(2.63%).  

Ma et al. (Ma, Saul, Savage and Voelker  2009a) 
pinpointed a new approach to detect malicious web pages 
named lightweight URL classification. In this approach, 
they classify web pages based on relationship between 
URLs, their lexical and host-based features. It does not 
use contents of web pages in detection. Lexical features 
include any features which make the page ‘look 
different’. They can be the length of the host-name, 
length of the entire URL, number of dot in URL and so 
on.  Hosted-base feature include IP address properties, 
WHOIS properties, Domain name properties and 
geographic properties. Naive Bayes, SVM and Logistic 
Regression are used for classification. The authors used 
two experiments in their study. The first experiment is for 



comparing between feature sets. The features were 
divided into nine feature sets and these sets were fed into 
the ℓ1-regularized logistic regression (LR) classifiers. 
The results showed that using more features got better 
classification accuracy. In addition, their another 
experiment (Ma, Saul, Savage and Voelker  2009b) was 
conducted to build online learning algorithm to detect 
malicious web pages. They used the same feature as the 
experiment (Ma, Saul, Savage and Voelker  2009a). 
There were three online algorithms implemented: 
Perception, Logistic Regression with Stochastic Gradient 
Descent and Confidence-Weight. They compared their 
online learning algorithm with Support Vector Machine 
(SVM). The results showed that SVM needed more 
training data set in order to get better accuracy but their 
algorithms did not. 

To build an inductive learning model to detect 
malicious web pages, Liu et al. (Liu and Wang  2009) 
extracted features from HTTP responses such as iframe, 
javascript, body redirect, css redirect etc. The inductive 
learning model consisted of behaviour signatures based 
on extracted features and the relationship of features. The 
results from their experiment showed that the inductive 
learning model missed many malicious web pages 
(46.15%). 

Chia-Mei et al (Chia-Mei, Wan-Yi and Hsiao-Chung  
2009) proposed a model to detect malicious web pages 
based on unusual behaviour features such as encoding, 
sensitive key word splitting and encoding and some 
dangerous JavaScript functions. To classify web pages, 
they created a scoring mechanism which cored based on 9 
predictor variable. Moreover, weights for each predictor 
variable were decided by training phrase. The results 
from their experiment showed that their model worked 
very well. However, their dataset was very small with 
460 benign and 513 malicious web pages. 

Shih-Fen et al. (Shih-Fen, Yung-Tsung, Chia-Mei, 
Bingchiang and Chi-Sung  2008) proposed a novel 
semantics-aware reasoning detection algorithm to detect 
malicious web pages (SeAR) which was based on 
structures of HTML codes. Firstly, they defined templates 
for HTML codes. For each tested HTML code, the 
distance between the tested HTML code and templates 
were calculated. Secondly, the best match was chosen 
based on the distance and weight of the template. Finally, 
threshold was used to make decision whether web pages 
were classified as malicious or benign. The outcome from 
this research is very good but their dataset had only 147 
malicious instances (no benign one).  

Cova et al. (Cova, Kruegel and Vigna  2010) presented 
a novel approach which used anomaly detection and 
emulation to identify malicious JavaScript Code. The 
features were chosen based on sequence of carrying out 
an attack: redirection and cloaking, de-obfuscation, 
environment preparation, and exploitation. They argued 
that not all of the features were necessary for an attack 
happening and classified the features into two groups: 
useful features and necessary features. To extract 
features, they used emulated HTML browser HtmlUnit 
(Gargoyle). They carried experiments on over 115K web 
pages and their approach achieves very good outcome in 
comparison to other approaches such as ClamAV, 
PhoneyC and Capture-HPC.  

While there is a few of works focusing on identifying 
malicious web pages, this paper presents a mechanism to 
detect potential malicious one in order to reduce number 
of suspicious web pages which need to be investigated 
further by detection instruments or experts. 

3 Scoring Mechanism 
This work focuses on how to reduce number of 

suspicious web pages but minimize missing attacks. A 
scoring mechanism is proposed to work as a filter which 
classifies suspicious web pages into classes: benign web 
pages and potential malicious web pages. Only potential 
malicious web pages are forwarded to detection devices 
or experts for further investigations (Fig. 1).  

Figure 1: Scoring Mechanism 
We propose scoring mechanism because of three 

reasons. Firstly, it works as a filter, not a final classifier 
so it just makes an estimate by scoring maliciousness of 
web pages. Secondly, it uses static features which can be 
obtained without rendering fully or executing web pages. 
However, they are less valuable than run-time features 
which are extracted by rending fully and executing web 
pages. Therefore, static features are likely good for 
detecting potential malicious web pages. Finally, scoring 
algorithm can make a trade-off between number of 
detected potential malicious web pages and false negative 
rate (missing attack). The key idea to propose scoring 
mechanism is to reduce number of suspicious web pages 
which need to be inspected by detection devices or 
experts, but not missing any attack. 

3.1 Feature Selection 
The first step on feature selection is to identify 

potential malicious features which can distinguish 
between benign web pages and malicious one. By 
analysing the selected common malicious web pages, we 
find that there are three main groups of malicious 
contents of web pages as follows: 

- Foreign contents are malicious contents which are 
loaded from outside along with suspicious web 
pages. These contents can be loaded with 
suspicious web pages by some of malicious 
HTML tags such as frame, iframe, image 
source… Iframe is especially known as very 
common method to load outside malicious web 
pages along with suspicious one (Provos, 
Mavrommatis, Abu and Monrose). In almost all of 
cases, foreign malicious contents are resulted 
from compromises or uncontrolled third-party 
contents such as advertising and site hit counters.   

- Script contents are known as the most common 
malicious contents of malicious web pages. In 
almost all of cases, script codes are used for two 
main purposes: delivering and hiding malicious 
codes by obfuscations. We identify some of 
potential malicious features from scripts which 
could distinguish between benign web pages and 
malicious web pages, such as script size, string 



size, word size, argument size, character 
distribution…  

- Exploit code contents are the core contents of 
malicious web pages. They are target specific 
vulnerabilities in web browsers, plug-ins or 
operating systems. Some of HTML tags known as 
delivery of potential malicious codes are applet, 
object, embed… However, there are rarely 
malicious codes found in this direct form. In 
almost cases, exploit codes are encoded in scripts 
with obfuscations to hide from detection devices. 

Feature Group 1: Foreign Contents 

1 Number of redirection 

2 Number of iframe and frame tag 

3 Number of external link in iframe and frame tag 

4 Iframe and frame link length: Median 

5 Ratio of vowel character in iframe and frame link: 
Minimum 

6 Ratio of special character in iframe and frame 
link: Minimum 

7 Number of external links (except iframe and 
frame) 

8 Other link length: Minimum 

 Group 2: Script Contents 
9 Number of scripts 

10 Number of script lines 

11 Number of script word 

12 Ratio of special character in scripts 

13 Script length: Minimum 

14 Script line length: Minimum 

15 Script string length: Maximum 

16 Script word length: Minimum 

17 Script function argument length: Minimum 

 Group 3: Exploit Contents 
18 Number of objects 

19 Number of applets 

20 Object link length: Maximum 

21 Ratio of special character in object links 

22 Ratio of vowel character in object links 

23 Number of object attributes: Median 

24 Applet link length: Minimum 

25 Ratio of special character in applet link 

26 Ratio of vowel character in applet link 

Table 1: Appropriate Features for Identifying 
Potential Malicious Web Pages 

According to our analysis, we select 52 potential 
features from these main malicious contents. If a feature 
appears more than once, we use four values to measure it 
at the first sight: minimum, maximum, mean and median.  
However, only one measured value for each feature is 
chosen for scoring algorithm.  

Secondly, we use information gain as a measurement 
method to choose high valuable features only. 
Information gain for an attribute a is defined as follows: 

IG�S, a� � Entropy�S� � ∑ |��|
|�| � Entropy�S�����  

Where S is collection of instances, S� is a subset of S 
with relevant value v of attribute a.  The greater 
information gain an observed attribute obtains, the higher 
value it contributes to the process to identify malicious 
web pages. The training dataset which is used to calculate 

information gain must have both malicious and benign 
instances. There are 26 potential features selected based 
on information gain (Table 1).  

3.2 Scoring Mechanism 
Our scoring algorithm works based on the concept of 

standard score which measure how many standard 
deviations a value of observed attribute is far from the 
mean (Carroll and Carroll  2002). Each instance has three 
types of scores based on three groups of contents of web 
pages: Foreign content score, script content score and 
exploit content score.  

A group score of instance x is calculated as follows: 

�������� � � |� � ! |
"  ��

 

Where g is an attribute group which can be foreign 
content group, script content group or exploit content 
group; a is an attribute of g; x� is value of attribute a of 
instance x; δ�is a standard deviation of attribute a which 
is estimated during training a set of benign instances; µ� 
is mean of attribute a which is estimated during training a 
set of benign instances. 

The greater score an instance x has in each group, the 
more likely it is classified as potential malicious class. If 
T(is chosen as a threshold for content group g in order to 
identify potential malicious instances, the rule of 
classification is as follows: 

x �  ) potentialy malicious if 2g � G: GS(�x� 4 T(
 otherwise, x is benign 8 

Any page will be classified as potential malicious that 
has a group score greater than the threshold value for that 
group. 

4 Data Collection 
To get dataset for our experiments, we firstly collect 

candidate web pages which include both malicious and 
benign one. To collect benign web pages, we collect hot 
search terms from Google Search Engine (Google  2010) 
and then feed these search terms to Yahoo API websearch 
(Yahoo  2010) to get top 10 URLs from the search 
results. In addition, we collect malicious web pages from 
some of common public announced malware and exploit 
websites like Blade-defender.org, Clean-mx.de, 
Paretologic.com, Malwaredomainlist.com. These selected 
web pages are verified by our Capture-HPC, a high 
interaction client honeypot (Seifert and Steenson  2009). 

Secondly, we create a low interaction client honeypot 
which interacts with web servers to request for the 
selected web pages. The HTTP responses from web 
servers are extracted based on the attributes and their 
potential values described on Table 1. We totally collect 
33646 instances of web pages, including 33422 instances 
of benign web pages and 224 instances of malicious one. 

5 Experiments 
To evaluate our scoring mechanism, we divide dataset 

into two subsets as follows: 
- Training dataset consists of 20,000 benign 

instances and it is used for training scoring 
algorithm to calculate mean and standard 
deviation for each attribute. 



- Testing dataset contains 13,646 instances with 
13,422 benign instances and 224 malicious one. 
This dataset is used to test the scoring mechanism. 

The experiment is carried in three steps. Firstly, 
training dataset is fed into our scoring mechanism in 
order to calculate some statistic values such as mean, 
standard deviation. Secondly, we calculate group scores 
for each instance in the testing dataset. Each instance has 
three types of scores: foreign content score, script content 
score and exploit content score. Finally, we adjust 
threshold score values in each group in order to find the 
relationship between false negative rate and the number 
of identified potential web pages. 

6 Results 

 
Figure 2: The relationship between false negative 
rate and number of potential malicious web 
pages. 

We use 20,000 instances of benign web pages to train our 
scoring algorithm and 13646 instances of malicious and 
benign web pages for testing. To find out the relationship 
between false negative rate and the number of identified 
potential malicious web pages, we adjust the value of 
score threshold in each group and calculate number of 
negative. The threshold start from the maximum value of 
each group score, and then reduce to the value 
corresponded to the percentage of potential malicious 
web pages. Figure 1 shows the relationship between the 
number of identified potential malicious web pages and 
false negative rate. When number of potential malicious 
increases, false negative rate decreases. Our aim is to 
minimize the false negative rate, in Figure 1 this is 
achieved when number of potential malicious web pages 
reaches 14% of the total number of instances in the 
testing dataset. In the other word, we can reduce 86% 
number of suspicious web pages without missing attacks. 

7 Conclusion 
This paper presents a scoring mechanism to estimate 

maliciousness of web pages in order to reduce the number 
of suspicious web pages which need to be analysed by a 
secondary mechanism such as high-interaction honeypot. 
The advantages of this scoring mechanism are discussed 

as using lightweight static features, capability to make 
trade-off between number of potential malicious web 
pages and false negative rate (that is, missing an attack). 

Three main groups of malicious contents are identified 
in this paper. Based on these contents groups, we 
extracted 52 potential features from both malicious and 
benign web pages. Information gain is used in order to 
identify 26 potential features. Each web page has three 
scores corresponded to three contents groups. Thresholds 
are chosen for each content group. A web page is 
classified as potential malicious web pages if it has at 
least one group score higher than threshold. 

The proposed scoring mechanism is initially tested on 
13,646 instances with 224 malicious web pages. The 
result shows that there is capability to make trade-off 
between number of potential malicious web pages and 
missing attacks. 

This work however has some limitations, which are 
identified and required for future works. Firstly, a limited 
number of malicious samples (224 instances) may not 
present all statistical characteristics of malicious web 
pages. Secondly, only information gain feature selection 
method is used in the feature selection process. Other 
feature selection methods could be investigated in order 
to have a good comparison. Thirdly, there are three 
contents groups with three thresholds but the relationship 
between them in order to form the overall score with only 
one overall threshold has not identified yet. 
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