
UWL REPOSITORY

repository.uwl.ac.uk

Identification of potential malicious web pages

Le, Van Lam, Welch, Ian, Gao, Xiaoying Sharon and Komisarczuk, Peter (2011) Identification of

potential malicious web pages. In: Proceedings of the Ninth Australasian Information Security

Conference (AISC 2011), 17-20 Jan 2011, Perth, Australia.

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/773/

Alternative formats: If you require this document in an alternative format, please contact:

open.research@uwl.ac.uk

Copyright:

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

Identification of Potential Malicious Web Pages

Van Lam Le, Ian Welch, Xiaoying Gao, Peter Komisarczuk
School of Engineering and Computer Science, Victoria University of Wellington

P.O. Box 600, Wellington 6140, New Zealand

{van.lam.le, ian.welch, peter.komisarczuk, xiaoying.gao}@ecs.vuw.ac.nz

Abstract
Malicious web pages are an emerging security concern on
the Internet due to their popularity and their potential
serious impact. Detecting and analysing them are very
costly because of their qualities and complexities. In this
paper, we present a lightweight scoring mechanism that
uses static features to identify potential malicious pages.
This mechanism is intended as a filter that allows us to
reduce the number suspicious web pages requiring more
expensive analysis by other mechanisms that require
loading and interpretation of the web pages to determine
whether they are malicious or benign. Given its role as a
filter, our main aim is to reduce false positives while
minimising false negatives. The scoring mechanism has
been developed by identifying candidate static features of
malicious web pages that are evaluate using a feature
selection algorithm. This identifies the most appropriate
set of features that can be used to efficiently distinguish
between benign and malicious web pages. These features
are used to construct a scoring algorithm that allows us to
calculate a score for a web page’s potential maliciousness.
The main advantage of this scoring mechanism compared
to a binary classifier is the ability to make a trade-off
between accuracy and performance. This allows us to
adjust the number of web pages passed to the more
expensive analysis mechanism in order to tune overall
performance . .

Keywords: Internet Security, Drive-by-download,
malicious web page.

1 Introduction
A “malicious web page” refers to a web page that

contains malicious content that can exploit a client-side
computer system. This attack is delivered to client’s web
browser when a malicious web page is requested. This
type of attack is termed web-based client-side attack. The
attack is delivered as part of the web page itself and is
designed to exploit client-side vulnerabilities such as
flaws in the implementation of browser functionality,
interpreters of active content within webpages or
scriptable client-side components such as ActiveX
components. The result of an attack is often the
installation of malware in the client system without the
user’s consent and disclosure of user’s information. The
user’s computer is often “owned” by attacker and can

Copyright © 2011, Australian Computer Society, Inc. This
paper appeared at the 9th Australasian Information Security
Conference (AISC 2011), Perth, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 116. C. Boyd and J. Pieprzyk, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

take part in generating SPAM and Distributed Denial of
Service (DDOS) attacks.

Detection and blacklisting of malicious web pages has
been the subject of several research projects. One
effective approach is to build virtualised environments
like high interaction client honeypots (Seifert 2007a)
where suspicious web pages are loaded, executed and
monitored to track potential malicious activities or
behaviour. The virtualised environment allows this to be
done without allowing any malware to be propagated to
production systems. While this method shows very
efficient results in term of detecting unknown attacks, it is
expensive in terms of the resources required to provide a
virtualised environment containing a complete operating
system and is relatively slow with each visit taking up to
10 seconds. To attempt to reduce the required resources
and increase the speed of the detection method, previous
work (Seifert 2007a) has proposed using a hybrid
approach where web pages are first filtered using a
lightweight mechanism before being passed to the more
expensive high-interaction mechanism. Our work focuses
on improving the efficiency and effectiveness of that
lightweight mechanism.

There are three main issues that we have explored in
the design of our lightweight mechanism. Firstly, we
want our mechanism to be lightweight in terms of its
resource requirements. Therefore our mechanism is a
data-mining algorithm that uses features derived from the
static web page rather than runtime features gathered
through the expensive process of loading the web page
into a web browser within a virtual environment. This
paper proposes a set of features that have been arrived at
through analysis of known malicious web pages. These
features are then evaluated by feature selection methods
in order to find out the most suitable feature set to
identify potential malicious web pages. Secondly, we
want our lightweight mechanism to be tuneable to allow
us to control the number of pages passed through to the
more expensive mechanisms such as high interaction
honeypots. This allows us to manage overall system
performance. This has led us to develop a lightweight
mechanism that computes a score rather than a simple
binary malicious/benign classifier (Seifert, Welch and
Komisarczuk 2008). By choosing the threshold that must
be reached before passing on the web page, the overall
performance can be tuned to reflect overall performance
constraints. Thirdly, we believe that it is worse to miss a
potential malicious web page (a false negative) than
incorrectly class a web page as malicious (a false
positive) and pass it onto the second stage for further
analysis. Therefore, our aim has been to design a
mechanism that minimises the number of false negatives
whilst keeping the false positives at an acceptable level.
Note that when taking resource usage into account that

there will most likely be a relationship between our
choice of threshold value and the false negative rate and
part of our interest is in understanding this relationship.

2 Background and Related Work

2.1 Web-based Client-side Attacks
As the number of Internet users has increased

significantly, web-based attacks that use malicious web
pages to exploit users’ system have become a primary
concern in the Internet security. A web-based client-side
attack happens when an Internet user visits malicious web
pages which attempt to exploit the user’s browser
vulnerabilities, plug-in application vulnerabilities or
user’s operating system vulnerabilities in order to
compromise the user’s system.

A web application is defined as an network
application which is typically interacting with the web
browser over the Internet (Mehdi 2007). Information
service providers use web applications to deliver their
services to users. To do that, they implement their
business logic through web applications at a web server
with an advertised URL (Gollmann 2008). To enrich
their services, the providers can use more than one web
server and backend servers and applications which work
in cooperation in order to deliver services to the
customers. In the client-side, there is the main application
– web browser which users use to access information
services from the providers. In order to expand their
functionalities, almost all web browsers support adding
third-party plug-in components such as Adobe Acrobat,
Adobe Flash, Apple QuickTime, and Microsoft ActiveX.

To deliver malicious content to the client-side, an
adversary first needs to publish malicious contents on the
Internet. Compromising a web server is one of the
common ways to deliver malicious contents. Various
methods are reported to be used to increase attack
effectiveness (Websense 2008, Sophos 2009, ScanSafe
2009, Symantic April 2009, ScienceDirect 2008,
Websense 2009). Intruders can compromise a website by
exploiting some vulnerabilities in the web server,
exploiting a vulnerable web application (Symantic April
2009), vulnerable database applications such as SQL
injection (Niels, Moheeb Abu and Panayiotis 2009,
ScanSafe 2009, Microsoft 2009). The results from this
compromising are inserting malicious contents which can
be delivered to the client-side system (Niels, Moheeb
Abu and Panayiotis 2009, Microsoft 2009). Some
vulnerabilities in web server and web applications are
reported as a very common issue(Provos, Mavrommatis,
Abu and Monrose , Symantic April 2009). Web 2.0
technology, in addition, has become a common
environment for attackers to spread their malicious
contents (Websense 2008, Adam and Meledath 2008).
Visitors are allowed to put arbitrary HTML and they can
insert malicious codes into websites, insert links to
malicious sites or even upload malicious files (Provos,
McNamee, Mavrommatis, Wang and Modadugu 2007,
Adam and Meledath 2008, Patsakis, Asthenidis and
Chatzidimitriou 2009, Lawton 2007).

After publishing their malicious contents on the Web,
attackers must get users to visit the malicious web pages
in order to make exploitation (Niels, Moheeb Abu and

Panayiotis 2009). Spam is a common technique which
intruders use to lure user to their malicious web pages.
For instance, spam emails can contain a links to a
malicious web page. Web blogs and social networking
sites are also abused to get users to visit malicious sites
(Garrett, Travis, Micheal, Atul and Kevin 2008). In
addition, some legitimate sites have third-party contents
like access counters, advertisements which refer to
malicious sites (Alme 2008, Provos, McNamee,
Mavrommatis, Wang and Modadugu 2007, Websense
2008, Barth, Jackson and Mitchell 2009). Moreover,
search engine are also abused by attackers in order to get
users to visit their malicious sites. Popular search terms
are used to make malicious web pages be displayed in the
search results (Keats and Koshy 2009, Alme 2008,
Barth, Jackson and Mitchell 2009, Gyongyi and Garcia-
Molina 2004, Websense 2009) so there is a very high
chance for their malicious sites to be visited.

When a user visits a malicious site, malicious contents
are delivered to exploit the user’s system. Malicious code
is usually used to target a specific vulnerability of the
web browser itself or plug-in applications (Jose, Ralf,
Helen and Yi-Min 2007, Charles, John, Helen, Opher
and Saher 2007). To discover available vulnerabilities in
the user’s system, adversaries abuse scripting support via
JavaScript, Visual Basic or Flash to collect information
about the user’s computing environment (Provos,
McNamee, Mavrommatis, Wang and Modadugu 2007).
Moreover, obfuscation is used to hide exploit code in
order to make malicious pages hard to be detected
(Seifert, Welch and Komisarczuk 2008, Seifert 2007b,
Seifert, Steenson, Holz, Yuan and Davis 2007).

In addition, Seifert’s study about malicious web
servers shows that there are some available web
exploitation kits (Seifert 2007b). These web exploitation
kits are very powerful in term of compromising web
servers and delivering malicious contents. The result from
this kind of attacks is usually to redirect users’ requests to
malware distribution networks. In addition, other related
researches also show that malicious web pages are
delivered by malware distribution networks (Provos,
Mavrommatis, Abu and Monrose , Wang, Beck, Jiang
and Roussev 2006, Jianwei, Yonglin, Jinpeng, Minghua,
Xulu, Weimin and Yuejin 2007).

2.2 Related Work
In this section, we preview some current analysis

methods which are used to detect malicious web pages.
They are classified into three main approaches: Signature
approach, state-change approach and machine learning
approach.

2.2.1 Signature technique
In the signature approach, detection systems use

known signature to detect malicious web pages.
Signatures can be from some well-known Intrusion
Detection Systems (IDS) or anti-virus applications. This
approach is commonly used in the detecting system using
low interaction client honeypot. Snort signature is used to
detect malicious web pages in their HoneyC system
(Seifert, Welch and Komisarczuk 2007). The HTTP
responses from web servers are constructed under XML
format, and then analysed against Sport signatures. In

Monkey-Spider system, Ikinci, Holz and Freiling also
used signature approach to detect malicious websites. The
contents of websites are crawled and stored in files. The
crawled contents are then scanned by ClamAV – an anti-
virus application (Ikinci, Holz and Freiling 2008).

2.2.2 State-change technique (rule-based
technique)

In addition, state-change approach is commonly used
in the detecting systems using high interaction client
honeypot – one of the efficient instruments to detect
malicious web pages. The main idea of this approach is
monitoring the state change in the client system during
visiting an URL time. If there is any unauthorized state
change during visitation, the visit URL is classified as
malicious. In the Strider HoneyMonkeys system, a
monkey program loads a browser, instruct it to visit each
URL and wait for a few minutes for downloading
process. The state changes in the system is then detected
against unauthorized creating executable files or registry
entries in the system (Wang, Beck, Jiang and Roussev
2006). Moreover, to detect drive-by-download attack,
Moshchuk, Bragin, Gribble and Levy use event triggers.
They create some trigger conditions to track unauthorized
activities in process creation, file system and registry
system. The trigger conditions also include any event that
makes browser or the system crash. During visitation, if
an URL make a trigger fire, it is classified as unsafe
(Moshchuk, Bragin, Gribble and Levy 2006). The state
change approach is also used by Xiaoyan, Yang, Jie,
Yuefei and Shengli in their client honeypot system to
collect Internet-based malware. A behaviour monitoring
module is conducted to track malicious behaviour. It
hooks native API, DLL functions and TDI in order to
monitor all activities causing buffer overflow, accessing
system resources such as process, network, file, and
registry (Xiaoyan, Yang, Jie, Yuefei and Shengli 2008).

2.2.3 Machine Learning Approaches
Seifert et al. (Seifert, Welch and Komisarczuk 2008)

proposed a novel classification mechanism to detect
malicious web pages. This method is based on HTTP
responses from potential malicious web servers which are
then analysed to extract potential malicious
characteristics. The method was used in a hybrid system
in which all URLs are classified by static heuristic
method and sent to high interaction client honeypot for
verification. To classifying URLs by static heuristics
method, some common attributes are chosen based on
three proposed main elements in malicious web pages:
exploit, exploit delivery mechanism and obfuscation. The
first step in this method is collecting malicious and
benign web pages and then extracting potential attributes
from these web pages. In learning step, all attributes
extracted from 5,678 instances of malicious and 16,006
instances of benign web pages were fed into Weka with
J4.8 decision tree learning algorithm implementation. The
outcome classifier from learning step was used to classify
61,000 URLs. This classifier had very good false positive
rate (5.88%) but very high false negative rate (46.15%).

Hou et al proposed a machine learning approach to
detect malicious web content (Hou, Chang, Chen, Laih
and Chen 2009). The key point in this research is the

method used to choose features according to the usages of
DHML knowledge. The chosen features have to meet the
requirement for abilities against obfuscation vs. accuracy.
Three groups with 171 features were chosen. There are
154 features used to count the use of native Java
functions. Nine features are also used to measure some
elements inside a HTML documents. There is 8 advanced
features are used to count the use of ActiveX object. In
the first step, 965 benign and 176 malicious web pages
were collected, analysed and labelled manually. The
malicious web pages were then categorized into nine pre-
defined types based on the skill used by attackers. In
order to study about choosing type of features, the authors
took some experiments with different chosen features.
Decision tree algorithm is used in these experiments.
While using all features cannot get high true positive and
low false positive result, the combination of three features
can get very good result. The authors also compared the
results of different classification algorithms with the use
of all the features. Four classification algorithms used in
this comparison are decision tree, Naïve Bayes, SVM and
boosted decision tree. The result showed that the boosted
decision tree got the best performance with high true
positive rate and low false positive rate.

To detect malicious web pages, Liang (Bin, Jianjun,
Fang, Dawei, Daxiang and Zhaohui 2009) proposed the
concept of abnormal visibilities. According to their
studies, malicious web pages are usually changed in their
display modes in order to be invisible or almost invisible.
The authors showed three main forms of abnormal
visibility. The first one is changing the width and height
attributes of iframe in order to make embedded malicious
codes invisible or almost invisible. Setting the display
style of iframe ‘display: none’ is the second form of
abnormal visibility. The last form is generating iframe tag
dynamically in order to make obfuscation. Abnormal
visibility fingerprints are created and used to detect
malicious web pages. Each web page is scanned to detect
any form of abnormal visibility. The detected value in
any kind of abnormal visibility is compared with a
threshold value. If the detected value is less than the
threshold value, the web page has an abnormal visibility
and is considered as a possible malicious page. To carry
out the experiment, the authors detect 60 websites
reported malicious by StopBadWare.org. They scanned
66882 pages from these websites and found 30561
malicious one. They also figured out that their system has
low false positive (1.99%) and false negative rates
(2.63%).

Ma et al. (Ma, Saul, Savage and Voelker 2009a)
pinpointed a new approach to detect malicious web pages
named lightweight URL classification. In this approach,
they classify web pages based on relationship between
URLs, their lexical and host-based features. It does not
use contents of web pages in detection. Lexical features
include any features which make the page ‘look
different’. They can be the length of the host-name,
length of the entire URL, number of dot in URL and so
on. Hosted-base feature include IP address properties,
WHOIS properties, Domain name properties and
geographic properties. Naive Bayes, SVM and Logistic
Regression are used for classification. The authors used
two experiments in their study. The first experiment is for

comparing between feature sets. The features were
divided into nine feature sets and these sets were fed into
the ℓ1-regularized logistic regression (LR) classifiers.
The results showed that using more features got better
classification accuracy. In addition, their another
experiment (Ma, Saul, Savage and Voelker 2009b) was
conducted to build online learning algorithm to detect
malicious web pages. They used the same feature as the
experiment (Ma, Saul, Savage and Voelker 2009a).
There were three online algorithms implemented:
Perception, Logistic Regression with Stochastic Gradient
Descent and Confidence-Weight. They compared their
online learning algorithm with Support Vector Machine
(SVM). The results showed that SVM needed more
training data set in order to get better accuracy but their
algorithms did not.

To build an inductive learning model to detect
malicious web pages, Liu et al. (Liu and Wang 2009)
extracted features from HTTP responses such as iframe,
javascript, body redirect, css redirect etc. The inductive
learning model consisted of behaviour signatures based
on extracted features and the relationship of features. The
results from their experiment showed that the inductive
learning model missed many malicious web pages
(46.15%).

Chia-Mei et al (Chia-Mei, Wan-Yi and Hsiao-Chung
2009) proposed a model to detect malicious web pages
based on unusual behaviour features such as encoding,
sensitive key word splitting and encoding and some
dangerous JavaScript functions. To classify web pages,
they created a scoring mechanism which cored based on 9
predictor variable. Moreover, weights for each predictor
variable were decided by training phrase. The results
from their experiment showed that their model worked
very well. However, their dataset was very small with
460 benign and 513 malicious web pages.

Shih-Fen et al. (Shih-Fen, Yung-Tsung, Chia-Mei,
Bingchiang and Chi-Sung 2008) proposed a novel
semantics-aware reasoning detection algorithm to detect
malicious web pages (SeAR) which was based on
structures of HTML codes. Firstly, they defined templates
for HTML codes. For each tested HTML code, the
distance between the tested HTML code and templates
were calculated. Secondly, the best match was chosen
based on the distance and weight of the template. Finally,
threshold was used to make decision whether web pages
were classified as malicious or benign. The outcome from
this research is very good but their dataset had only 147
malicious instances (no benign one).

Cova et al. (Cova, Kruegel and Vigna 2010) presented
a novel approach which used anomaly detection and
emulation to identify malicious JavaScript Code. The
features were chosen based on sequence of carrying out
an attack: redirection and cloaking, de-obfuscation,
environment preparation, and exploitation. They argued
that not all of the features were necessary for an attack
happening and classified the features into two groups:
useful features and necessary features. To extract
features, they used emulated HTML browser HtmlUnit
(Gargoyle). They carried experiments on over 115K web
pages and their approach achieves very good outcome in
comparison to other approaches such as ClamAV,
PhoneyC and Capture-HPC.

While there is a few of works focusing on identifying
malicious web pages, this paper presents a mechanism to
detect potential malicious one in order to reduce number
of suspicious web pages which need to be investigated
further by detection instruments or experts.

3 Scoring Mechanism
This work focuses on how to reduce number of

suspicious web pages but minimize missing attacks. A
scoring mechanism is proposed to work as a filter which
classifies suspicious web pages into classes: benign web
pages and potential malicious web pages. Only potential
malicious web pages are forwarded to detection devices
or experts for further investigations (Fig. 1).

Figure 1: Scoring Mechanism
We propose scoring mechanism because of three

reasons. Firstly, it works as a filter, not a final classifier
so it just makes an estimate by scoring maliciousness of
web pages. Secondly, it uses static features which can be
obtained without rendering fully or executing web pages.
However, they are less valuable than run-time features
which are extracted by rending fully and executing web
pages. Therefore, static features are likely good for
detecting potential malicious web pages. Finally, scoring
algorithm can make a trade-off between number of
detected potential malicious web pages and false negative
rate (missing attack). The key idea to propose scoring
mechanism is to reduce number of suspicious web pages
which need to be inspected by detection devices or
experts, but not missing any attack.

3.1 Feature Selection
The first step on feature selection is to identify

potential malicious features which can distinguish
between benign web pages and malicious one. By
analysing the selected common malicious web pages, we
find that there are three main groups of malicious
contents of web pages as follows:

- Foreign contents are malicious contents which are
loaded from outside along with suspicious web
pages. These contents can be loaded with
suspicious web pages by some of malicious
HTML tags such as frame, iframe, image
source… Iframe is especially known as very
common method to load outside malicious web
pages along with suspicious one (Provos,
Mavrommatis, Abu and Monrose). In almost all of
cases, foreign malicious contents are resulted
from compromises or uncontrolled third-party
contents such as advertising and site hit counters.

- Script contents are known as the most common
malicious contents of malicious web pages. In
almost all of cases, script codes are used for two
main purposes: delivering and hiding malicious
codes by obfuscations. We identify some of
potential malicious features from scripts which
could distinguish between benign web pages and
malicious web pages, such as script size, string

size, word size, argument size, character
distribution…

- Exploit code contents are the core contents of
malicious web pages. They are target specific
vulnerabilities in web browsers, plug-ins or
operating systems. Some of HTML tags known as
delivery of potential malicious codes are applet,
object, embed… However, there are rarely
malicious codes found in this direct form. In
almost cases, exploit codes are encoded in scripts
with obfuscations to hide from detection devices.

Feature Group 1: Foreign Contents

1 Number of redirection

2 Number of iframe and frame tag

3 Number of external link in iframe and frame tag

4 Iframe and frame link length: Median

5 Ratio of vowel character in iframe and frame link:
Minimum

6 Ratio of special character in iframe and frame
link: Minimum

7 Number of external links (except iframe and
frame)

8 Other link length: Minimum

 Group 2: Script Contents
9 Number of scripts

10 Number of script lines

11 Number of script word

12 Ratio of special character in scripts

13 Script length: Minimum

14 Script line length: Minimum

15 Script string length: Maximum

16 Script word length: Minimum

17 Script function argument length: Minimum

 Group 3: Exploit Contents
18 Number of objects

19 Number of applets

20 Object link length: Maximum

21 Ratio of special character in object links

22 Ratio of vowel character in object links

23 Number of object attributes: Median

24 Applet link length: Minimum

25 Ratio of special character in applet link

26 Ratio of vowel character in applet link

Table 1: Appropriate Features for Identifying
Potential Malicious Web Pages

According to our analysis, we select 52 potential
features from these main malicious contents. If a feature
appears more than once, we use four values to measure it
at the first sight: minimum, maximum, mean and median.
However, only one measured value for each feature is
chosen for scoring algorithm.

Secondly, we use information gain as a measurement
method to choose high valuable features only.
Information gain for an attribute a is defined as follows:

IG�S, a� � Entropy�S� � ∑ |��|
|�| � Entropy�S�����

Where S is collection of instances, S� is a subset of S
with relevant value v of attribute a. The greater
information gain an observed attribute obtains, the higher
value it contributes to the process to identify malicious
web pages. The training dataset which is used to calculate

information gain must have both malicious and benign
instances. There are 26 potential features selected based
on information gain (Table 1).

3.2 Scoring Mechanism
Our scoring algorithm works based on the concept of

standard score which measure how many standard
deviations a value of observed attribute is far from the
mean (Carroll and Carroll 2002). Each instance has three
types of scores based on three groups of contents of web
pages: Foreign content score, script content score and
exploit content score.

A group score of instance x is calculated as follows:

�������� � � |� � ! |
" ��

Where g is an attribute group which can be foreign
content group, script content group or exploit content
group; a is an attribute of g; x� is value of attribute a of
instance x; δ�is a standard deviation of attribute a which
is estimated during training a set of benign instances; µ�
is mean of attribute a which is estimated during training a
set of benign instances.

The greater score an instance x has in each group, the
more likely it is classified as potential malicious class. If
T(is chosen as a threshold for content group g in order to
identify potential malicious instances, the rule of
classification is as follows:

x �) potentialy malicious if 2g � G: GS(�x� 4 T(
 otherwise, x is benign 8

Any page will be classified as potential malicious that
has a group score greater than the threshold value for that
group.

4 Data Collection
To get dataset for our experiments, we firstly collect

candidate web pages which include both malicious and
benign one. To collect benign web pages, we collect hot
search terms from Google Search Engine (Google 2010)
and then feed these search terms to Yahoo API websearch
(Yahoo 2010) to get top 10 URLs from the search
results. In addition, we collect malicious web pages from
some of common public announced malware and exploit
websites like Blade-defender.org, Clean-mx.de,
Paretologic.com, Malwaredomainlist.com. These selected
web pages are verified by our Capture-HPC, a high
interaction client honeypot (Seifert and Steenson 2009).

Secondly, we create a low interaction client honeypot
which interacts with web servers to request for the
selected web pages. The HTTP responses from web
servers are extracted based on the attributes and their
potential values described on Table 1. We totally collect
33646 instances of web pages, including 33422 instances
of benign web pages and 224 instances of malicious one.

5 Experiments
To evaluate our scoring mechanism, we divide dataset

into two subsets as follows:
- Training dataset consists of 20,000 benign

instances and it is used for training scoring
algorithm to calculate mean and standard
deviation for each attribute.

- Testing dataset contains 13,646 instances with
13,422 benign instances and 224 malicious one.
This dataset is used to test the scoring mechanism.

The experiment is carried in three steps. Firstly,
training dataset is fed into our scoring mechanism in
order to calculate some statistic values such as mean,
standard deviation. Secondly, we calculate group scores
for each instance in the testing dataset. Each instance has
three types of scores: foreign content score, script content
score and exploit content score. Finally, we adjust
threshold score values in each group in order to find the
relationship between false negative rate and the number
of identified potential web pages.

6 Results

Figure 2: The relationship between false negative
rate and number of potential malicious web
pages.

We use 20,000 instances of benign web pages to train our
scoring algorithm and 13646 instances of malicious and
benign web pages for testing. To find out the relationship
between false negative rate and the number of identified
potential malicious web pages, we adjust the value of
score threshold in each group and calculate number of
negative. The threshold start from the maximum value of
each group score, and then reduce to the value
corresponded to the percentage of potential malicious
web pages. Figure 1 shows the relationship between the
number of identified potential malicious web pages and
false negative rate. When number of potential malicious
increases, false negative rate decreases. Our aim is to
minimize the false negative rate, in Figure 1 this is
achieved when number of potential malicious web pages
reaches 14% of the total number of instances in the
testing dataset. In the other word, we can reduce 86%
number of suspicious web pages without missing attacks.

7 Conclusion
This paper presents a scoring mechanism to estimate

maliciousness of web pages in order to reduce the number
of suspicious web pages which need to be analysed by a
secondary mechanism such as high-interaction honeypot.
The advantages of this scoring mechanism are discussed

as using lightweight static features, capability to make
trade-off between number of potential malicious web
pages and false negative rate (that is, missing an attack).

Three main groups of malicious contents are identified
in this paper. Based on these contents groups, we
extracted 52 potential features from both malicious and
benign web pages. Information gain is used in order to
identify 26 potential features. Each web page has three
scores corresponded to three contents groups. Thresholds
are chosen for each content group. A web page is
classified as potential malicious web pages if it has at
least one group score higher than threshold.

The proposed scoring mechanism is initially tested on
13,646 instances with 224 malicious web pages. The
result shows that there is capability to make trade-off
between number of potential malicious web pages and
missing attacks.

This work however has some limitations, which are
identified and required for future works. Firstly, a limited
number of malicious samples (224 instances) may not
present all statistical characteristics of malicious web
pages. Secondly, only information gain feature selection
method is used in the feature selection process. Other
feature selection methods could be investigated in order
to have a good comparison. Thirdly, there are three
contents groups with three thresholds but the relationship
between them in order to form the overall score with only
one overall threshold has not identified yet.

References
Adam, A. N. & Meledath, D. (2008): Security in web 2.0

application development. Proceedings of the 10th
International Conference on Information Integration
and Web-based Applications \& Services, Linz,
Austria,ACM.

Alme, C. (2008) Web Browsers: An Emerging Platform
Under Attack. MCAfee.

Barth, A., Jackson, C. & Mitchell, J. (2009): Securing
frame communication in browsers. Commun. ACM, 52:
83-91.

Bin, L., Jianjun, H., Fang, L., Dawei, W., Daxiang, D. &
Zhaohui, L. (2009): Malicious Web Pages Detection
Based on Abnormal Visibility Recognition. Proc. E-
Business and Information System Security, 2009.
EBISS '09. International Conference on: 1-5.

Carroll, S. R. & Carroll, D. J. (2002): Statistics made
simple for school leaders: data-driven decision
making, Scarecrow Press.

Charles, R., John, D., Helen, J. W., Opher, D. & Saher, E.
(2007): BrowserShield: Vulnerability-driven filtering
of dynamic HTML. ACM Trans. Web, 1: 11.

Chia-Mei, C., Wan-Yi, T. & Hsiao-Chung, L. (2009):
Anomaly Behavior Analysis for Web Page Inspection.
Proc. Networks and Communications, 2009. NETCOM
'09. First International Conference on: 358-363.

Cova, M., Kruegel, C. & Vigna, G. (2010): Detection and
Analysis of Drive-by-Download Attacks and Malicious
JavaScript Code. Proc. WWW2010, Raleigh NC, USA.

Gargoyle Html Unit, http://htmlunit.sourceforge.net/,
Accessed 02/05/2010.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 5% 10% 15% 20%

FNR

Garrett, B., Travis, H., Micheal, I., Atul, P. & Kevin, B.
(2008): Social networks and context-aware spam.
Proceedings of the ACM 2008 conference on Computer
supported cooperative work, San Diego, CA,
USA,ACM.

Gollmann, D. (2008): Securing Web applications.
Information Security Technical Report, 13: 1-9.

Google (2010): Google Trends,
http://www.google.com/trends/hottrends, Accessed
08/03/2010.

Gyongyi, Z. & Garcia-Molina, H. (2004) Web spam
taxonomy. California, Stanford University.

Hou, Y.-T., Chang, Y., Chen, T., Laih, C.-S. & Chen, C.-
M. (2009): Malicious web content detection by
machine learning. Expert Systems with Applications, In
Press, Corrected Proof.

Ikinci, A., Holz, T. & Freiling, F. (2008): Monkey-
Spider: Detecting Malicious Websites with Low-
Interaction Honeyclients. Proc. Sicherheit,
Saarbruecken.

Jianwei, Z., Yonglin, Z., Jinpeng, G., Minghua, W., Xulu,
J., Weimin, S. & Yuejin, D. (2007) Malicious websites
on the Chinese web: overview and case study. Beijing,
Peking University.

Jose, M., Ralf, S., Helen, J. W. & Yi-Min, W. (2007): A
Systematic Approach to Uncover Security Flaws in
GUI Logic. Proceedings of the 2007 IEEE Symposium
on Security and Privacy,IEEE Computer Society.

Keats, S. & Koshy, E. (2009) The Web's Most Dangerous
Search Term. McAfee.

Lawton, G. (2007): Web 2.0 Creates Security Challenges.
Computer, 40: 13-16.

Liu, P. & Wang, X. (2009): Identification of Malicious
Web Pages by Inductive Learning. Proceedings of the
International Conference on Web Information Systems
and Mining, Shanghai, China,Springer-Verlag.

Ma, J., Saul, L. K., Savage, S. & Voelker, G. M. (2009a):
Beyond blacklists: learning to detect malicious web
sites from suspicious URLs. Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining, Paris, France,ACM.

Ma, J., Saul, L. K., Savage, S. & Voelker, G. M. (2009b):
Identifying suspicious URLs: an application of large-
scale online learning. Proceedings of the 26th Annual
International Conference on Machine Learning,
Montreal, Quebec, Canada,ACM.

Mehdi, J. (2007): Some Trends in Web Application
Development. 2007 Future of Software
Engineering,IEEE Computer Society.

Microsoft (2009) Microsoft Security Intelligence Report.
January through June 2009.

Moshchuk, E., Bragin, T., Gribble, S. D. & Levy, H. M.
(2006): A crawler-based study of spyware on the Web.

Niels, P., Moheeb Abu, R. & Panayiotis, M. (2009):
Cybercrime 2.0: When the Cloud Turns Dark. Queue,
7: 46-47.

Patsakis, C., Asthenidis, A. & Chatzidimitriou, A. (2009):
Social Networks as an Attack Platform: Facebook Case

Study. Proc. Networks, 2009. ICN '09. Eighth
International Conference on: 245-247.

Provos, N., Mavrommatis, P., Abu, M. & Monrose, R. F.
All your iframes point to us. Google Inc, 2008.

Provos, N., McNamee, D., Mavrommatis, P., Wang, K. &
Modadugu, A. (2007): The Ghost In The Browser:
Analysis of Web-based Malware. Proc. Proceedings of
the first USENIX workshop on hot topics in Botnets.

ScanSafe (2009) Annual Global Threat Report. Trends
for January 2008 - December 2008.

ScienceDirect (2008): Most malicious web sites are
hacked. Network Security, 2008: 1-2.

Seifert, C. (2007a) Improving Detection Accuracy and
Speed with Hybrid Client Honeypots,. Wellington,
Victoria University of Wellington.

Seifert, C. (2007b): Know Your Enemy: Behind the
Scenes of Malicious Web Servers. The Honeynet
Project.

Seifert, C. & Steenson, R. (2009): Capture-HPC,
https://projects.honeynet.org/capture-hpc/, Accessed
22/02/2010.

Seifert, C., Steenson, R., Holz, T., Yuan, B. & Davis, M.
A. (2007): Know Your Enemy: Malicious Web
Servers. The Honeynet Project.

Seifert, C., Welch, I. & Komisarczuk, P. (2007): HoneyC
- The Low-Interaction Client Honeypot. Proc.
NZCSRSC, Hamilton.

Seifert, C., Welch, I. & Komisarczuk, P. (2008):
Identification of Malicious Web Pages with Static
Heuristics. Proc. Telecommunication Networks and
Applications Conference, 2008. ATNAC 2008.
Australasian: 91-96.

Shih-Fen, L., Yung-Tsung, H., Chia-Mei, C., Bingchiang,
J. & Chi-Sung, L. (2008): Malicious Webpage
Detection by Semantics-Aware Reasoning. Proc.
Intelligent Systems Design and Applications, 2008.
ISDA '08. Eighth International Conference on, 1: 115-
120.

Sophos (2009) Security threat report: 2009. Sophos.

Symantic (April 2009) Security Threat Report - Trend for
2008. Volume XIV.

Wang, Y.-M., Beck, D., Jiang, X. & Roussev, R. (2006):
Automated Web Patrol with Strider HoneyMonkeys:
Finding Web Sites that Exploit Browser
Vulnerabilities. IN NDSS.

Websense (2008) State of Internet Security. Q1-Q2.
Websense Security Labs.

Websense (2009) State of Internet Security. Q3-Q4.
Websense Security Labs.

Xiaoyan, S., Yang, W., Jie, R., Yuefei, Z. & Shengli, L.
(2008): Collecting Internet Malware Based on Client-
side Honeypot. Proc. Young Computer Scientists, 2008.
ICYCS 2008. The 9th International Conference for:
1493-1498.

Yahoo (2010): Web search document for Yahoo!,
http://developer.yahoo.com/search/web/V1/webSearch.
html, Accessed 08/03/2010.

