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Significance of root hairs for plant performance under contrasting field conditions
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journals and as we receive over 1000 submissions every year we need to be very selective in deciding which papers we can publish. In
making your assessment of the manuscript's suitability for publication in the journal please consider the following points.

Scientific Scope

Annals of Botany welcomes papers in all areas of plant science. Papers may address questions at any level of biological organization
ranging from molecular through cells and organs, to whole organisms, species, communities and ecosystems. Its scope extends to all
flowering and non-flowering taxa, and to evolutionary and pathology research. Many questions are addressed using comparative studies,
genetics, genomics, molecular tools, and modeling.

To merit publication in Annals of Botany, contributions should be substantial, concise, written in clear English and combine originality of
content with potential general interest.

We want to publish papers where our reviewers are enthusiastic about the science: is this a paper that you would keep for
reference, or pass on to your colleagues? If the answer is “no” then please enter a low priority score when you submit your report.

We want to publish papers with novel and original content that move the subject forward, not papers that report incremental
advances or findings that are already well known in other species. Please consider this when you enter a score for originality when
you submit your report.

Notes on categories of papers:

All review-type articles should be novel, rigorous, substantial and “make a difference” to plant science. The purpose is to
summarise, clearly and succinctly, the “cutting edge” of the subject and how future research would best be directed. Reviews should be
relevant to a broad audience and all should have a strong conclusion and illustrations including diagrams.

 

Primary Research articles should report on original research relevant to the scope of the journal, demonstrating an important
advance in the subject area, and the results should be clearly presented, novel and supported by appropriate experimental
approaches. The Introduction should clearly set the context for the work and the Discussion should demonstrate the importance of
the results within that context. Concise speculation, models and hypotheses are encouraged, but must be informed by the results
and by the authors' expert knowledge of the subject.

Reviews should place the subject in context, add significantly to previous reviews in the subject area and moving forward research
in the subject area. Reviews should be selective, including the most important and best, up-to-date, references, not a blow-by-blow
and exhaustive listing.

Research in Context should combine a review/overview of a subject area with original research, often leading to new ideas or
models; they present a hybrid of review and research. Typically a Research in Context article contains an extended Introduction that
provides a general overview of the topic before incorporating new research results with a Discussion proposing general models
and the impact of the research.

Viewpoints are shorter reviews, presenting clear, concise and logical arguments supporting the authors' opinions, and in doing so
help to stimulate discussions within the topic.

Botanical Briefings are concise, perhaps more specialised reviews and usually cover topical issues, maybe involving some
controversy.
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Running title: Significance of root hairs under contrasting field conditions 

 

 Background and Aims Previous laboratory studies have suggested selection for root 

hair traits in future crop breeding to improve resource use efficiency and stress 

tolerance. However, data on the interplay between root hairs and open-field systems, 

under contrasting soils and climate conditions, are limited. As such, this study aims to 

experimentally elucidate some of the impacts that root hairs have on plant 

performance on a field scale. 

 Methods A field experiment was set up in Scotland for two consecutive years, under 

contrasting climate conditions and different soil textures (i.e. clay loam vs. sandy 

loam). Five barley (Hordeum vulgare) genotypes exhibiting variation in root hair 

length and density were used in the study. Root hair length, density and rhizosheath 

weight were measured at several growth stages, as well as shoot biomass, plant water 

status, shoot phosphorus (P) accumulation and grain yield.  
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 Key Results Measurements of root hair density, length and its correlation with 

rhizosheath weight highlighted trait robustness in the field under variable 

environmental conditions, although significant variations were found between soil 

textures as the growing season progressed. Root hairs did not confer a notable 

advantage to barley under optimal conditions, but under soil water deficit root hairs 

enhanced plant water status and stress tolerance resulting in less negative leaf water 

potential and lower leaf abscisic acid concentration, while promoting shoot P 

accumulation. Furthermore, the presence of root hairs did not decrease yield under 

optimal conditions, while root hairs enhanced yield stability under drought. 

 Conclusions Selecting for beneficial root hair traits can enhance yield stability 

without diminishing yield potential, overcoming the breeder’s dilemma of trying to 

simultaneously enhance both productivity and resilience. Therefore, the maintenance 

or enhancement of root hairs can represent a key trait for breeding the next generation 

of crops for improved drought tolerance in relation to climate change.  

 

Key words: agricultural sustainability, barley, drought tolerance, grain yield, Hordeum 

vulgare, plant water status, phosphorus, rhizosheath, root hairs, root traits, soil texture. 

 

INTRODUCTION 

 

Root traits are critical features for more resource efficient and stress tolerant crop varieties 

(Lynch, 2007). Common targets in breeding programmes are deep roots to capture stored 

water and leached nitrogen, and abundant shallow roots to capture strongly bound nutrients 

such as phosphorus (White et al., 2013). However, in the context of crop breeding, the 

selection of genotypes with abundant root growth in low fertility conditions may be 

counterproductive, as resources would be allocated to the root system at the expense of shoot 

and reproductive output (i.e. yield; Bloom et al., 1985). Root hairs represent an attractive 

target for future crop breeding given their role in phosphorus uptake, relatively simple genetic 

control and relatively small associated metabolic cost (Bates and Lynch, 2000; Gahoonia and 

Nielsen, 2004; Brown et al., 2013, 2017; George et al., 2020).  

Root hairs are tubular protrusions (typically 10 µm diameter) arising from epidermal 

cells (trichoblasts; Jungk, 2001). These specialised structures represent about 2% of the root 

mass (Röhm and Werner, 1987; Clarkson, 1991), and significantly increase the interaction 
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between the plant and the soil. Early estimates by Dittmer (1937) that a single rye plant had 

14 billion root hairs that provided a potential surface area in contact with the soil of 400 m
2
 

clearly demonstrate that they increase the nutrients and water absorbing root surface area, 

which can be up to three fold bigger (Gahoonia et al., 1997; Dolan, 2001; Gahoonia and 

Nielsen, 2004; Holz et al., 2018). In addition to increasing surface area, root hairs access 

finer pores than the main root axis, so the volume of soil influenced by roots can increase 

significantly (Ruiz et al., 2020). Root hairs also assist rhizosphere development by 

facilitating the diffusion of root mucilage (Watt et al., 1994; Ahmadi et al., 2017), citrate and 

acid phosphatase (Narang et al., 2000; Gahoonia et al., 2001), and promoting microbiota 

diversification (Robertson-Albertyn et al., 2017). Soil that is very strongly bound to roots in 

the rhizosphere forms a rhizosheath, operationally defined as the weight of soil that adheres 

strongly to roots on excavation (George et al., 2014). Rhizosheath size is strongly affected by 

the properties of root hairs (Haling et al., 2010), which is important as it protects the root 

from drought and heat stress (Benard et al., 2016; Basirat et al., 2019), nutrient deficiencies 

(Brown et al., 2012), soil acidity (Haling et al., 2010) and soil strength (Haling et al., 2013, 

2014). Root hairs also have a positive impact on soil carbon (C) sequestration, with greater C 

allocation below ground in the presence of root hairs (Holz et al., 2018). Root hairs may also 

be important for growth into strong soils as they provide anchorage. Bengough et al. (2016) 

found that, from a loose seedbed, maize primary roots with root hairs could penetrate soil that 

was five-times stronger than root hairless maize mutants. Taken together, roots hairs are 

involved in a number of processes that enhance crop tolerance to abiotic stresses. 

Root hairs show intra- and interspecific variations in length and density (i.e. root hair 

traits; Brown et al., 2017). In angiosperms, average length of root hairs varies from zero (i.e. 

species with no root hairs) to 1.5 mm (e.g. in Hordeum vulgare; Brown et al., 2017). Root 

hair length is particularly important in P-deficient conditions, where they increase shoot 

phosphorus (P) accumulation, biomass and yield (Gahoonia and Nielsen, 2004; Brown et al., 

2012). Most studies investigating root hairs have focused on plant tolerance to phosphorus 

deficiency and rhizosheath formation, comparing wildtypes and hairless mutants of major 

crops under controlled conditions (Brown et al., 2012, 2017; Delhaize et al., 2012; Kole et 

al., 2015), such as growth cabinets with artificial lighting and sieved soil packed to optimal 

density (for details see Table S1). Such experiments provide controlled conditions that are 

ideal for contrasting root hair traits with few environmental variables, but they do not reflect 

conditions that plants may experience in the field, such as fluctuating water availability. 
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A few controlled environment studies have explored the impact of soil water content 

(% of field capacity), varying it from 100% (Brown et al., 2012), to 80% (Brown et al., 

2017), to 75% (Brown et al., 2012), to 70% (Bailey and Scholes, 1997; Adu et al., 2017), to 

50% (George et al., 2014) and to 30% (Adu et al., 2017). Under the described controlled 

environmental conditions, plants were generally harvested and root traits examined after a 

short growing period ranging from few days (e.g. 3 days in Delhaize et al. (2015)) to nearly a 

month (e.g. 26 days in Brown et al. (2017)). The effects of soil density and soil texture on 

root hair development were studied on plants grown for four days in artificial soil mixtures 

with different particle fractions (Haling et al., 2014). Highly controlled environments were 

used to image the soil-root interface of the wildtype and a hairless barley mutant by high-

resolution synchrotron scanning of individual roots grown in syringe barrels filled with finely 

sieved soil (Koebernick et al., 2017, 2019). While these laboratory studies were able to 

identify fundamental processes, such as genetic associations with fine scale rhizosphere 

characteristics, they oversimplify complex field conditions where soil and climate variables 

interact. 

Despite the pressing need for field-validated laboratory experiments and general 

improvement of agricultural production and food security, few studies, often limited to barley 

and rice, have tested the effect of root hairs under real field conditions (Gahoonia and 

Nielsen, 2004; George et al., 2014; Nestler and Wissuwa, 2016; Nestler et al., 2016). In 

barley, root hair length and rhizosheath size suggested consistent ranking of the tested 

genotypes between laboratory and field conditions (Gahoonia and Nielsen, 2004; George et 

al., 2014). Under field conditions, grain yields of barley genotypes with shorter root hairs 

were much less in P-deficient soils than for barley genotypes with longer root hairs 

(Gahoonia and Nielsen, 2004). This agreement between studies in the field and more 

controlled conditions is promising, but to date most field trials on root hairs have 

complemented more detailed trials in a controlled environment (e.g. growth cabinet). The 

field trials have measured only a few plant or soil properties, for only a single growing 

season. For instance, although Gahoonia and Nielsen (2004) and George et al. (2014) 

provided a detailed soil characterisation (e.g. soil texture and pH), data on climate conditions 

(e.g. temperature and precipitations) and soil water status were not presented, limiting data 

interpretation and generalisation. Indeed, soil water content affected rhizosheath weight in 

laboratory experiments, with rhizosheaths formed under dry conditions being larger than 

those formed in wet soils, with a possible function in nutrient acquisition in dry soils (Watt et 

al., 1994; Liu et al., 2019b). Moreover, plant variables, measured in the field, were limited to 
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yield in Gahoonia and Nielsen (2004) and rhizosheath weight in George et al. (2014), while 

correlations (e.g. root length vs rhizosheath weight) in the same studies were generally based 

on data gathered in a controlled environment.  

In the field, plants may be subject to abrupt changes in soil moisture (e.g. see climate 

data in Fig.1), with fluctuations in water availability preventing the development of stress 

tolerance and therefore inducing water stress. On the contrary, in laboratory experiments 

plants are often subject to constant water stress or optimal conditions. To our knowledge, 

laboratory experiments to date on root hairs and water stress have imposed water deficit 

treatments (Brown et al., 2012; Adu et al., 2017) often without directly measuring plant water 

stress. Brown et al. (2012) showed that root hairless mutants of barley were up to 2.3-fold 

smaller than genotypes with root hairs under combined P and water stress. However, plant 

water status was not measured.  

Although root hairs and rhizosphere are assumed to play a key role in regulating plant 

water relations, their effect on plant water uptake has been rarely investigated. Although the 

hairless mutant of Arabidopsis thaliana took up less water than the wildtype in hydroponic 

culture, its ability to take up water from soil was not assessed (Tanaka et al., 2014). Under 

low evaporative demand (< 1.5 kPa) in a controlled environment, a root hairless barley 

mutant (brb) and its WT had the same transpiration rate, suggesting root hairs were redundant 

in regulating water uptake (Dodd and Diatloff, 2016). In contrast, enclosing shoots of these 

genotypes in a cuvette at higher evaporative demands demonstrated that root hairs were 

necessary to sustain transpiration and prevent leaf water deficits (Carminati et al., 2017). 

Nevertheless, to our knowledge the role of root hairs in regulating leaf water status in field-

grown plants has not been investigated.  

A major gap in understanding the benefits of root hairs for crop productivity is field 

verification under contrasting environmental conditions. This study explored the performance 

of contrasting barley root hair genotypes in 2017 (a typical year) and 2018 (the driest 

growing season ever recorded at this site), with measurements of plant and soil properties 

over the growing season. We quantified the influence of root hairs on plant performance 

under contrasting field conditions to address the following hypotheses: 1) Root hair traits are 

robust over time, in contrasting soil textures and climate conditions; 2) Presence of root hairs 

increases shoot mass and shoot phosphorus accumulation in the field; 3) Root hairs enhance 

plant water status and grain yield under soil moisture deficit. The hypotheses were tested in a 

full-scale field experiment using barley genotypes exhibiting variations in root hair length 

and density. 
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MATERIALS AND METHODS 

 

Study site and experimental plots 

The study was carried out at The James Hutton Institute, Dundee, UK (56°27′34·80″ N, 

3°4′21·01″ W) at two locations denoted as South Bullion and North Bullion [Supplementary 

data Fig. S1A]. The South Bullion soil is a sandy loam (60% sand, 24% silt and 16% clay; 

22.5 ± 1.4 g kg
-1

 carbon, 1.6 ± 0.3 g kg
-1

 nitrogen, 5.48 ± 0.07 soil pH in CaCl2) and 

classified as a Dystric Cambisol, whereas the North Bullion soil is a clay loam (44% sand, 

30% silt and 26% clay; 29.5 ± 1.2 g kg
-1

 carbon, 2.3 ± 0.2 g kg
-1

 nitrogen, 5.15 ± 0.04 soil pH 

in CaCl2) and classified as a Haplic Cambisol (Naveed et al., 2018). From herein, we refer to 

the locations by their soil texture, sandy loam or clay loam. 

Five barley (Hordeum vulgare) genotypes exhibiting variation in root hair length were 

used in the study. These included a wildtype and three mutant lines from an ethylmethane 

sulfonate (EMS) mutant barley population in an ‘Optic’ cultivar genetic background: no root 

hair (NRH), a “bud” root hair (BRH, with root hair initiation but not developing any further) 

and a short root hair (SRH). One line of each genotype was selected from the three used by 

Brown et al. (2012), where further details on genotype screening are provided. Additionally, 

the cultivar Sassy was included in the study as it was previously found to have abundant root 

hairs. Seeds were sown using a Wintersteiger Seedmatic drill at 4 cm depth in each of the 

sandy loam and clay loam fields, for two consecutive years, 2017 (March 24
th

) and 2018 

(April 25
th

), following a random block design. Each treatment was replicated four times for a 

total of 40 experimental plots (1.5 × 6 m each). In order to prevent edge effects on the 

experimental plots, at both locations guard plots of 1.5 m width were planted with a standard 

barley cultivar (cv Concerto; Supplementary data Fig. S1B). Nitrogen (N), phosphorus (P), 

potassium (K) and sulphur (SO3) was applied using fertiliser with a 22-4-14 + 7.5 SO3 mix at 

273 and 280 kg ha
-1

 for both soil textures in 2017 and 2018, respectively. N fertiliser was 

supplied in the form of ammonium nitrate. Pesticide additions were added when required 

after sowing following the local agronomic practices for spring barley.   

Weather conditions were recorded by the weather station of The James Hutton 

Institute. In 2017 maximum and minimum daily temperatures, from sowing to harvesting, 

averaged 16.9 ± 3.2 °C and 7.9 ± 3.7 °C, respectively and in 2018 averaged 18.8 ± 3.5 °C and 

8.8 ± 3.3 °C, respectively (Fig. 1). Daily precipitation differed markedly between the two 

experimental years, being frequent and abundant during the growing season in 2017, while 
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only occasional precipitation events were recorded in 2018 (Fig. 1). Total precipitation from 

sowing to harvesting was 42% less in 2018, measuring 323.4 mm in 2017 compared to 186.6 

mm in 2018 [Supplementary data Fig. S2]. This offered the possibility to investigate the 

importance of the presence and abundance of root hairs for plant growth and crop yield under 

different water availability conditions. Climate data for the area in the period 1971–2000 

report an average total precipitation of 313.7 mm from April to September, so 2018 was a 

particularly dry growing season [Supplementary data Fig. S2]. 

 

Root traits 

 Root traits were measured during contrasting growing seasons and at different 

growing stages, from GS 11 – first leaf unfolded – (Tottman, 1987) to harvesting. In 2017 

plants were harvested on two occasions, 24 (April 17) and 56 (May 22) days from sowing. 

During the following year sampling was performed four times, 19 (May 14), 33 (May 28), 49 

(June 13) and 61 (June 25) days from sowing. One and two whole plant samples were 

harvested per treatment plot in 2017 and 2018, respectively. A spade or trowel was used to 

ensure as much of the root mass of the plant as possible was removed. Samples were placed 

in a plastic bag and processed on the same day in the laboratory. Roots were gently washed 

with water to remove any adhering soil and patted dry, with due care being taken to minimize 

any potential damage to root hairs (Brown et al., 2012).  

To analyse total root length, root samples were spread out in a standard petri dish 

suspended in a small amount of water and placed against a white background. An image was 

collected in greyscale (600 dpi) using an Epson Expression 10000XL scanner (Epson UK, 

London).  The software WinRHIZO pro (Regent Instruments, Quebec City, Canada) was 

used to digitally map root samples and calculate total root length, as well as the total number 

of root tips and forks.  

A compound light microscope (Leica MZ FLIII; Leica Microsystems, Wetzlar, 

Germany) at magnification ×5 was used along with a Leica DC480 camera (Leica 

Microsystems, Wetzlar, Germany) to capture images of roots for root hair length and density 

quantification. Three images were taken per plant and ten fully elongated root hairs per image 

were selected for measurement. The software ImageJ (ImageJ 1.46r; NIH, Bethesda, USA) 

was used to measure root hair length (Schneider et al., 2012). The segmented line drawing 

tool was used to trace along the length of root hairs and the length in millimetres was 

established utilising a conversion factor gained by measuring the known gap on a set of 
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digital callipers at various widths. From the ten samples, the root hairs were averaged to get 

average root hair length per sample.  

Using the root images captured for root hair length analysis, root hair density was 

assessed. This was an observational assessment of samples. Counts of root hairs were 

completed on 25 sample images of roots. These samples were classified into five categories 

based on the approximate number of root hairs per millimetre: 1. Bald: 0-7 root hairs per mm; 

2. Sparse: 7-15 root hairs per mm; 3. Moderate: 15-35 root hairs per mm; 4. Thick: 35-50 root 

hairs per mm; 5. Dense:  50+ root hairs per mm. Root and shoot mass were measured by 

weighing oven-dried plant material, which had been dried at 70 °C for 4 d.  

An estimation of rhizosheath weight was carried out by calculating the difference 

between the fresh root weight including attached soil and the clean fresh root weight. Specific 

rhizosheath weight (mg cm
-1

) was determined on a per unit root length basis by dividing the 

rhizosheath weight (mg) by the total root length (cm) for each plant. 

 

Soil properties 

 During the growing season of 2018 a range of soil properties were measured in the 

field. Shortly after sowing access tubes were installed in each plot and location of the 

following barley genotypes: NRH, WT and Sassy. Soil volumetric water content (m
3 

water m
-

3
 soil) was then measured using PR2 probes (Delta-T Devices Ltd, Cambridge, UK) on five 

occasions: 19 (May 14), 37 (June 1), 49 (June 13), 62 (June 26) and 84 (July 18) days from 

sowing. Measurements were taken at three soil depths (0.2, 0.3 and 0.4 m) using a portable 

HH2 moisture meter (Delta-T Devices Ltd, Cambridge, UK). Surface water content (0.1 m) 

was measured in proximity of the tubes using ML3 sensors (Delta-T Devices Ltd, 

Cambridge, UK). On May 14, analogic jet-filled tensiometers (Soilmoisture Equipment Corp, 

USA, practical limit of -80 kPa) at 0.2 and 0.5 m depths were placed in each plot of the 

barley wildtype and its hairless mutant.  The tensiometers were carefully installed with soil 

slurry to allow for good soil–tensiometer contact. Tensiometer readings were recorded 

approximately every 3 to 5 days.  

Soil phosphorus (P) concentration and distribution along depth were assessed in 2018 

in each plot of the WT, NRH and Sassy genotypes in both locations and at five time points: 

15 (May 10), 34 (May 29), 50 (June 11), 61 (June 25) and 82 (July 16) days from sowing. 

Soil samples were collected using a screw-auger at three depths within a 40 cm deep profile 

(0-13, 14-27 and 28-40 cm) for a total of four samples per treatment. Olsen-P was derived 

according to Olsen and Sommers (1982) and Irving and McLaughlin (1990). 
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Plant performance 

 Water status of barley NRH, WT and Sassy in both locations was monitored by 

measurements of leaf water potential at 48 (June 12
th

), 62 (June 26
th

) and 85 (July 19
th

) days 

from sowing in 2018. Pre-dawn leaf water potential (Ψpd) was measured between 05:00 and 

06:00 h (solar time). Four leaves per plot, each from a different individual (16 leaves per 

experimental treatment) were collected and immediately wrapped in clingfilm, stored in a 

refrigerated bag and transported to the laboratory. Water potential was measured using a 

pressure chamber (Plant Moisture System, Skye Instruments, Powys, UK). The sampling was 

repeated on the same day between 12:00 and 13:00 h (solar time), to estimate minimum daily 

leaf water potential (Ψmin). Leaf samples for abscisic acid (ABA) determination were 

collected from NRH, WT and Sassy plots in both locations at 48, 62 and 85 days from 

sowing, freeze dried and finely ground. Deionised water was added at 1:50 weight ratio and 

an aqueous extract obtained after incubating them in a shaker at 4 ºC overnight. The extracts 

were analysed by a radioimmunoassay (Quarrie et al., 1988) to determine leaf ABA 

concentration. 

Chlorophyll concentration (CHL) was assessed on the same plots and dates of leaf 

water potential measurements. An optical meter (CCM-200; Opti-Sciences, Hudson, USA) 

was used to estimate chlorophyll concentration in situ of four leaves per plot (16 leaves per 

experimental treatment). A single universal optical/absolute chlorophyll relationship derived 

by Parry et al. (2014) was used to relate the output from the CCM-200 to absolute 

chlorophyll concentration in µmol m
-2

. The photosynthetic efficiency was estimated on the 

same plots, dates and time as Ψmin using chlorophyll a fluorescence emission measurements 

performed on four leaves from separate plants per plot (16 leaves per treatment). 

Measurements were done with a portable fluorimeter (Pocket Pea; Hansatech, Norfolk, UK) 

on leaves previously darkened for 20 min, and Fv/Fm was calculated as a proxy for quantum 

yield of PSII (Maxwell and Johnson, 2000). 

To determine shoot P concentration, leaf samples (newest fully extended leaf) were 

sampled at 56 and 62 days from sowing, in 2017 and 2018, respectively. Diagnostic leaves 

(newest fully expanded) were collected from all plots of the genotypes NRH, WT and Sassy 

at both locations and frozen at -80 °C, freeze dried and milled. Powdered leaf samples (50 

µg) were digested for 20 min at 180 °C in 3 mL of 15.8 M HNO3 (Aristar grade, VWR 

International, Poole, UK), followed by oxidation for 20 min at 180 °C with 1 mL of H2O2 in 

closed vessels using a MARSXpress microwave oven (CEM, Buckingham, UK). Digested 
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samples were diluted to a final volume of 50 mL with de-ionized water and the 

concentrations of P in diluted digests were determined by reaction with malachite green 

(Irving and McLaughlin, 1990). Shoot P accumulation (mg P shoot
-1

) was calculated as the 

product of shoot P concentration (mg P g
-1

) and total shoot biomass (g), measured at 56 and 

49 days from sowing, in 2017 and 2018, respectively. Following plant senescence harvesting 

was performed at 148 (August 19
th

) and 141 (September 13
th

) days from sowing in 2017 and 

2018, respectively. Grain weight was recorded as a measurement representative of yield. 

 

Statistical analysis 

 Statistical analysis was performed using GenStat 19
th

 edition (VSN International) and 

SigmaPlot14 (Systat Software Inc). Measurements that were repeated over time were 

analysed using restricted maximum likelihood (REML) for repeated measurements. The 

sampling time was included as repeated measurement, genotype and soil texture as fixed 

factors. Differences between treatments within one sampling time were determined with two-

way analysis of variance (ANOVA). Factors were genotype and soil texture. Differences 

between genotypes within the same sampling and soil texture were established with one-way 

ANOVA, followed by post hoc Tukey’s test. Significant differences in the frequency 

distribution of roots between categories of root hair density (Bald: 0-7 root hairs per mm; 2. 

Sparse: 7-15 root hairs per mm; 3. Moderate: 15-35 root hairs per mm; 4. Thick: 35-50 root 

hairs per mm; 5. Dense: 50+ root hairs per mm) were determined for each genotype with one-

way ANOVA, followed by post hoc Tukey’s test. Soil volumetric water content and P 

concentration were analysed using REML, with depth as repeated measurement, genotype 

and soil texture as fixed factors and sampling time as random factor. In the analysis of all 

recorded data, plot distribution in the field was used as a block factor. Data that did not 

follow a normal distribution were log-transformed and checked again for normal distribution 

prior to ANOVA. The significance of correlations established in this study were tested by 

regression analyses. Results were considered statistically significant when the P-value ≤ 0.05.  

 

 

RESULTS 

 

Dynamic adjustment of root traits under field conditions 

Barley genotypes differed in average root hair length and density when grown in the field. 

Indeed, average root hair length significantly differed (P < 0.001) between genotypes on each 
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day that they were examined after 24 d and 56 d growth in 2017 and after 19 d, 33 d, 49 d and 

61 d growth in 2018 (Fig. 2). Specifically, root hairs were significantly longer in the WT 

compared to the NRH and BRH mutants (P < 0.001) regardless of sampling day or soil 

texture and as plants aged for both years (Fig. 2). However, no significant differences were 

found between WT, SRH mutant and Sassy across time or soil texture. The two experimental 

years showed the same trends in root hair length between genotypes, however within the 

same genotype root hairs were significantly longer (P = 0.034) for the WT grown in clay 

loam soil during the dry year in 2018 (0.71 mm) compared to the wet year in 2017 (0.51 

mm), a few weeks after planting. Similarly, the SRH mutant grown in clay loam soil 

exhibited significantly longer (P = 0.015) root hairs later in the season in 2018 (0.53 mm) 

compared to 2017 (0.40 mm). Root hair length varied over the growing season, with root 

hairs growing as plants aged during the wet year and shrinking with time during the dry year. 

During the wet growing season of 2017, root hairs of the WT grown in clay loam, were 

significantly longer (P = 0.006) at 56 d (0.62 mm) compared to 24 d (0.51 mm) growth. Even 

in BRH, that had very short root hairs, they were significantly longer (P = 0.002) at 56 d 

(0.10 mm) compared to 24 d (0.05 mm) growth. In contrast, the dry growing season of 2018 

highlighted a decreasing trend in root hair length as plants aged, with significantly longer (P 

= 0.002) root hairs in the WT grown in sandy loam soil at 19 d growth (0.56 mm) compared 

to 33 d (0.40 mm), 49 d (0.38 mm) and 61 d (0.35 mm) growth. During the same year, a 

significant decrease in root hair length as plants aged was found for Sassy grown in sandy 

loam (P < 0.001) and clay loam (P = 0.02). During both growing seasons there were 

significant differences in average root hair length between the two soil textures, with 35% 

and 46% longer root hairs in the clay loam compared to the sandy loam across all genotypes, 

in 2017 and 2018, respectively. 

The frequency distribution of root hair density classes varied in relation to the 

genotype (Fig. 3). The majority of roots of the WT sampled at 24 d growth in 2017 were 

characterised by a sparse root hair density (7-15 root hairs mm
-1

) in the sandy loam field and 

moderate hair density (15-35 root hairs mm
-1

) in the clay loam. The frequency distribution of 

root hair density for the SRH mutant did not differ from that of the WT, while Sassy showed 

a greater root hair density in the sandy loam, but not in the clay loam. On the contrary, root 

hair density was markedly different for the NRH and BRH mutants compared to the WT, 

with most of the roots sampled 24 d from sowing, having 0-7 root hairs mm
-1

 (bald) in both 

soil textures. Later in the season, at 56 d growth, differences in the frequency distribution of 

root hair density classes within genotype were not as significant, with an increase in hair 
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density for the BRH mutant in both soil textures and for the NRH mutant in clay loam as 

plants aged. The early sampling in 2018, at 19 d from sowing, highlighted differences in root 

hair density between the WT (15-35 root hairs mm
-1

) and mutants NRH (0-7 root hairs mm
-1

), 

BRH (0-7; 7-15 root hairs mm
-1

) and SRH (7-15 root hairs mm
-1

) grown in sandy loam (Fig. 

3). Similarly, greater root hair density in the WT compared to its mutants was also found in 

clay loam soil. However, during both years there was a trend leading to an overall greater 

root hair density for plants grown in clay loam compared to sandy loam soil (Fig. 3). 

Similarly to the previous year, as plants aged root hair density increased for the mutants 

grown in sandy loam soil, going from bald to sparse for BRH and from sparse to moderate in 

the case of SRH.  

Soil bound to the root hairs was reflected in rhizosheath weight, which varied 

significantly (P < 0.001) between genotypes from the early sampling in 2017 and from all 

four samplings in 2018 (Fig. 4). Rhizosheath weight was significantly greater (P < 0.001) for 

WT (0.58 and 0.37 g in sandy and clay loam, respectively) compared to NRH (0.01 and 0.03 

g in sandy and clay loam, respectively) and BRH mutants (0.01 and 0.04 in sandy and clay 

loam, respectively) at 24 d growth in 2017. The same sampling highlighted smaller 

rhizosheath weights for WT, SRH and Sassy in the clay loam compared to the sandy loam 

soil, with an average decrease of 36, 30 and 64%, respectively. However, no significant 

differences were found in rhizosheath weight between genotypes, soil textures or their 

interaction at 56 d growth. During the dry season of 2018, rhizosheath weight for plants 

grown in sandy loam was significantly greater (P < 0.001) for WT (0.98 g) and Sassy (1.48 

g) compared to NRH (0.20 g; Fig. 4), at 19 d growth. In the clay loam, significant differences 

(P < 0.001) were found between WT (0.76 g) and both NRH (0.10 g) and BRH (0.24 g) 

mutants. At 33 and 61 d from sowing, rhizosheath weight was significantly greater (P = 

0.005; P < 0.001) for WT and Sassy compared to NRH only in clay loam, while no 

differences were found for plants grown in sandy loam (Fig. 4). During the last sampling of 

2018, smaller rhizosheath weights were recorded for plants grown in clay loam compared to 

those in sandy loam, with an average reduction of 82, 35 and 28% for NRH, WT and Sassy, 

respectively. The two experimental years resulted in significant (P < 0.001) differences in the 

rhizosheath weight measured early in plant establishment (24 and 19 d growth in 2017 and 

2018, respectively). Indeed, rhizosheath weight was greater for all genotypes in 2018, with 

significant differences for SRH (P = 0.027) in sandy loam and WT (P < 0.001), SRH (P = 

0.007) and Sassy (P = 0.018) in clay loam. There was a positive relationship between average 

root hair length and specific rhizosheath weight for all sampling dates and soil textures, 



13 
 

however the relationship yielded an R
2
 > 0.70 and P < 0.0001 only following the first 

sampling during the dry season of 2018 (Fig. 5).  

Other measurements taken after 24 and 56 d growth in 2017 and 19, 33, 49, 61 d 

growth in 2018 are summarized in Table 1 and Table S2. In 2017 dry weights of shoots were 

greater (P = 0.022) in WT (253 ± 25 g) and Sassy (288 ± 49 g) genotypes grown in sandy 

loam soil compared to NRH (112 ± 18 g), with intermediate values recorded for the other two 

genotypes (Table 1). No significant differences were found in shoot dry weight between 

genotypes grown in the clay loam, however this was generally less (-30%; P = 0.006) 

compared to plants grown in sandy loam. In 2018, significant differences (P = 0.003) in shoot 

dry weight were recorded between genotypes (Table 1). At 49 d growth, shoot biomass was 

significantly different between Sassy (1211 ± 31 g) and NRH (509 ± 57 g) in sandy loam (P 

= 0.006), while in the clay loam differences (P = 0.004) were also found between WT (792 ± 

80 g) and NRH (308 ± 43 g), with intermediate values (but not significant differences) found 

for the other mutants. Overall shoot biomass was generally smaller in the clay loam (-29%; P 

= 0.010) compared to the sandy loam. It should be noted that overall, the shoot biomass in 

2018 at 61 d from sowing was approximately 4-fold of that recorded in 2017 at 56 d from 

sowing (Table 1) as a result of the respective sowing dates. Indeed, seeds were sown a month 

later (i.e. April 25
th

) in 2018 compared to 2017 (i.e. March 24
th

) resulting in a different 

growth rate, with 56 d from sowing in 2017 corresponding to May 22
nd

, while 61 d from 

sowing in 2018 corresponded to June 25
th

. Total root lengths did not differ significantly 

between genotypes in 2017, however these were significantly different between soil textures 

(P = 0.045), being generally shorter in clay loam compared to the sandy loam (-45%; Table 

1). Although there was a significant effect of time on root length from 24 to 56 d from 

sowing in 2017 (P = 0.014), some plants did not exhibit longer roots at 56 d (i.e. NRH and 

SRH in clay loam; WT and Sassy in sandy loam soil; Table 1), which may be the result of 

weather conditions (i.e. low temperatures and scarce precipitation) between the two sampling 

times (Fig. 1). In 2018, total root lengths were shorter in the clay loam (-36% overall; P < 

0.001) and varied between genotypes (P < 0.001) only in the clay loam, with NRH displaying 

37 and 48% shorter total root lengths than Sassy at 19 and 61 d growth, respectively (Table 

1). Total number of root tips and forks did not differ significantly between genotypes in 2017 

[Supplementary data Table S1], while the number of tips was generally less in the clay loam 

compared to the sandy loam in 2017 (-62%; P = 0.018) and 2018 (-36%; P < 0.001). During 

the latter, the number of root tips and forks was significantly less in NRH (-56 and -57%, 
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respectively; P < 0.001) compared to WT for plants grown in clay loam at 19 and 33 d 

growth.  

 

Effects of root hairs on soil water and phosphorus 

 Soil water content was measured in 2018 at five time points, from 19 to 84 days from 

sowing (Fig. 6). At 19 d from sowing, this averaged 0.19 and 0.23 m
3
 m

-3
 in surface soil (10 

cm) for sandy and clay loam, respectively, while at 40 cm depth this in turn averaged 0.40 

and 0.31 m
3
 m

-3
. It dried substantially by 37 days plant growth, dropping to 0.09 and 0.06 m

3
 

m
-3

 in sandy loam and clay loam, respectively, and was maintained below 0.12 m
3
 m

-3
 for the 

rest of the growing season in both soil textures, with no significant differences between these. 

In deeper soil (40 cm), significant differences (P < 0.001) were found between soil textures, 

with the clay loam exhibiting greater water content throughout the season (Fig. 6). There was 

no significant effect of the genotype on soil water content.  

Soil water potential was measured to investigate plant water availability during the 

growing season (Fig. 7). Soil water potential at 20 cm depth decreased down to the 

tensiometers limit (< -70 kPa) 37 days after sowing (June 1) in the sandy loam field, and 7 

days later in the clay loam field. Soil water potential at 50 cm depth became less than -70 kPa 

by 84 days after sowing (July 18) in both soil textures (Fig. 7). There were no significant 

differences in soil water potential between the wildtype and its hairless mutant in both soil 

textures and at either soil depth. 

Olsen P differed significantly (P < 0.001) between soil textures and sampling depths 

(P < 0.001), such that the clay loam had an average 45, 64 and 90% decrease in soil P content 

compared to the sandy loam in the top (0-13 cm), middle (14-27 cm) and bottom soil 

sampling depths (28-40 cm), respectively (Fig. 8). Specifically, during the growing season, in 

the sandy loam field, Olsen P averaged 44.4, 41.2 and 24.8 mg P kg
-1

 in the top, middle and 

bottom soil depths, respectively.  In the clay loam field, Olsen P averaged 20.4, 14.7 and 2.5 

mg P kg
-1

 in the top, middle and bottom soil section, respectively. In the sandy loam, 

compared to clay loam, there was a greater variability in soil P content in relation to the 

barley genotype. However, no significant difference was found in soil P content between 

samples collected from plots planted with different genotypes.  

 

Effects of root hairs on plant performance under drought 

 Measurements of plant water status taken at 48, 62 and 85 d growth in 2018 are 

summarized in Table 2. In June 2018, similar values of Ψpd and Ψmin were found between soil 
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treatments and genotypes, averaging -0.43 and -1.26 MPa, respectively. During the following 

month, soil water availability decreased even in deep soil, as shown by measurements of soil 

water content (Fig. 6) and water potential (Fig. 7), leading to more negative leaf water 

potentials (Table 2). Indeed, in July 2018 minimum leaf water potential decreased below the 

permanent wilting point (-1.5 MPa), while limited soil water availability was confirmed by 

measurements of pre-dawn leaf water potential, which averaged -0.85 MPa in clay loam and -

1.57 MPa in sandy loam. In these conditions, significant differences in minimum leaf water 

potential (P < 0.001) were found between soil treatments with substantially lower values for 

sandy loam (Ψmin = -2.02 MPa) than clay loam (Ψmin = -1.60 MPa). More interestingly, Ψmin 

differed significantly (P = 0.021) between NRH (-1.76 MPa) and WT (-1.43 MPa) grown in 

clay loam, with the mutant exhibiting greater water stress. However, no significant 

differences were found in sandy loam soil despite data showing the same trend. As expected, 

leaf ABA concentration increased with decreasing water availability during the growing 

season (Table 2). In July 2018, at the peak of water stress, leaf ABA concentration was 

significantly (P = 0.023) greater for NRH (394 ng g
-1

) than WT (250 ng g
-1

) grown in clay 

loam soil, in agreement with leaf water potential measurements. When plants were grown in 

sandy loam soil, we observed the same trend between genotypes in ABA concentrations, but 

no significant differences. The same sampling highlighted a soil treatment effect, with plants 

grown in sandy loam having larger ABA concentrations (+140%; P < 0.001) than those 

grown in clay loam.  

Table 2 reports significant differences between genotypes and soil textures in terms of 

photosynthetic efficiency. The wildtype grown in sandy loam at 48 d from sowing had a 

significantly (P = 0.01) greater Fv/Fm compared to its hairless mutant, however for both 

genotypes values were in the optimum range (0.79-0.84; Maxwell and Johnson (2000)). 

Progressively smaller values were recorded during the following samplings. Overall, plants 

grown in sandy loam displayed greater values of Fv/Fm, indicating better photosynthetic 

efficiency, compared to those grown in clay loam at 48 d (P < 0.001) and 85 d (P = 0.014) 

growth. Chlorophyll concentration showed marked differences between plants grown in 

different soil textures as this was significantly greater in the clay loam (+21%; P < 0.001) 

compared to the sandy loam. No significant differences in terms of CHL were found between 

the wildtype and its hairless mutant while it varied significantly (P = 0.001) between the 

wildtype (cv Optic) and the other elite cultivar Sassy.  

Significant differences were found between genotypes with respect to shoot P 

concentrations in sandy loam soil in both 2017 (P = 0.033) and 2018 (P < 0.001), with NRH 
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having concentrations that were 20% and 21% greater than those of Sassy in 2017 and 2018, 

respectively (Fig. 9). Calculations using shoot P concentrations and total shoot biomass to 

produce shoot P accumulation data resulted in significant differences (P < 0.001) between 

genotypes only in 2018 (Fig. 9). It should be noted that overall shoot P accumulation in 2017 

was approximately 4-fold less than in 2018 (Fig. 9C and D) as a result of differences in shoot 

biomass (Table 1). Under water deficit conditions in sandy loam soil (Fig. 9D), there was a 

53% increase (P < 0.001) in average shoot P accumulation by WT (2.56 mg P shoot
-1

) 

compared with NRH (1.67 mg P shoot
-1

). In clay loam soil, shoot P accumulation in WT 

(2.49 mg P shoot
-1

) was over twice that in NRH (1.10 mg P shoot
-1

).  

Grain weights obtained from harvesting in August 2017 and September 2018 were 

used as a measure of crop yield (Fig. 10). This measurement produced significant differences 

(P < 0.001) between the soil treatments in both experimental years. Plants grown in sandy 

loam generally produced greater yield than in clay loam (+66% in 2017; +33% in 2018). 

However, plants grown in clay loam exhibited a smaller yield drop between years (i.e. 6% in 

clay loam vs 22% in sandy loam). Yield responses to soil types and years (i.e. water 

availability) varied largely between genotypes. While yield of NRH significantly (P = 0.012) 

decreased from 2017 to 2018 in both clay (-26%) and sandy (-33%) loam soils, no significant 

differences were found between years in the yield of WT. No significant differences were 

found between genotypes in 2017, while during the following year we recorded better yield 

(P < 0.001) for Sassy (5.25 and 4.31 t ha
-1

 in sandy (+39%) and clay loam (+55%), 

respectively) compared to the hairless genotype NRH (3.79 and 2.84 t ha
-1

 in sandy and clay 

loam, respectively) in both soil textures.  

 

 

DISCUSSION 

 

While root hairs did not confer a notable advantage to barley under optimal conditions (i.e. 

adequate water availability in 2017), under drought (i.e. 2018 growing season) root hairs 

enhanced plant water status, P-accumulation and yield (Table 2, Figs. 9 and 10). Importantly, 

the presence of root hairs did not decrease yield under optimal conditions, suggesting that 

selecting for beneficial root hair traits can enhance yield stability without diminishing yield 

potential, overcoming the breeder’s dilemma of trying to simultaneously enhance both 

productivity and resilience. It is therefore important to understand the physiological 

mechanisms by which root hairs can enhance yields under sub-optimal conditions. To our 
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knowledge, the present findings provide the first evidence of the effect of root hairs upon 

drought in open field conditions (i.e. real agricultural system). Therefore, along with the well-

recognized role for P uptake, maintenance or enhancement of root hairs can represent a key 

trait for breeding the next generation of crops for improved drought tolerance in relation to 

climate change.  

 

Dynamic adjustment of root traits under field conditions 

 Root hair length in the field differed notably between clay and sandy loam soils 

during both growing seasons. Root hair length was significantly longer (+35% in 2017 and + 

46% in 2018) in clay loam considering all genotypes, in contrast with data from Haling et al. 

(2014), who found shorter root hairs in soil with smaller particles. While that study grew 

barley genotypes in pots filled with artificial mixtures of different sand fractions, our plants 

were grown in natural soils with different textures in the field, where soil texture, structure 

(e.g. aggregates and macropores), hydrology and climate might all affect root hair growth. 

Average root hair length (0 – 0.13 mm for NRH and 0.45 – 0.71 mm for WT; Fig. 2), 

recorded during the first sampling in 2017 and 2018 (i.e. after 24 and 19 days from sowing), 

was only slightly shorter than that in Brown et al. (2012), where the same genotypes were 

grown in a different sandy soil in a controlled environment for 7 days. However, root hairs 

grew longer in 2017 (e.g. in WT from 0.51 mm at 24 d from sowing to 0.62 mm at 56 d from 

sowing), while root hair length decreased progressively in 2018 (e.g. in WT from 0.56 mm at 

19 d from sowing to 0.35 mm at 61 day from sowing; Fig. 2). We measured root hair length 

from older, field grown, plants compared to previous laboratory studies (Brown et al., 2012; 

Haling et al., 2014; Delhaize et al., 2015), which may have missed the plastic adjustment of 

root hair length upon changing environmental conditions. Similarly, root hair density showed 

remarkable changes during both growing seasons, overshadowing initial differences between 

genotypes (Fig. 3). For instance, root hair density in BRH increased from 0 – 7 root hairs per 

mm (24 d after sowing in 2017) to 7-15 and 15-35 root hairs per mm for most roots (56 d 

after sowing; Fig. 3).  

Root hair length was positively correlated with rhizosheath weight during both 

growing seasons (Fig. 5), as in controlled environments (Brown et al., 2012, 2017; Delhaize 

et al., 2012; George et al., 2014; Adu et al., 2017). This correlation is based on field data and 

highlights trait robustness upon variable environmental conditions, although the strength (i.e. 

coefficient of determination) of the correlation changed between growing seasons (2017 vs 

2018), as well as during the same growing season (i.e. the correlation weakened as plants 
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aged; Fig. 5). During the wet summer of 2017, the slope of the correlation did not change as 

plants aged, but it decreased notably during the dry growing season of 2018 as both root hair 

length (Fig. 2) and rhizosheath weight (Figs. 4 and 5) changed. Both root hair traits and 

mucilage traits determine rhizosheath weight (Akhtar et al., 2018; Galloway et al., 2018), and 

their relative importance may explain the shift in the relation between root hair length and 

rhizosheath weight. Differences in the soil moisture dynamics (e.g. drying/re-wetting) down 

the soil profile and during the growing season may have also impacted rhizosheath weight as 

shown by Watt et al. (1994). A similar decrease in rhizosheath weight during the growing 

season was reported by George et al. (2014) for WT and SRH grown in a sandy loam field. A 

diminished rhizosheath during the exceptionally dry summer of 2018 seems to contradict 

previous controlled environment studies (Haling et al., 2014; Liu et al., 2019b), where soil 

drying enhanced rhizosheath mass. The dynamic change in the relation between root hair 

length and rhizosheath observed here can explain the reported variability in the strength of 

this relation between laboratory-based studies.  

 

Root hairs improve plant water status under drought 

 The summer of 2018 ranked amongst the hottest and driest June-July period in 

Scottish records dating back to 1910 (Parry, 2018), providing an ideal opportunity to 

investigate the eco-physiological responses of the tested genotypes under drought conditions. 

Early in the growing season, pre-dawn leaf water potential (Ψpd) did not differ significantly 

between genotypes and soil types. This absence of severe water stress agreed with the less 

negative water potentials found in deeper soil (Fig. 7), as plants tend to establish equilibrium 

overnight with wetter zones (e.g. deeper soil layer in Figs. 6 and 7) of bulk soil. By mid-July, 

soil water potential (< -70 kPa) decreased even in the deeper soil (50 cm depth; Fig 7), and 

Ψpd dropped to -0.85 and -1.57 MPa in clay and sandy loam, consistent with drier soil at 

depth in the sandy loam field than the clay loam field (Fig. 6). Minimum leaf water potential 

(Ψmin) highlighted a consistent trend, with significant differences between soils in mid-July 

(Table 2; 85 days from sowing). Under water stress conditions (Fig. 7; Table 2), Ψmin 

measurements also highlighted consistent genotypic rankings for both soil types, with the 

presence of root hairs significantly enhancing plant water status in clay loam soil. This novel 

field evidence is consistent with controlled environment conditions where leaf water potential 

of the hairless mutant decreased more rapidly at high transpiration rates than the wildtype 

(Carminati et al., 2017). Indeed, root hairs facilitate the uptake of water by substantially 

reducing the decline in water potential at the interface between root and soil in rapidly 
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transpiring plants, given the greater water carrying capacity of root hairs and the smaller 

tortuosity of the water path in respect to unsaturated soil (Segal et al., 2008; Carminati et al., 

2017). Thus, decreased Ψmin of the root hairless mutant was consistent with its higher leaf 

ABA concentrations, suggesting a greater degree of stomatal closure and hence possibly 

more limited photosynthesis.  

 

Influence of root hairs on grain yield stability under drought 

 The remarkably different climate conditions between growing seasons (Fig. 1 and 

Supplementary data Fig. S2) offered the opportunity to test the overall field performance of 

barley genotypes differing in root hair abundance. Grain yield decreased by an average 14% 

in 2018 compared to the previous year, as did total cereal yields in Scotland (i.e. - 9%), 

including spring barley (i.e. - 6%, from 5.9 t h
-1

 in 2017 to 5.5 t h
-1

 in 2018; The Scottish 

Government 2017, 2018), as a result of poor weather conditions. Grain yield and shoot 

biomass differed significantly between the clay and sandy loam fields, with an average 

decrease in clay loam by 37% in 2017 and 24% in 2018 (Table 1; Fig. 10). More 

interestingly, yield responses to soil types and years (i.e. water availability) varied largely 

between genotypes. While yield of NRH decreased significantly from 2017 to 2018 in both 

soils, yield of WT plants grown in clay loam soil increased by 7% over the same period. 

When barley was grown in clay loam soil, the presence of root hairs significantly affected 

plant water status (23% drop in Ψmin and 58% increase in ABA for NRH compared to WT; 

Table 2) and P accumulation (+126% for WT compared to NRH), maintaining a stable grain 

yield during exceptional climate conditions such as the drought in 2018. Although Scotland is 

generally considered a wet country, a large interannual variability of precipitation is predicted 

for the next decades (Brown et al., 2008; ASC, 2016) which may cause drought stress in 

crops unless more resilient genotypes are developed (e.g. selection of new crops based on 

root traits). We may expect root hairs to contribute to drought tolerance in other crops too, 

but further investigation is needed as root hair traits vary largely between species (Brown et 

al., 2017) and there is a lack of field investigations looking at their role under water deficit 

conditions. 

The role of root hairs in P accumulation has been associated with barley yields in the 

field (Gahoonia and Nielsen, 2004), but this response varies with environmental conditions. 

While root hairs may have a negligible effect on plant performance (Gahoonia and Nielsen, 

2004) or even represent a cost (Brown et al., 2012; George et al., 2014) when P and water 

availability are optimal, root hairs could have a key role in maintaining yield stability if P and 
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water are limiting. We found that the presence and abundance of root hairs is critical for 

stress tolerance, supporting laboratory data by Brown et al. (2012) on the biomass 

accumulation of barley genotypes upon combined P and water deficiency. Our data 

demonstrates that all genotypes achieved adequate P nutrition (Fig. 9) under both soil 

conditions, regardless of the prevailing weather conditions that year, due to the relatively 

large content of available P in the surface of both soils. Field studies comparing impact of 

drought conditions on root hair genotypes in P-limited soils are needed to explore this more 

fully. 

In summary, root hair traits were important in real agricultural conditions to maintain 

plant water status and P accumulation when soil water availability was limiting, with 

potential implications for maintaining a stable grain yield under extreme precipitation 

patterns (e.g. prolonged summer drought). However, the genotypic differences in root hair 

length and abundance as well as plant performance varied in relation to plant age and soil 

texture, which need to be considered in future work assessing the role of root traits. 

Furthermore, the effects of root hairs on soil physical and hydrological properties in the field 

should be evaluated in relation to their potential benefits for both crops and soils. 

 

SUPPLEMENTARY DATA 

Supplementary data are available online at https://academic.oup.com/aob and consist of the following. 

Fig. S1: Location of two experimental fields and schematic representation of the 

experimental lots. Fig. S2: Monthly precipitation from March to September. Table S1: List 

of examples of studies investigating root hairs that were conducted under controlled 

environmental conditions. Table S2: Total number of root tips and forks and root diameter of 

three root hair mutants   
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Table 1. Total root length and shoot dry mass of three root hair mutants (NRH = no root hair; BRH = bud root hair; SRH = short root hair) and 

the wildtype (WT) in the cv Optic background and cv Sassy. Plants were grown in 2017 and 2018 at two locations with different soil textures: 

sandy loam and clay loam. Two sampling campaigns were done in 2017: 24 and 56 days from sowing; four sampling campaigns were done in 

2018: 19, 33, 49 and 61 days from sowing. Data are the mean of four (2017) and eight replicates (2018), with differences between genotypes, 

soil textures and time of sampling established using REML for repeated measurements from which the F and P-value data are derived. 

Significant parameters (P ≤ 0.05) are in bold. Identical letters indicate no significant differences between genotypes as tested using one-way 

ANOVA followed by a post-hoc Tukey’s test. It should be noted that overall, the shoot biomass in 2018 (61 d from sowing) was approximately 

4-fold of that recorded in 2017 (56 d from sowing) as a result of the respective sowing dates.  

Days from sowing Soil Genotype  Total root length 2017 (cm)  Shoot dry mass 2017 (mg)  Total root length 2018 (cm)  Shoot dry mass 2018 (mg) 

24 (2017) and 19 (2018) Sandy loam NRH  71.5 ± 8.6 a  -  60.5 ± 4.7 a  24.3 ± 1.5 a 

  BRH  79.3 ± 14.5 a  -  66.6 ± 6.5 a  25.9 ± 2.2 a 

  SRH  66.9 ± 7.7 a  -  62.2 ± 3.4 a  22.0 ± 2.6 a 

  WT  98.7 ± 11.8 a  -  66.1 ± 4.0 a  26.0 ± 1.5 a 

  Sassy  106.5 ± 8.7 a  -  78.3 ± 6.4 a  28.9 ± 1.0 a 

 Clay loam NRH  60.7 ± 5.9 a  -  35.9 ± 3.6 a  13.3 ± 1.9 a 

  BRH  50.5 ± 2.9 a  -  51.7 ± 4.0 ab  18.8 ± 2.2 a 

  SRH  49.4 ± 3.9 a  -  51.9 ± 1.6 ab  22.0 ± 2.6 a 

  WT  68.3 ± 7.3 a  -  49.1 ± 1.8 ab  18.3 ± 1.6 a 

  Sassy  62.1 ± 3.7 a  -  56.9 ± 4.3 b  20.4 ± 1.3 a 

33 (2018) Sandy loam NRH  -  -  347.1 ± 43.5 a  182.0 ± 15.8 a 

  BRH  -  -  -  - 

  SRH  -  -  -  - 

  WT  -  -  393.5 ± 51.7 a  216.3 ± 41.0 a 

  Sassy  -  -  374.0 ± 57.4 a  213.9 ± 18.6 a 

 Clay loam NRH  -  -  173.2 ± 22.2 a  95.5 ± 36.0 a 

  BRH  -  -  -  - 
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  SRH  -  -  -  - 

  WT  -  -  277.0 ± 21.8 a  152.5 ± 40.1 a 

  Sassy  -  -  256.2 ± 27.5 a  157.3 ±31.5 a 

49 (2018) Sandy loam NRH  -  -  439.2 ± 51.0 a  509.4 ± 56.6 a 

  BRH  -  -  716.8 ± 40.9 a  919.4 ± 169.3 ab 

  SRH  -  -  428.0 ± 43.7 a  972.1 ± 125.4 ab 

  WT  -  -  567.6 ± 46.3 a  802.3 ± 88.3 ab 

  Sassy  -  -  665.6 ± 58.6 a  1210.9 ± 31.1 b 

 Clay loam NRH  -  -  265.6 ± 23.2 ab  308.4 ± 43.2 a 

  BRH  -  -  185.8 ± 17.0 a  560.0 ± 171.0 ab 

  SRH  -  -  266.5 ± 18.3 ab  706.6 ± 226.2 ab 

  WT  -  -  307.9 ± 24.5 ab  791.5 ± 79.9 b 

  Sassy  -  -  418.0 ± 35.7 b  826.3 ± 82.8 b 

56 (2017) and 61 (2018) Sandy loam NRH  280.3 ± 106.9 a  111.5 ± 18.0 a  398.4 ± 50.3 a  1857.1 ± 779.6 a 

  BRH  263.4 ± 73.1 a  182.8 ± 25.1 ab  -  - 

  SRH  175.8 ± 66.4 a  176.0 ± 36.4 ab  -  - 

  WT  95.6 ± 19.8 a  252.5 ± 25.2 b  663.6 ± 99.0 a  1579.6 ± 300.1 a 

  Sassy  99.1 ± 21.3 a  287.8 ± 48.5 b  735.8 ± 103.8 a  2088.3 ± 267.1 a 

 Clay loam NRH  58.7 ± 2.1 a  123.0 ± 15.9 a  269.4 ± 33.8 a  1223.9 ± 122.6 a 

  BRH  116.2 ± 22.9 a  111.8 ± 12.8 a  -  - 

  SRH  47.7 ± 7.6 a  150.8 ± 27.8 a  -  - 

  WT  128.9 ± 5.9 a  127.3 ± 9.6 a  396.0 ± 34.4 ab  1761.3 ± 76.7 a 

  Sassy  103.9 ± 17.7 a  178.8 ± 67.7 a  514.2 ± 23.8 b  1863.6 ± 204.3 a 

REML   
 

F P 
 

F P 
 

F P 
 

F P 

Genotype   0.32 0.862 3.42 0.022 7.22 < 0.001 4.33 0.003 

Soil texture    4.44 0.045  8.98 0.006  59.48 < 0.001  6.97 0.010 

Time    6.84 0.014  - -  64.61 < 0.001  189.96 < 0.001 

Genotype × Soil texture    0.60 0.663  1.44 0.249  1.45 0.225  0.99 0.416 

Genotype × Time    0.70 0.598  - -  1.43 0.187  1.75 0.09 

Soil texture × Time    1.70 0.202  - -  5.67 0.001  1.26 0.291 

Genotype × Soil texture × Time    1.11 0.370  - -  0.69 0.701  0.75 0.644 
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Table 2. Pre-dawn and minimum leaf water potential, leaf abscisic acid concentration (ABA), chlorophyll concentration (CHL) and Fv/Fm of the 

barley wildtype (WT; cv Optic) and its hairless mutant (NRH) as well as a separate cv Sassy, grown in the field in 2018 at two locations with 

different soil textures: sandy loam and clay loam. Samples were taken 48, 62 and 85 days from sowing. Data are the mean of 16 replicates, with 

differences between genotypes, soil textures and time of sampling established using REML for repeated measurements from which the F and P-

value data are derived. Significant parameters (P ≤ 0.05) are in bold. Identical letters indicate no significant differences between genotypes as 

tested using one-way ANOVA followed by a post-hoc Tukey’s test. 

Days from sowing Soil Genotype  
Pre-dawn water 

potential (MPa) 
 

Minimum water 

potential (MPa) 
 ABA (ng g-1 DW)  CHL (µmol m-2)  Fv/Fm 

48 Sandy loam NRH  -0.52 ± 0.03   -1.05 ± 0.09   193.21 ± 30.00   371.79 ± 3.76 ab  0.80 ± 0.00 a  

  WT  -0.40 ± 0.05   -1.03 ± 0.08   193.84 ± 19.31  408.60 ± 15.61 a  0.81 ± 0.00 b 

  Sassy  -0.54 ± 0.11   -1.20 ± 0.17   192.51 ± 19.54   358.96 ± 11.64 b  0.80 ± 0.00 a 

 Clay loam NRH  -0.66 ± 0.05   -1.16 ± 0.07   161.46 ± 29.07   406.16 ± 10.99 a  0.76 ± 0.01  

  WT  -0.60 ± 0.02   -1.09 ± 0.01   158.43 ± 21.78   450.91 ± 21.52 a  0.69 ± 0.03 

  Sassy  -0.49 ± 0.09   -1.13 ± 0.04   119.11 ± 14.68   403.94 ± 12.90 a  0.74 ± 0.01  

62 Sandy loam NRH  -0.45 ± 0.09   -1.40 ± 0.07   163.56 ± 19.31   428.21 ± 32.93 ab  0.64 ± 0.05  

  WT  -0.31 ± 0.02   -1.32 ± 0.08   117.70 ± 20.69   481.27 ± 19.48 a  0.66 ± 0.04 

  Sassy  -0.29 ± 0.07   -1.40 ± 0.06   248.74 ± 58.77   398.53 ± 26.76 b  0.68 ± 0.06  

 Clay loam NRH  -0.41 ± 0.11    -1.50 ± 0.09   176.25 ± 31.28   524.88 ± 21.41 a  0.66 ± 0.02 

  WT  -0.26 ± 0.06    -1.47 ± 0.05   144.47 ± 16.31   557.25 ± 27.92 a  0.65 ± 0.06  

  Sassy  -0.27 ± 0.01   -1.39 ± 0.12   199.44 ± 39.65   519.43 ± 13.05 a  0.64 ± 0.04  

85 Sandy loam NRH  -1.53 ± 0.04   -2.13 ± 0.08   958.84 ± 173.13   390.32 ± 12.54 a  0.78 ± 0.01  

  WT  -1.64 ± 0.10   -1.92 ± 0.15   569.97 ± 85.47   403.53 ± 20.16 a  0.76 ± 0.01 

  Sassy  -1.65 ± 0.05   -1.99 ± 0.19   822.59 ± 114.03   409.49 ± 28.76 a  0.75 ± 0.00  

 Clay loam NRH  -0.91 ± 0.17   -1.76 ± 0.09 a  393.82 ± 41.55 a  505.94 ± 62.52 ab  0.68 ± 0.04  

  WT  -0.77 ± 0.12   -1.43 ± 0.11 b  250.40 ± 39.92 b  611.89 ± 37.18 a  0.76 ± 0.02  

  Sassy  -0.88 ± 0.03   -1.51 ± 0.08 ab   333.13 ± 44.00 ab  450.79 ± 18.51 b  0.70 ± 0.04  

REML   
 

F  P 
 

F P 
 

F P 
 

F P 
 

F P 

Genotype   1.22 0.068 2.21 0.029 2.09 0.152 10.60 < 0.001 0.02 0.981 
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Soil texture    26.59 < 0.001  5.65 0.003  20.68 < 0.001  56.63 < 0.001  13.72 < 0.001 

Time    311.83 < 0.001  70.04 < 0.001  80.19 < 0.001  17.33 < 0.001  17.56 < 0.001 

Genotype × Soil texture    0.49 0.299  0.71 0.192  0.73 0.493  1.03 0.281  0.09 0.918 

Genotype × Time    1.21 0.170  1.19 0.096  2.57 0.044  0.18 0.892  0.55 0.527 

Soil texture × Time    73.86 < 0.001  12.78 < 0.001  8.27 < 0.001  3.91 0.003  1.65 0.101 

Genotype × Soil texture × 

Time 
   1.50 0.070  0.14 0.959  0.85 0.545  2.36 0.007  1.17 0.174 
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Fig. 1. Daily precipitation (white columns) and minimum (white circles) and maximum 

(black circles) daily temperatures recorded at the experimental sites between March 11
th

 and 

September 17
th

 in 2017 and 2018. Dotted lines indicate sowing (March 24
th

 in 2017 and April 

25
th

 in 2018) and harvesting (August 19
th

 in 2017 and September 13
th

 in 2018) times for both 

years. Also reported are the samplings for both years: 2017 – A (Julian days 107-113: plant 

traits), B (Julian days 142-148: plant traits; leaf P concentration); 2018 – A (Julian days 127-

133: soil P concentration), B (Julian days 134-140: plant traits; soil water content), C (Julian 

days 148-154: plant traits; soil P concentration; soil water content), D (Julian days 162-168: 

plant traits; soil P concentration; soil water content; plant water status; leaf P concentration), 

E (Julian days 176-182: plant traits; soil P concentration; soil water content; plant water 

status), F (Julian days 197-203: soil P concentration; soil water content; plant water status).  

 

Fig. 2. Variation in average root hair length (mm) of contrasting root hair genotypes grown in 

the field in sandy loam and clay loam soils for two subsequent years: 2017 (A, B) and 2018 

(C-F). Two sampling campaigns were done in 2017: 24 and 56 days from sowing; four 

sampling campaigns were done in 2018: 19, 33, 49 and 61 days from sowing. Data are the 

mean of four (2017) and eight replicates (2018), with error bars representing the s.e. 

Differences between genotypes and soil textures were established using two-way ANOVA, 

P-values are reported and significant (P ≤ 0.05) parameters are in bold, with ‘G’ representing 

genotype, ‘S’ representing soil texture, and ‘G × S’ representing the interaction of genotype 

and soil texture. Identical letters indicate no significant differences as tested using one-way 

ANOVA followed by a post-hoc Tukey’s test. NRH represents the no root hair genotype; 

BRH, the bud root hair genotype; SRH, the short root hair genotype; and WT, the wildtype 

all in the cv Optic background and cv Sassy.   

 

Fig. 3. Frequency distribution of the root hair density of contrasting root hair genotypes 

grown in the field in sandy loam and clay loam soils for two subsequent years: 2017 (A-D) 

and 2018 (E-L). Samples were classified into five categories based on the approximate 

number of root hairs per millimetre: 1. Bald: 0-7 root hairs per mm; 2. Sparse: 7-15 root hairs 

per mm; 3. Moderate: 15-35 root hairs per mm; 4. Thick: 35-50 root hairs per mm; 5. Dense:  

50+ root hairs per mm. Two sampling campaigns were done in 2017: 24 and 56 days from 

sowing; four sampling campaigns were done in 2018: 19, 33, 49 and 61 days from sowing. 

Identical letters indicate no significant differences as tested using one-way ANOVA followed 

by a post-hoc Tukey’s test. NRH represents the no root hair genotype; BRH, the bud root hair 
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genotype; SRH, the short root hair genotype; and WT, the wildtype all in the cv Optic 

background and cv Sassy.   

 

Fig. 4. Variation in average rhizosheath weight (g) of contrasting root hair genotypes grown 

in the field in sandy loam and clay loam soils for two subsequent years: 2017 (A, B) and 

2018 (C-F). Two sampling campaigns were done in 2017: 24 and 56 days from sowing; four 

sampling campaigns were done in 2018: 19, 33, 49 and 61 days from sowing. Data are the 

mean of four (2017) and eight replicates (2018), with error bars representing the s.e. 

Differences between genotypes and soil textures were established using two-way ANOVA, 

P-values are reported and significant (P ≤ 0.05) parameters are in bold, with ‘G’ representing 

genotype, ‘S’ representing soil texture, and ‘G × S’ representing the interaction of genotype 

and soil texture. Identical letters indicate no significant differences as tested using one-way 

ANOVA followed by a post-hoc Tukey’s test. NRH represents the no root hair genotype; 

BRH, the bud root hair genotype; SRH, the short root hair genotype; and WT, the wildtype 

all in the cv Optic background and cv Sassy. 

 

Fig. 5.  Relationship between average root hair length (mm) and specific rhizosheath weight 

(mg cm
-1

 root) for contrasting root hair genotypes grown in the field in sandy loam and clay 

loam soils for two subsequent years: 2017 (A-D) and 2018 (E-H). Two sampling campaigns 

were done in 2017 (24 and 56 days from sowing) and 2018 (19 and 49 days from sowing).  

Coefficient of determination R
2
 and corresponding P-values are reported upon fitting with 

equation y = y0 + a*x.  

 

Fig. 6. Soil water content measured in the field at five time points (19, 37, 49, 62 and 84 days 

from sowing) in 2018. Measurements are for sandy loam (A-E) and clay loam (F-J) soils and 

in each experimental plot of the barley wildtype (WT; cv Optic) and its hairless mutant 

(NRH) as well as a separate cv Sassy. 

 

Fig. 7. Soil water potential at 20 and 50 cm depth measured from May 22
nd

 to August 8
th

 in 

2018. Measurements are for sandy loam (A) and clay loam (B) soils and experimental plots 

planted with the barley wildtype (WT; cv Optic) and its hairless mutant (NRH). Data are the 

mean of four replicates, with error bars representing the s.e. The dotted area represents the 

tensiometers limit (< -70 kPa). Also presented is the daily precipitation (white columns) 

recorded at the experimental sites between May 15
th

 and August 13
th

 in 2017 and 2018. 
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Fig. 8. Soil phosphorus content measured in the field at five time points (15, 34, 50, 61 and 

82 days from sowing) in 2018. Measurements are for sandy loam (A-E) and clay loam (F-J) 

soils and experimental plots planted with the barley wildtype (WT; cv Optic) and its hairless 

mutant (NRH) as well as a separate cv Sassy. Data are the mean of four replicates, with error 

bars representing the s.e. 

 

Fig. 9. Variation in shoot P concentration (mg P g
-1

; A, B) and shoot P accumulation (mg P 

shoot
-1

; C, D) of contrasting root hair genotypes grown in the field in sandy loam and clay 

loam soils for two subsequent years: 2017 and 2018. Data are the mean of four (2017) and 

eight replicates (2018), with error bars representing the s.e. Differences between genotypes 

and soil textures were established using two-way ANOVA, P-values are reported and 

significant (P ≤ 0.05) parameters are in bold, with ‘G’ representing genotype, ‘S’ 

representing soil texture, and ‘G × S’ representing the interaction of genotype and soil 

texture. Identical letters indicate no significant differences as tested using one-way ANOVA 

followed by a post-hoc Tukey’s test. NRH represents the no root hair genotype and WT the 

wildtype (cv Optic), along a separate cv Sassy. 

 

Fig. 10. Variation in yield (t ha
-1

), calculated from grain weight, of contrasting root hair 

genotypes grown in the field in sandy loam and clay loam soils for two subsequent years: 

2017 (A) and 2018 (B). Data are the mean of four replicates, with error bars representing the 

s.e. Differences between genotypes and soil textures were established using two-way 

ANOVA, P-values are reported and significant (P ≤ 0.05) parameters are in bold, with ‘G’ 

representing genotype, ‘S’ representing soil texture, and ‘G × S’ representing the interaction 

of genotype and soil texture. Identical letters indicate no significant differences as tested 

using one-way ANOVA followed by a post-hoc Tukey’s test. Cross comparisons between 

experimental years were established using two-way ANOVA, P-values are reported in the 

box with significant (P ≤ 0.05) parameters in bold. NRH represents the no root hair genotype; 

BRH, the bud root hair genotype; SRH, the short root hair genotype; and WT, the wildtype 

all in the cv Optic background and cv Sassy.   
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