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Abstract

Timely identification of critical nodes is crucial for assessing network vulnerability

and survivability. This thesis presents two new approaches for the identification of

critical nodes in a network with the first being an intuition based approach and the

second being build on a mathematical framework. The first approach which is referred

to as the Combined Banzhaf & Diversity Index (CBDI) uses a newly devised diversity

metric, that uses the variability of a node’s attributes relative to its neighbours and

the Banzhaf power index which characterizes the degree of participation of a node

in forming the shortest path route. The Banzhaf power index is inspired from the

theory of voting games in game theory whereas, the diversity index is inspired from the

analysis and understanding of the influence of the average path length of a network on

its performance. This thesis also presents a new approach for evaluating this average

path length metric of a network with reduced computational complexity and proposes

a new mechanism for reducing the average path length of a network for relatively

larger network structures. The proposed average path length reduction mechanism

is tested for a wireless sensor network and the results compared for multiple existing

approaches. It has been observed using simulations that, the proposed average path
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length reduction mechanism outperforms existing approaches by reducing the average

path length to a greater extent and with a simpler hardware requirement.

The second approach proposed in this thesis for the identification of critical nodes

is build on a mathematical framework and it is based on suboptimal solutions of two

optimization problems, namely the algebraic connectivity minimization problem and a

min-max network utility problem. The former attempts to address the topological as-

pect of node criticality whereas, the latter attempts to address its connection-oriented

nature. The suboptimal solution of the algebraic connectivity minimization problem

is obtained through spectral partitioning considerations. This approach leads to a

distributed solution which is computationally less expensive than other approaches

that exist in the literature and is near optimal, in the sense that it is shown through

simulations to approximate a lower bound which is obtained analytically. Despite

the generality of the proposed approaches, this thesis evaluates their performance on

a wireless ad hoc network and demonstrates through extensive simulations that the

proposed solutions are able to choose more critical nodes relative to other approaches,

as it is observed that when these nodes are removed they lead to the highest degrada-

tion in network performance in terms of the achieved network throughput, the average

network delay, the average network jitter and the number of dropped packets.
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Chapter 1

Introduction

The importance of Graph theory was first recognized by Euler in 1736. He used it to

identify a suitable path with which a single person could pass through seven bridges

in the city of Königsberg exactly once and return to the starting point [31]. Euler

not only proved that such a path does exist, but also gave a general solution that

could be applied to any arbitrarily arranged landmass and bridge structure. He also

identified that the physical distance and the geographical locations of the bridges were

not important for identifying the correct solution and what matters is the geometric

position of the bridges.

A graph is a mathematical representation of a network which comprises of inter-

connected components known as nodes with the links between these nodes known

as edges. A graph can be represented in a number of different ways: an undirected

graph depicts no directional information to the connections whereas, a directed graph

denotes the direction of flow of information through the links. Moreover, in binary

1



CHAPTER 1. INTRODUCTION 2

graphs, the presence of an edge is denoted by a one and the absence of an edge is

denoted by a zero, whereas, in a weighted graph the interconnection strength is quan-

tified as weights of the links. Furthermore, the density of connections can range from

fully connected graphs which are also referred to as completely connected graphs to

very sparse graphs.

A graph can easily depict an abstraction of the reality and this is why graph

theory methods have been widely used for understanding a wide range of systems.

In a graph theoretic representation, network components are represented in terms of

nodes and edges that connect these nodes. In a transport geography most network

have an obvious spatial foundation, namely the road and rail networks, which tend

to be defined more by their links than by their nodes. This is not necessarily the

case for all transportation networks. For instance, maritime and air networks tend

to be more defined by their nodes than by their links since links are often not clearly

defined. A telecommunication system can also be represented as a network, while

its spatial expression can have limited importance and would actually be difficult

to represent. Mobile telephone networks or the internet, possibly the most complex

graphs to be considered, are relevant cases of networks having a structure that can

be difficult to symbolize. However, cellular phones and antennas can be represented

as nodes while the links could be individual phone calls. Servers, the core of the

internet, can also be represented as nodes within a graph while the physical infras-

tructure between them, namely fiber optic cables, can act as links. Consequently, all

transport/communication networks can be represented by graph theory in one way
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or the other.

Every graph differs from the other based on the attributes of its individual nodes

and edges, where attributes of a node comprise of the nodes location and the attributes

of an edge incorporating its length and capacity. These individual components of a

network influence their individuality upon the other thus enabling researchers to

analyse carefully the characteristics of a network by only monitoring one set of com-

ponents, either nodes or edges. The interconnectivity of these individual components

defines the structure of a network and in the past a lot of research has been done

in identifying prominent/vital network structures [21][27][91]. In a multihop Wire-

less Sensor Network (WSN), nodes are connected using various edges, each having a

smaller length, compared to a conventional WSN, for the reduction in transmission

energy consumption for the network. Nodes in a network are evaluated based on

both their geographical location and the combined influence of all the edges that are

connected to that node. The geographical location of a node helps approximate the

traffic flow rate through nodes as it is established that a nodes close to the center

of the network will experience a higher traffic flow compared to nodes close to the

end of a network. The later, on the other hand has its own importance, such as, a

node with a higher number of edges is neighbours to a larger number of nodes in the

network and therefore, it is critical for ensuring connectivity of the network. More

elaboration of this phenomenon is explained later in this thesis.

The combined affect of both the aforementioned attributes defines the importance

of a nodes in a network. Due to these attributes, there are a few nodes in a network
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which when removed result in disconnecting a chunk of the network and thus affect

the performance of a network. These nodes are referred to as the articulation points.

Figure 1.1: Difference in articulation points and critical node.

In the sample network of Fig 1.1, we represent the articulation points in grey color.

It is clear from the figure that, removal of these articulation points will render the

network disconnected, where we use the term disconnected for a network in which

every node is not accessible by every other node in the network. A few of these

articulation points have shown to report a higher reduction in the performance of the

network and these points which are coloured in black are referred to as the critical

nodes of a network.

The identification of these critical nodes is vital for assessing the vulnerability of a

network and this is the main motivation behind this thesis. The next section explains
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in detail the motivation.

1.1 Motivation

Evaluation of node criticality is significant in various complex networks. A few nodes

in the network which are referred to as the critical nodes have been shown in literature

to have a higher impact on the performance of a network [4][11][52]. This initiates

the need for timely identification of these critical nodes for the purpose of timely rec-

tifications and avoidance of any unexpected/unwanted network performance changes.

The importance of critical node identification was reignited when a Georgian

woman in march 2011 disconnected 90% of Armenia from the access to the inter-

net by accidentally sabotaging an optical fiber that was passing by her house [11].

She was scavenging for copper to sell as scrap when she came across this cable. Co-

incidently she had cut the only fiber cable that was connecting 3.2million Armenian

people, thus depriving them from the access to the internet for continuous 5 hours.

This highlighted the fact that despite the looks of the internet as depicted in Fig 1.2

the removal of a single critical node can have a high affect on the performance of the

network.

The influence of critical nodes is not only limited to the internet, but it is also

reflected in other fields such as a Peer to Peer Gnutella Network which reported a

major network fragmentation after a removal of 4% of the most critical nodes of a

network [52] and the North American power grid network which reported a 60% loss

of network connectivity upon the removal of only 4% of the nodes in the network [4].



CHAPTER 1. INTRODUCTION 6

Figure 1.2: Partial map of the Internet based on the date found on January 15, 2005
[72].

Similarly, in transportation networks [66], the need to identify critical node has

increased with the ever increasing population which provokes the need for having

a better and reliable network. These transportation networks, are prone both to

the predictable human intervention and the unpredictable natural disasters such as

hurricanes, floods and earthquakes. The more predictable human interventions can

cause network blockages due to two broadly defined reason, either a regular network

edge between two critical points is observing blockage due to limited link capacity

or the transportation network observes occasional network blockages near a couple

of famous touristic spots (critical nodes) in the network. In the former scenario, an

efficient critical node detection algorithm will help in identifying such a critical link

and thus to avoid the blockage, an alternate re-route can be designed that avoids
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the identified link. In the later scenario, the need of an extra special edge across

all the critical nodes of the network can be avoided by efficiently re-routing traffic

through edges that are not commonly used by various critical nodes of the network,

thus avoiding network blockage. On the other hand, despite the unpredictable nature

of the natural disasters, proactive measures can help in improving the pace of the

rescue and recovery processes [23]. The proactive identification of critical nodes such

as schools and hospitals can aid the rescuers to act quickly by using shortest and the

most affective paths and similarly for the reconstruction of an area that has been hit

by a natural disaster such as a hurricane, the identification of critical nodes will aid

the authorities in deciding as to which roads should be built first.

Likewise, in Telecommunication networks [7], the need to identify these critical

nodes has never been more important then now. These days, with the introduction of

smart phone for the purpose of increasing connectivity between people and for making

life easier, we have also increased the risk of sabotaging our privacy by creating nodes

(such as cellphones and tablets) that have all our vital information. A single bug

that reaches our smart device can extract vital information such as our credit card

details, our home address, can have access to our email and the list goes on. These

viruses/bugs travel through our telecommunication network and thus to prevent the

spread of such bugs, it is essential to timely identify the critical nodes and suppress

their communication and thus avoid spreading these viruses and also maintain normal

functionality for the rest of the customers [51]. Similarly, in biological networks [15],

the detection of critical nodes can aid in neutralizing potentially harmful organisms
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such as bacteria and viruses. The interaction of protein with other proteins in a

network can be represented in terms of graph theory and it is generally referred to as

the protein-protein interaction network. These structures provide vital information

for understanding biological structures and thus are widely used for designing drugs

[29]. In particular, drugs are designed to affect the minimum cardinality set of proteins

(the critical node set of a graph) whose removal will destroy the primal interaction

and thus help neutralize the potentially harmful organism. The next section, explains

in detail the problem statement of this thesis.

1.2 Problem Definition

Wireless Sensor Networks (WSN)s generally comprise of a large number of intelligent

low cost and power constrained devices. These devices relay data between interme-

diate neighbouring nodes for ensuring data delivery at the destination node. Among

these networks, the energy cost of communication is one of the major factors influ-

encing the network energy depletion rate [3]. This rate is directly proportional to

the number of intermediate nodes that are participating in relaying the transmitted

data, thus in order to reduce the energy depletion rate of the network, reduction in

participation of the intermediate nodes is required which should not affect the fault

tolerance and reliability mechanism of the WSN. To address this power constraint

problem various approaches exist in literature which are broadly referred to as the

Connected Dominating Set (CDS) based schemes [108][104][103][73][75][76][74]. The

idea behind these schemes is to identify a minimum set of nodes which when con-
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nected to each other form the backbone for the complete network. Despite the fact

that this is known to be a well suited technique for reducing the energy depletion rate

of a network, this also increases the number of articulation points in a network, thus

initiating the need for timely identification of critical nodes. As highlighted earlier,

the identification of critical nodes is essential for accessing network vulnerability and

for this various aforementioned approaches exist in literature.

Some of the existing algorithms are based on intuition, whereas others are based

on mathematical abstractions of networks of arbitrary topology and are thus char-

acterized by properties which can be verified analytically prior to implementation.

Most of these approaches either identify critical nodes based on the affect of a node

on the traffic flow pattern of the network or they use the topological structure of the

network to identify these critical nodes. To the best of our knowledge, no such algo-

rithm exists in literature that identifies critical nodes based on both the topological

structure and the traffic flow pattern of the network. To address this problem, this

thesis proposes two metrics, the first is based on intuition and it uses a newly defined

node diversity metric which incorporates the weighted node degree and the variation

in link length capability of a node to address the topological properties of a network.

The weighted node degree metric is a slight variant of the well know degree centrality

metric [35], the major difference lies in the evaluation of the degree of a node based on

the number of new nodes that are introduced by a particular node if it is accessible in

the network. The variation in link length metric originates from [10] which evaluates

the affect of Average Path Length (APL) of a network. The variation in link length
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metric evaluates the diversity of a network by using the difference in path length that

a node is maintaining, the intuition behind this approach is that a node that connects

multiple nodes at varying distances is highly likely acting as a bridge node among

various nodes in the network thus, it is probable that by removing that node the net-

work will report a higher degradation in performance. The traffic flow pattern on the

other side is incorporated in this critical node evaluation metric with the use of the

Banzhaf power index, it is a slight variant of the well known betweenness centrality

metric [35] and was previously used for weighted voting games.

The second metric is based on pure mathematical abstraction where we formulate

the critical node identification problem in the form of an optimization problem where

the objective is to identify a node that when removed has the highest impact on

both, the algebraic connectivity of the network and the maximum traffic flow of the

complete network. Here, the first part of the optimization problem deals with the

topological properties of the network and the second part deals with the traffic flow

of the network, thus addressing both sides of the problem. More detail on both these

metrics are explained in Chapter 5 and 6 respectively.

1.3 Research Objectives

The objective of this research is to develop a new model that can correctly identify

critical nodes in a network. The identified node, upon its removal, should:

• Increase the average path length of the network, thus increasing the time taken

for nodes to communicate with each other.
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• Reduce the Algebraic connectivity of the network, which means that the net-

work is loosely connected and the removal of a few nodes will result in network

partitioning. These few nodes that are holding the network together are the

ones that will create bottleneck for the complete network.

• Increase network congestion and probability of collision thus reducing the net-

work throughput and increasing per packet delay of the network.

Furthermore, the objectives include:

• The design of a distributed algorithm that can correctly identify the most critical

node of a network without the need of a centralized monitoring body. This will

aid in implementing this algorithm in complex networks such as, Wireless Sensor

Network (WSN), Road networks, Communication networks and various other

large sized complex network for the assessment of network vulnerability.

• The distributed critical node identification algorithm should be computationally

less complex, thus increasing the possibility of its implementation in computa-

tionally complex networks.

1.4 Research Method

In order to identify the most critical node in a network, it is essential to identify the

right metric that can comprehend the cumulative influence of most of the individual

attributes of a node in a network. This thesis uses the node attributes in a network

to evaluate various metrics. This selection is based on the consideration that the edge
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attributes are reflected in the node attributes of the nodes that are connected through

that edge. A well known metric that reflects the node attributes of a network is known

as the Average Path Length metric. The Average Path Length metric reflects the

average time it takes a message to move from one node to any other node in the

network. This thesis first emphasises on the existing approaches for estimating the

Average Path Length of a network as it is known to be one of the major influencing

factor for node criticality and then proposes a new approach that reduces the time

complexity of calculating the Average Path Length (APL) of complex networks.

Later, this thesis highlights the affects of changing the Average Path Length of

a network and propose a new methodology for its reduction. The new methodology

uses a Variable Rate Adaptive Modulation (VRAM) scheme on top of a Neighbour

Avoiding Walk (NAW) mechanism for reducing the Average Path Length using the

same transmission power. This helps in building an intuition based metric for the

identification of critical nodes in a network. The intuition based critical node iden-

tification metric is referred to as the Combined Banzhaf & Diversity Index (CBDI).

The Diversity index in CBDI originates from the Neighbour avoiding walk mechanism

discussed in the APL reduction mechanism and the Banzhaf Power index in CBDI is

a variant of the well known betweenness centrality metric. The CBDI mechanism is

tested using simulations and it has shown to perform well in identifying critical nodes

in a network.

The intuition based CBDI metric lacks in providing mathematical ground about

the way that it works and for this a new critical node identification metric is proposed
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that is the resultant of the suboptimal solutions of two optimization problems. The

critical node identification metric originating from these suboptimal solutions is tested

through simulations and analysis. These suboptimal solutions have shown to perform

well in identifying the most critical node in the network and they are used to formulate

a critical node identification algorithm which is also among the contributions of this

thesis.

1.5 Contribution

In this thesis, a new mathematical model is presented that evaluates the Average

Path Length of a tree structured network. This is an advancement upon the existing

approaches that require tedious computation of all the possible paths in a network

for the approximation of the average path length of a network. This contribution is

also accompanied by a new approach for the reduction of the average path length of a

network which can be used in various network scenarios for the introduction of small

world network phenomenon into comparatively large networks.

The contribution of this thesis also incorporates the introduction of a network

distributed critical node identification metric which is the outcome of the suboptimal

solutions of two well known optimization problems. This thesis also presents a mathe-

matical formulation that identifies the algebraic connectivity of the resultant network

after critical nodes are removed from the network. Along with this, a deviation of the

degree centrality metric is also proposed which is referred to as the weighted degree

centrality metric and is shown through analysis and simulation that it is a better
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metric than the conventionally used degree centrality metric.

1.6 Thesis Structure

Chapter 1: Introduction This chapter provides information on the context of

the research in hand along with the focus of the research work. It also highlights the

aims and objectives of the research work.

Chapter 2: Related Work This chapter explains in detail the existing work

that relates to the work in this thesis and highlights the deficiencies of the existing

work that had initiated the need for this work.

Chapter 3: Average Path Length Calculation For Complex Tree Struc-

tures This chapter describes the conventional approaches used for calculating the

APL of a complex topology and then proposes a simpler approach, that reduces the

computational complexity of calculating the APL of a complex structure.

Chapter 4: Average Path Length and Network Performance This chapter

highlights the affects of changing the APL of a network and in it we propose a new

mechanism for reducing the APL.

Chapter 5: Intuition Based Critical Node Identification Approach This

chapter elaborates on the importance of critical node detection and propose a new

intuition based metric for identifying the most critical node in the network.

Chapter 6: Optimization Based Spectral Partitioning for Node Crit-

icality Assessment This chapter discusses the use of optimization theory for the

identification of critical nodes in a network and with the aid of this theory we propose
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a new algorithm that can identify critical nodes in any arbitrary network.

Chapter 7: Conclusion and Future Work This chapter concludes this thesis

and presents the future direction of work of this domain.



Chapter 2

Related Work

2.1 Introduction

A number of approaches have been proposed in literature for the identification of these

critical nodes in a network. These approaches can be broadly categorized into two

categories namely the connection based approach and the topology based approach,

where the former uses the information flow pattern of the network to identify the most

critical node and the later uses the topological structure of the network to identify

the most critical node in the network.

2.2 Connection based schemes

The connection based approaches identify the criticality of a node based on the in-

formation flow pattern of a network. The information flow pattern in a network

highlights the data flow rate through each individual node and also enables in identi-

16
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fying the node that can be the cause of a potential bottleneck in the network. Both

of these parameters play a key role in identifying node criticality and a number of

approaches exist in literature that use the information flow pattern of a network to

identify the criticality of a node. This section highlights a few well known approaches

that are later referred to as the connection based approaches in this thesis.

2.2.1 Average Path Length metric

The average path length metric is among the very widely used metrics and it is also

referred to as the characteristic path length metric of a network [45]. This metric

uses the sum of the shortest path of every node to every other node in the network

for the identification of the most critical node in the network. In a graph G = (V,E),

where V is the set of vertices and E is the set of edges, the characteristic path length

is defined by:

l ≡ d(v, w) ≡ 1

N(N − 1)

∑
v∈V

∑
w 6=v∈V

d(v, w) (2.1)

where, d(v, w) is the geodesic distance between v and w with v, w ∈ V , i.e., the

cumulative distance of all the edges that lie in the shortest path between the two

nodes and the factor 1/N(N −1) is the one over the total number of pairs of vertices.

In such a network, a larger value of l represents a relatively larger time for the message

to be disseminated inside a network whereas, a smaller value of l denotes a tightly

bonded network where nodes are placed close to each other. The average path length

metric identifies such a node as the most critical node which has the highest influence
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on the average path length of the complete network. It is easily relateable that the

node with the shortest path length to every other node in the network, will have

the highest influence on average path length of the network where, the average is

computed using eq 2.1.

Figure 2.1: Weighted sample network for accessing shortest path length metric.

The sample network in Fig 2.1 shows an undirected weighted network of six nodes

where, the weights represent the length of an edge. The shortest path length metric

calculates the distance of every node to every other node in the network and then the

node that has the shortest path length among the whole network is referred to as the

most critical node in the network. The shortest path lengths for the sample network

are shown in the symmetric matrix of table 2.1.

It is clear from the table that node B has a shortest distance of 14 units from all

the nodes in the network, thus it is assumed to be in the center of the network and

the most accessible node in the network. Removing such a node will thus increase

the average path length of the network and this makes it the most critical node in
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Table 2.1: Path length matrix for Fig 2.1
A B C D E F

A - 4 2 7 5 6

B 4 - 1 4 2 3

C 2 1 - 5 3 4

D 7 4 5 - 6 7

E 5 2 3 6 - 1

F 6 3 4 7 1 -

the network according to this average path length metric.

2.2.2 Closeness Centrality metric

Another well known approach that has been in consideration for a long time is the

closeness centrality metric [35]. This metric identifies the criticality of a node by

analysing the total distance of one node with all the nodes in the network and thus a

node that has the lowest total distance and therefore is closer to all the nodes in the

network is thus considered as critical in the network. The phenomenon behind the use

of this metric is that a node closer to all the other nodes in the network will eventually

have the highest network traffic flow through it, as it can reach maximum nodes in

the network with the shortest distance. In order to calculate the closeness centrality

of a node, researchers use the reciprocal of the total distance from a particular node

to all other nodes in a network [12]:

CC(v) =
1∑

u∈V d(v, u)
(2.2)

Unlike the average shortest path metric which is defined as the average distance

of the whole network, the closeness centrality metric is a node specific metric, it
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identifies how close each individual node is to the rest of the network nodes. Fig 2.2

shows a sample network of 34 nodes where the criticality of the node is represented

with both color and size of the node. A bright red node with the biggest size is

considered as the most critical node in the network. As expected from the definition

of the closeness centrality metric, the nodes close to the center of the network have a

higher closeness centrality among all the nodes in the network.

Figure 2.2: Sample network representing nodes with the highest closeness centrality
[1].

2.2.3 Betweenness Centrality metric

The betweenness centrality metric was originally proposed by Freeman in his seminal

paper [34] and since then it has been used by various researchers for identifying critical

nodes in a network [4][12][68]. This is also a shortest path enumeration based metric

and it identifies the most critical node based on the number of shortest paths that a

node participates in, a node that participates in the highest number of shortest paths
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will have the highest influence on the performance of the network upon its removal

and thus it is considered as the most critical node in the network. Let δuv(x) denote

the fraction of shortest paths between node u and v that pass through node x, then

[12]:

δuv(x) =
σuv(x)

σuv
(2.3)

The betweenness centrality of a vertex x is then defined as [12]:

BC(x) =
∑

u6=v 6=t∈V

δuv(x) (2.4)

Figure 2.3: Sample network representing nodes with the highest betweenness central-
ity [1].

The betweenness centrality of a node measures the control of a node on the overall

communication in a network, and it is therefore used to identify critical nodes in a

network. A higher centrality index indicates that a node lies on a large number of
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shortest path routes and thus by its removal the network will face a greater decrease in

the average network traffic flow rate. Fig 2.3 shows in red the nodes that participate

in maximum shortest path routes in a network of 34 nodes. The size of the node

reflects its importance in the network and therefore the node with the largest size

and the brightest red color is referred to as the most critical node in the network

based on the betweenness centrality metric.

2.2.4 Ego centrality metric

A slight variant of the betweenness centrality is the ego centrality metric [19][36].

The ego centrality metric was designed for a special class of graphs that are known as

the centred graphs [36], these graphs are in a star structure and thus restrict nodes

from either having a direct link with the neighbour or a path of 2 hops between

any two nodes in the network. The ego centrality metric takes benefit of this graph

structure and determines the criticality of a node based on the number of times a node

participates in forming this two hop path between any two nodes. This definition is in

line with the previously defined betweenness centrality metric but the major difference

lies in the network structure type. As the ego centrality metric was mainly defined

for the star network, thus the maximum length between two nodes of a graph cannot

exceed two hop counts [36].
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2.2.5 Network traffic flow metric

Nasiruzzaman et al. [67] on the other hand believe that it is not necessary that all

real life networks use the shortest path routes to relay traffic/messages. Instead they

propose a new metric which is build on the phenomenon that the traffic flow pattern is

a better estimation metric for the evaluation of critical nodes in a network. Therefore,

their proposed approach considers a node to be critical if it observes a higher traffic

flow through it. Let Fa be the net maximum power flowing through node a in the

network with source node s ∈ S and load node l ∈ L. Then Fa is defined as:

Fa =
∑
s∈S

∑
l∈L

F sl
a (2.5)

where s 6= l 6= a. Also let, Fn be the net maximum power flowing through the

network with the source node s ∈ S and load node l ∈ L, which is defined as:

Fn =
∑
s∈S

∑
l∈L

F sl
n (2.6)

The ratio of these two powers could be used to measure the importance of a node

and this ratio is called the flow betweenness. This flow betweenness is defined as:

CB(a) =
Fa
Fn

(2.7)

With this approach, a node that has a relatively higher flow betweenness in the

network is then considered as the most critical node in the network.
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Figure 2.4: Sample network representing nodes with the rank of each node in the
network [59].

2.2.6 The Rank matrix

Another approach that exists in literature is the rank matrix approach [59][55]. This

matrix uses the traffic that passes through a node to form a N×N matrix to evaluate

the most critical nodes in the network. Unlike previous approaches, this metric iden-

tifies a set of critical nodes whereas, the previously stated approaches can identify a

single most critical node in the network. In this approach, the minimum number of

nodes that report a full rank of N×N matrix of the network are reported as the most

critical nodes. Here the N×N matrix represents the traffic on the link between nodes

in the network. Fig 2.4 represents a network with multiple nodes where, the size of a

node represents the degree whereas, the color represents the criticality. Nodes in red

are the ones that have the highest influence on the rank of the network. As per the

rank matrix, the node that has the highest degree and has the most influence on the
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rank of the matrix is considered as the most critical node in the network, this means

that the larger red nodes are the most critical nodes in the network.

2.3 Topology based schemes

The topology of a network refers to the arrangement of nodes and their interconnec-

tion through edges. These topology based schemes have always been of keen interest

to researchers when it comes to network where there is no relative traffic flow such as,

social networks. To tackle this phenomenon of network structure and to understand

node criticality based on this structure, various approaches have been proposed in

the literature. This subsection highlights a few of these approaches that are highly

relevant to the work presented.

2.3.1 Degree Centrality metric

Among all the topology based approaches, the most widely used approach is the

degree centrality metric [12][35]. The degree centrality metric as obvious form the

name, uses the degree of a node to identify the most critical node of a network. The

node that reports the highest node degree is thus referred to as the most critical

node of the network. The key idea here is that, a node with a higher node degree is

neighbours to more nodes in the network and thus by removing that particular node

a higher number of non-neighbouring nodes will loose connection with each other.

Fig 5.3 shows a graph of 34 nodes with the size and color of a node representing the

criticality of a node in a network based on the degree centrality metric. It is evident



CHAPTER 2. RELATED WORK 26

from the definition of the degree centrality metric that the most critical node will lie

in the center of the network and that is also depicted in Fig 5.3.

Figure 2.5: Sample network representing nodes with the degree of each node in the
network [59].

2.3.2 Bonachich metric

Bonachich et al. in [16] improvised on the degree centrality by proposing a new power

measure and then connecting it with a modified degree centrality measure to obtain

a better centrality metric. Bonachich metric is build on the phenomenon that, the

neighbours of a node play a vital role in determining its importance in a network. A

node whose neighbours are connected to less neighbours makes the particular node

more powerful as it is likely that the node under consideration is the reason that its

neighbours are connected to multiple nodes in the network. Therefore, a node whose

neighbours are less connected makes that node more powerful as, by its removal the

neighbouring nodes will lose connectivity. On the other hand, if you are connected
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to more neighbouring nodes then this makes you more central and less powerful thus,

the identification of node criticality requires a trade off between node power and

centrality. Fig 2.6 shows a network of 34 nodes with the colors and size of the nodes

representing the criticality of a node. It is worth mentioning that the modifications

that Bonachich et al. proposed has identified a different node as compared to the one

that was pointed out by the degree centrality metric.

Figure 2.6: Sample network representing nodes with the highest bonachich centrality
[1].

2.3.3 Eigenvector Centrality metric

Another approach that exists in literature is the eigenvector centrality [17][107].

Eigenvector centrality is a measure of the influence of a node in a network. It assigns

relative scores to all the nodes in a network based on the concept that connections to

high scoring nodes contributes more to the score of a node when compared to equal

connections of low scoring nodes. For a given graph G = (V,E) the adjacency matrix
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A = (av,t) will have av,t = 1 if node v is linked to node t and zero otherwise. The

centrality score of node v is defined as:

xv =
1

λ

∑
t∈M(v)

xt (2.8)

where M(v) is a set of the neighbours of v and λ is a constant. With a small

rearrangement this can be rewritten in a vector notation as the eigenvector equation:

Ax = λx (2.9)

In general, there will be many different eigenvalues λ for which an eigenvector

solution exists but considering the additional requirement of all positive eigenvectors

only the highest eigenvalue reports the desired result.

Figure 2.7: Sample network representing nodes with the highest eigencentrality. [1].

Fig 2.7 reflects the most critical node in the network with aid of size and color. the
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brightest red coloured node with the biggest size is represented as the most critical

node in the network.

2.3.4 The HILPR metric

In the Hybrid Interactive Linear Programming Rounding (HILPR) algorithm [82]

Yilin et al. propose a different approach of defining node criticality based on the

pairwise connectivity of the resultant network after the node removal. They empha-

sise that the node pair whose removal leads to the most balanced disconnected com-

ponents and ensures the non-existence of giant components will result in the highest

degradation in the performance of the network and thus should be ranked as the most

critical node of the network. A similar approach is followed in the GREEDY Critical

Node Detection Problem approach (GREEDY-CNDP) [92] and the β − disruptor

approach [28], both of which propose an efficient algorithm to minimize pairwise con-

nectivity upon removal of k nodes from the network. Another approach that exists in

literature is the the algebraic connectivity metric [32][58][57], which is also the focus

of this work and is explained in detail in later chapters. The phenomenon here is

that the algebraic connectivity is known to be a well defined connectivity metric for

a network, therefore to identify a critical node, it is vital to identify the node that

reports the highest reduction in the algebraic connectivity of the network. The node

that reports the highest reduction in the algebraic connectivity of the network will

thus be identified as the most critical node of the network.
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Average Path Length Calculation

For Complex Tree Structures

WSNs generally comprise of a large number of intelligent low cost and power con-

strained devices. These devices relay data between intermediate neighbouring nodes

for ensuring the delivery of data at the destination node. Among these networks,

the energy cost of communication is one of the major factors influencing the network

energy depletion rate [3]. This rate is directly proportional to the number of inter-

mediate nodes that are participating in relaying the transmitted data, thus in order

to reduce the energy depletion rate of the network, reduction in participation of the

intermediate nodes is required which should not affect the fault tolerance and relia-

bility mechanism of the WNSs. One such known strategy is of forming a Connected

Dominating Set (CDS) based Topology Control (TC) scheme.

TC consists of two components: topology construction mechanism, which finds a

30
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set of backbone nodes to work on behalf of rest of the nodes while maintaining network

connectivity and coverage, and topology maintenance mechanism, which changes the

role of backbone nodes for uniform distribution of resources. Both these mechanisms

work in an iterative manner until the network is depleted, thus together they increase

the network life time when compared to a continuously running WSN without TC

mechanism [111]. In CDS based TC schemes, only the backbone nodes are responsible

for relaying messages over the network. The non-backbone nodes can thus turn off

their transceiver and hence save energy. The backbone or a CDS size is a critical

parameter, since it has been manipulated in many different ways. It has been seen

that most researchers reduce the size of backbone, which they argue provides better

reliability as the hop count gets reduced among backbone nodes. On the other hand,

the reduction in the size of the backbone causes only few nodes to work on behalf of

rest of the nodes thus forcing them to deplete their energy more quickly and hence

reducing the network lifetime. Various approaches exist in literature that address the

problem of reducing the energy depletion rate of a network. In [5],[94] distributed

algorithms for constructing CDSs in unit disk graphs (UDGs) were first proposed.

These algorithms consist of two phases to form a CDS. First they form a spanning

tree and use it to find maximal independent sets (MIS), in which all nodes are coloured

black. In second phase, some new blue coloured nodes are added to connect the black

nodes to form a CDS. Likewise Zeng Yuanyuan et al. in [108] proposed Energy

Efficient CDS (EECDS) algorithm which follows a two phase TC scheme in order to

form a CDS based coordinated reconstruction mechanism to prolong network lifetime
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and balance energy consumption. Similarly Jie Wu et al. in [104] proposed a two

phase TC scheme that uses marking and pruning rules for exchanging neighbours list

among a set of nodes. In CDS Rule K [104] a node remains marked as long as there

is at least a pair of unconnected nodes in its neighbours; it is unmarked when it finds

that all its neighbours are covered with high priority. All the above studies focus

on increasing the network lifetime by forming a reduced topology but, they do not

analyse the impact of a reduced topology on network reliability.

Network reliability is assured by Lanny Sitanayah et al. in [84] by adding extra

relay nodes in a single tiered network. In a single tiered network all nodes forward

packets directly to each other instead of relaying it through the backbone node. Sim-

ilarly Han et al. in [43] provide reliability in full fault tolerant and partial fault

tolerant environment for heterogeneous wireless sensor networks. They ensure relia-

bility by adding extra relay nodes with an assumption that, relay nodes use the same

transmission radii while sensor nodes have different transmission radii. Both these

algorithms inherently add overhead by adding extra relay nodes in a network. This

results in extra node energy and reduces network lifetime. Hence, an algorithm was

required that, while keeping in consideration the energy constraint, ensures reliability

for the complete network among every set of backbone nodes.

This thesis limits the participation of these nodes in a network, by defining Poly3

which is a further refinement of an earlier work proposed by H.K.Qureshi et al. in

[75]. Poly3 reduces the energy depletion rate and simultaneously adds reliability on

the tree based topology construction algorithms for WSNs by forming cliques of size
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Figure 3.1: The Poly3 Algorithm.
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three – a tunable parameter – which is maintained throughout the network.

3.1 The Poly3 algorithm

The Poly3 algorithm provides a solution to the network wide reliability problem in

mission critical WSNs. Poly3 assumes no prior information about the position or

orientation of the nodes, so the geometrical view of the topology is not visible to the

nodes. The subsequent subsection explains in detail the topology construction phase

of Poly3.

3.1.1 Topology Construction

Topology construction phase in Poly3 is subdivided in to three phases. In the first

phase, a backbone based on CDS formulation is created. In the second phase, nodes

send their neighbors list to the sink node, which they maintain during the first phase.

In the last phase, which is a tunable phase, cliques of size three are retained. It is

worth noting that during this phase few nodes also become active – if there are any –

during the retention of the three clique set. The topology construction phase of Poly3

is similar to Poly [75] except for the last step in which instead of a single polygon,

multiple cliques of size three are retained.

The backbone construction phase in Poly3 is started by a randomly selected ini-

tiator node. The selection is dependent on the criteria that the node with the largest

ID persists in case more nodes initiate the construction process. To start the process,

the initiator node broadcasts Hello message in its communication area. The Hello
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message lists the parent ID of sending node. For sink node it is empty since the sink

node is assumed to be parent of all nodes.

For the elaboration of the algorithm, we take a sample network shown in Fig 3.1.

It is supposed that node A in Fig 3.1 initiates the backbone construction process by

broadcasting the Hello message. It also sets a time out period for receiving the replies

from any of its children. The broadcasted Hello message is received by node B and

node C, which lie in the communication range of node A. After the reception of node

A, both node B and node C rebroadcast the same message while only changing their

parent ID, which is now set to node A. The messages by node B and node C are also

received by node A which helps identifying node A that it has been chosen as a parent

node. Once this process is completed, nodes B and C are considered as covered and

thus causing node A to become active. Node A now waits for finish discovery message

from its children. At this stage, for the sake of clarity, we assume that contention

mechanism is available in case if messages by different nodes are received at the same

instance of time. On the other hand, when uncovered nodes receive the message, they

set the sender as their parent and repeat the same process. It is also worth noting

that the reception of Hello message starts the process of maintaining a neighbors list

until the whole network is covered.

These nodes now rebroadcast the Hello message with A as their parent node

and set their own timers for receiving responses from their children nodes. This re-

broadcasted Hello message is also received by parent node A, which in turn identifies

sender as its children nodes. Once identified these nodes are considered as covered,
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the parent node switches to an active state and starts waiting for finish discovery

message from its children. When an uncovered node receives Hello message it sets

the sender as its neighbor. In this way, the CDS creation nodes find their neighbors

and the process is repeated until the whole network is covered.

As shown in Fig 3.1, the message sent by node B and node C is received by their

neighbors, which repeats the same process until Hello message arrives at leaf nodes

i.e. nodes H, I and J. These nodes also repeat the same process but the expiry of

the time out allows them to send a Finish Discovery message back to their respective

parent nodes. In Finish Discovery message, nodes send the list of their neighbors to

the parent node, thus starting the second phase of the algorithm. The parent node

receiving the Finish Discovery message repeats the same process in the backward

direction until the message is received at the sink node, which is the parent of all

nodes. In this way, the Finish Discovery message converges towards the sink node.

After the reception of the finish discovery message at the sink node, the third

phase of the algorithm starts. In this phase, the sink node compares the message

paths visible from the neighbors list for the construction of clique set of size three for

reducing the message complexity. The comparison is based on the fact that the nodes

common between message paths lead towards a clique of size three i.e. message path

G, I and J and message path G, J and I have two nodes in common. In addition,

both paths comprise of the same parent node and therefore allowing forming a clique

of size three. Once the clique set is chosen, the sink node creates the final topology

by broadcasting the Create Topology message. Paths which have nodes C and B in
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common and both the paths are initiating from node A hence they form a polygon of

size three as shown in Fig 3.1. As mentioned earlier, that the reliability is a tunable

parameter, therefore for the sake of this purpose we created a bound on the third

phase of the algorithm. During this phase, if desired, one can set the number of three

cliques that are required in the final topology. By doing this, the complexity gets

increased but at the sake of required level of reliability and energy efficiency which

is now dependent on the number of active clique set which contains the list of nodes

that are part of the polygons.

When a node receives create topology message from sink node it checks if its name

is in the list of active nodes, if it is in the list, it sets its state to active. At the end

of this process, each node is in either active or sleep mode. The set of active nodes

act as a communication backbone for the network. To better understand the benefit

of this approach, the next section explains in detail the parameters that influence the

reliability of a network.

3.2 Network Reliability

Network Reliability has been defined in two ways namely packet delivery reliability

and link redundancy. The former is dependent on path length among active set

of nodes and the second is dependent on number of extra links used throughout

the network. This section explains in details different notations associated with the

metrics and also presents a comparison of Poly3 on both set of performance metrics.

• Packet Forwarding Probability: Packet forwarding probability (Pf ) is defined
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as, the probability that a packet will be successfully delivered to the next hop

in the path length between the source and the destination node. The packet

forwarding probability is the product between the probability of not having a

collision at the MAC layer Pc and the probability that a packet is not lost due

to channel errors (Pe), and is given by:

Pf = PcPe (3.1)

• Average Path Length: Average path length is defined as the mean of the shortest

path lengths between all pair of vertices and it represents how quick information

transfer can be done in a network. It is given by:

l =
1

n(n− 1)
[
∑
i,j

d(vi, vj, )] (3.2)

Here n represents the number of nodes/vertices in a network and d is the distance

between nodes i and j for all pair of active nodes in the network.

3.2.1 Packet Delivery Reliability

Most of the tree based solutions ensure that every pair of nodes is connected to each

other through at most one path. Hence, a packet sent from node A to node D can have

only one path in order to reach the destination. As a result, the tree based algorithms

are not viable since the network is prone to failure and can be decomposed into two or

more disjoint components. On the other hand, reducing the path length with varying
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Figure 3.2: Packet Delivery Reliability for Pf = 0.3 and Pf = 0.7.

node density among set of backbone nodes provides a solution to increase the packet

delivery reliability. Therefore, the packet delivery reliability is given by:

R(Pf , l) = P l
f (3.3)

The possibility that the packet will be received by the destination node is depen-

dent on the path length among set of backbone nodes, since they are responsible for

relaying information towards the sink node. In order to address the Packet Delivery

reliability, Poly3 forms a clique set of size three which provides polygenic redundancy

while also helping reducing the path length among set of nodes in the network. It is

due to the reason that high degree backbone nodes get connected with other bunch

of nodes, thus reducing the overall path length.

Fig 3.2 shows the Packet Delivery Reliability of Poly3 and Tree based CDS algo-

rithms. In order to see the impact of increasing path length, the results are computed
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by varying the node density up to 400 nodes. In addition, different WSN applications

can have different packet forwarding probability due to the vagaries of communica-

tion, therefore, the results are computed for Pf = 0.3 and Pf = 0.7. Results were

computed under the Network Analyzer tool available as a plugin in Cytoscape [85].

It is evident that increase in node density increase the path length, however, Poly3

provides better Packet delivery reliability due to the fact that backbone nodes are

connected in the form of many cliques set.

Figure 3.3: A sample network.

3.2.2 Link Success Reliability

The redundancy in graph theory is defined as the expected number of spanning tree

that are functional [24]. Due to this reason, removal of a single edge in a spanning tree

leads to a graph of many disjoint components. Therefore, all individual edges play a

key role for the successful delivery of data. The tree based algorithms based on CDS

forms a backbone, which is also a tree, therefore, the lack of non-identical spanning

tree under dynamically changing conditions exposes the algorithms for mission critical

applications. On the other hand, failure of a link triggers the topology maintenance

algorithm again and again and hence putting constraint on energy stringent WSN
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devices. It is therefore very important that the topology is constructed in a robust

way, which to certain extent also helps in achieving energy efficiency under topology

maintenance.

Reliability, which is associated with redundancy, is defined as the probability that

there is at least a functional spanning tree or a connected network under random

link failures. Therefore, the more the redundancy in the network, the more is the

reliability in the network. However, for WSNs, the level of redundancy is dependent

on the energy efficiency that is required in most of the application scenarios. To

demonstrate the performance of Poly3, consider a sample network shown in Fig 3.3

for which the reliability is computed using the Linear Algebra package available in

Maple [2].

Let B = (bi.j)n.n be the adjacency matrix of the graph G, then

bi.j =


1 if vertices vi and vj are adjacent,

0 otherwise.

The degrees of the vertices are represented by a diagonal matrix. If D = (di.j)n.n

denote the diagonal matrix of graph G, then

di.j =


deg(vi), for i = j,

0 i 6= j.

The matrix tree theorem [2] when used identifies that the spanning trees of a
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graph G is the value of the cofactor of a matrix, i.e. T = D − A. Therefore, the

matrix T for the assumed network equals

T =



1 0 −1 0 0 0 0 0 0 0

0 2 0 −1 0 0 0 0 0 −1

−1 0 3 −1 −1 0 0 0 0 0

0 −1 −1 4 −1 −1 0 0 0 0

0 0 −1 −1 2 0 0 0 0 0

0 0 0 −1 0 1 0 0 0 0

0 0 0 0 0 0 2 −1 0 −1

0 0 0 0 0 0 −1 3 −1 −1

0 0 0 0 0 0 0 −1 2 −1

0 −1 0 0 0 0 −1 −1 −1 4


The cofactor of a matrix T equals 24, which means that there are 24 possible

combinations of spanning trees. These combinations represent the total redundancy in

the network. However, to demonstrate the reliability, the interest lies in measuring the

probability that network remains connected under random link failure. To compute

this, all the spanning trees are represented as a disjoint product which is given below:

P (t1 ∨ t2 ∨ t3 ∨ ...... ∨ t24) = P (t1) + P (t2t1) + P (t3t2t1)+

. . .+ P (t24t23t22....t1),

where t is a spanning tree in the network.
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If all the edges have the same reliability P1 = P2 = .... = Pn = P , then, the

reliability of the network shown in Fig 3.3 is given by: 24p9 − 49p10 + 34p11 − 8p12.

The adjacency matrix for all tree based CDS algorithms remain the same as all these

algorithms maintain a single spanning tree.

Figure 3.4: Link Success Reliability.

Fig 3.4 compares Poly3 algorithm with CDS tree based algorithm. It also draws

the link success reliability of the original sample network shown in Fig 3.4. The

results were computed by varying the probability up to 0.9 and by inserting them in

the equation computed previously. The results show that Original Network provides

better link success reliability because all the links are functional. However, taking

up this sort of a network further would impact on the energy. On the other hand,

Poly3 provides better reliability when compared with CDS algorithms. It is due

to the fact that few redundant links are maintained, which allows having a more
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reliable network. Therefore, it is evident that Poly3 can work better for mission

critical WSN applications when compared with tree based algorithms [104]. The

performance of CDS based schemes increases with the increase in probability but is

lesser than that provided by Poly3 because CDS based algorithms have all the nodes

connected through a single path only.

The proposed Poly3 approach performs well in improving network reliability but

it still does not address the problem of reducing the influence of critical nodes on the

performance of a network. To address this issue, this chapter further elaborates on

the factors that affect the packet delivery reliability of a network namely the average

path length metric and based on this in later chapters, this thesis identifies the most

critical nodes in the network, which if by passed using backup paths would result in

reduced network vulnerability and increased network lifetime.

3.3 APL of a network

Average Path Length (APL) is defined as the mean of the shortest path lengths

between all pair of vertices and it represents the closeness and consequently, how

quickly information transfer takes place in a network [110]. Most real world networks

unexpectedly have short average path lengths, as popularized by six degree of freedom

play. This property is known as the Small-World property and is studied in detail in

[90]. Most real networks are differentiated in being small world or ultra-small world

network due to the behaviour of their APL as logarithmic or double logarithmic

scaling with network size n nodes [109].
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Since APL is an important metric, several formulas have been proposed for its

estimation. The most commonly used method is to traverse a complete graph and

then average out all the path lengths to calculate its APL. It is denoted as:

l =
1

n(n− 1)
[
∑
i,j

d(vi, vj)], (3.4)

Where n, is the number of nodes in the network and d is the distance between

nodes i and j for all pair of nodes in the network. For large sized networks this is

quite non-trivial, hence, for simplicity Fronczak et al. in [37] used the hidden variable

network model generalized in [79] to derive a formula for the average distance between

each pair of nodes which was characterized by the given values of hidden variables

hi and hj. They attained a good agreement but only for dense networks. Likewise

Zhongzhi et al. in [109] have derived a formula for APL characterization for the

Apollonian network. Their analytical method is based on a recursive construction

and a similar structure of Apollonian network. They have provided rigorous results

showing that APL grows logarithmically with the number of nodes. This result is

in contradiction with Jose et al. who state in [6] that Apollonian networks scale

sub-logarithmically with the network size.

Similarly, various other models have been proposed for networks with small average

distance [78] [39] such as the static Watts-Strogatz model, in which a small percentage

of edges are changed in a low dimensional lattice [98] or dynamic models, in which

distance between nodes becomes smaller as more nodes are added to the network.

Philippe et al. in [40] provide a closed form formula for an upper bound on APL for
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a recently proposed recursively growing network in [110].

All these proposed formulations focus on determining APL for recursively growing

networks and are incapable of identifying the APL of a network at a particular in-

stance whereas, this chapter presents a new method to calculate APL for graphs that

does not require traversing the complete graph and is computationally less expensive.

In the next section, a mathematical model for calculating the APL is presented.

3.4 Path length calculation

Average Path Length (APL) of a graph l is defined as the average number of edges

along the shortest path for all possible pairs of network nodes and is represented

using eq 3.4. For any general graph, calculating l requires traversing a complete

graph several times. However, if the graph is a regular one then simpler and less time

consuming methods can be found.

The hierarchical structure of a WSN depicts the form of a tree [106] hence, the

proposed approach uses the basic tree structure graphs and follow a divide and con-

quer approach by first modeling individual sub-parts of the tree network and then

joining them together to get a unified formula.

APL is defined as the mean of the shortest path lengths of all the nodes in a graph

and is denoted using eq 3.4. The averaging factor 1/n(n − 1) remains same for all

set of graphs, hence, the focus is on calculating path lengths for different graphs. If

we have a line graph with n nodes, than for non-edge nodes we have paths in two

directions the upper side of graph and the lower side of graph. If we move from top
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to bottom or vice versa than we have:

l =
1

n(n− 1)
(
n−1∑
i=1

d(i+ 0) +
n−2∑
i=1

d(i+ 1) +
n−3∑
i=1

d(i+ 2) (3.5)

....+
n−1∑
i=1

d(i) +
n−n∑
i=1

d(i)),

While traversing the complete graph the average distance of a node replicates itself

after crossing the center of the line graph resulting in:

l =
1

n(n− 1)
2(
n−1∑
i=1

i+
n−2∑
i=1

i+
n−3∑
i=1

i (3.6)

....+
2∑
i=1

i+
1∑
i=1

i),

The summation function (
∑n−1

i=1 i) is an arithmetic series and can be simplified as

n(n+1)
2

, hence

l =
1

n(n− 1)
2(

(n− 1)(n− 1 + 1)

2
+

(n− 2)(n− 2 + 1)

2
(3.7)

....+
2(2 + 1)

2
+

2(1 + 1)

2
),

Eq 3.7 when simplified, results into:

l =
1

n(n− 1)
(n(n− 1) + (n− 1)(n− 2) + ....+ 6 + 2), (3.8)

Eq 3.8 can further be simplified to:
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Figure 3.5: Tree graph further divided into three parts.

l =
1

n(n− 1)

n−1∑
i=1

(i)(i+ 1), (3.9)

By expanding this the final form for the APL of a line graph becomes:

l =
1

n(n− 1)
(
n(n− 1)(2n− 1)

6
+
n(n− 1)

2
), (3.10)

Similarly for finding the APL for a tree graph, one can divide a tree into three

parts: a line graph that starts from the top of the tree to the lowest end of a tree,

the second part calculates the distance of all the leaf nodes connected to the highest

degree node and the third part calculates the distance of all the nodes connected to

the highest degree node with each other.
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3.4.1 Part I: APL of a line structure

The path length of the line graph can be calculated using eq 3.9, but this requires

the elimination of all leaf nodes except one and this can be represented as:

l =
1

n(n− 1)
(

n−(d−1)∑
i=1

i+

n−(d−1)∑
i=1

i2), (3.11)

Eq 3.11 when expanded results as:

l =
1

n(n− 1)

(n− d+ 1)(n− d+ 2)

2
(1 +

2n− 2d+ 3

3
), (3.12)

3.4.2 Part II: APL for leaf nodes

This part calculates the path length of all the leaf nodes of the tree to all the non-leaf

nodes in a graph. This is achieved by summing up the path length of all the leaf

nodes except those that are covered in Part I. This part varies from the first part in

a way that in Part I, we also include the distance between all the nodes in the line

whereas Part II calculates the path length of any single node (that is part of the line

graph) to all the leaf nodes except the one considered in Part I. Starting from the

farthest node in the line graph and moving towards the lower part (leaf nodes), we

sum up the path lengths of all the non-leaf nodes with only the leaf nodes. The path

length between all the non-leaf nodes is calculated in Part I, hence, Part II does not

take them into consideration. The path length for this part can be represented by:
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l =
1

n(n− 1)
[2(d− 1)

n−(d−2)∑
i=1

i], (3.13)

3.4.3 Part III: APL for the inter-leaf nodes

This part calculates the inter leaf nodes path length. The distance between any two

leaf nodes is two units and the total number of such combinations can be represented

by:

l =
1

n(n− 1)
(2(d− 1)(d− 2)), (3.14)

3.4.4 APL for a tree graph

Now the APL of a tree structure is the sum of eq 3.12, 3.13 and 3.14. Which leads

to:

l =
1

n(n− 1)

(n− d+ 2)(n− d+ 1)

2
[
2n− 2d+ 3

3
+ 1]+ (3.15)

2(d− 1)

n−(d−2)∑
i=1

i+ 2[(d− 1)(d− 2)],

Eq 3.15 can be generalized for calculating the path length of any given graph:

l =
1

n(n− 1)
(n− d+ 1)(n− d+ 2)+ (3.16)

[
1

2
(
(2n− 2d+ 3)

3
+ 1) + (d− 2)] + 2[(d− 1)(d− 2)],

By simply inserting the values of the highest degree and the total number of nodes,
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one can find the APL for any arbitrary graph at any instance.

3.5 Summary

In this chapter, a new approach for determining the APL of a complex tree structure is

proposed which uses the value of the highest degree and the total number of nodes of

a network as an input. It computes the APL of any complex tree structure and unlike

the previously proposed algorithms, the complexity of the proposed algorithm does

not increase with the increase in number of nodes in the network. This insight about

calculating the APL of a complex tree structure is utilized in the next chapter for

reducing the APL of WSN, for the implementation of the Small-World phenomenon.



Chapter 4

Average Path Length and Network

Performance

4.1 Introduction

According to the Small-World phenomenon, the average separation between a source

and a destination node in a social network lies between five and six [64]. As WSNs

are scalable up to a size of thousand nodes, hence such an immense reduction in the

number of intermediate nodes would lead to great improvement in increasing network

life time and reducing the rate of depletion of node energy. In social networks, con-

nections between nodes are not constrained by the distance between them whereas,

a connection between two nodes in a WSN only exists if those nodes exist in the

transmission range of each other. This transmission range limitation bounds us from

using the Small-World phenomenon in its original form. Small-World phenomenon

52
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uses a random rewiring mechanism in which a few edges are randomly rewired be-

tween nodes to reduce the APL between nodes. This chapter explains in detail the

mechanism adopted for introducing the Small-World phenomenon into the WSN.

As WSNs are spatial graphs, it is possible to reduce the APL between nodes by

simply adding shortcut paths. These paths can only benefit the network if deployed

after properly considering the topological characteristics of the network. Since, in

WSNs a connection between two nodes exists if they both are in the transmission

range of each other, hence, in order to reduce the APL between distant nodes, one

needs to increase the transmission range of a node. The transmission radius of a

node is dependent upon the nodes transmit signal energy [81]. This leads to the

requirement of an efficient mechanism that increases the transmission radius while

considering the dependence on the energy consumption. The next section explains

in detail the existing work in this domain and also highlight the need for a better

solution. Section 4.3 presents the proposed protocol and explains in detail how it

overcomes the deficiencies of the existing approaches.

4.2 Related Work

In this section, some techniques are presented, which introduce the Small-World prop-

erty into WSN’s.

In [97], Watt and Strogatz proposed a model to construct a Small-World network

out of a regular graph whose topology is of a low density regular lattice. A regular

graph is rewired using the probability p, an edge is reconnected to a randomly chosen
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vertex, while avoiding duplicate edge formation. In the next phase, considering the

probability p, the process is repeated for the edges that connect the vertex to the

second nearest neighbour. This process continues circulating around the ring, unless

each edge of the original lattice is considered once. Watt and Strogatz conclude that

by using this model and rewiring only 1% of the edges, an APL reduction of 80% can

be achieved. Despite having such an advantage, this model is in-appropriate for use

in WSNs. Implementing such a model would result in selecting random nodes in the

network to become neighbours, forcing the nodes to extend their transmission radius

over the complete network.

Considering the transmission radius limitation and spatial dependence of WSNs,

Sharma and Mazumdar [80] used wired links to create shortcut paths in WSNs. These

wired links have wireless transceivers attached at both ends to make it replenish

their energy, as there is no energy constraint at the wire links. They show that by

adding few wired-links in a WSN, hop count for multi-path routing can be reduced,

resulting in reduced energy dissipation. A node intending to relay data to a far-away

node shall forward it to the wired-link, which shall transfer it to the other end, and

by using wireless transceivers at both ends, forward data to its desired destination

node. However, in many application scenarios like, node movement tracking, such a

mechanism would not be able to facilitate because these wired-links once deployed

will not be able to move along the movement of the wireless devices.

To solve this issue, Chetan Kumar et al. in [93] equip gateway nodes with two

radios, a short range and a long range. The long range radio is dedicatedly used for
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establishing a link between distant nodes. Addition of such links improves network

performance by 25% and reduces the APL up to 43%, but it is not feasible for mission

critical sensor network applications where increasing the network lifetime is one of

the prime focus. Use of extra hardware will deplete the node energy at a higher rate

resulting in reduced network lifetime.

On the other hand, Eleni et al. in [89] have proposed a topology control based

approach, intended to aid multi-hop communication in an intelligent and effective

manner. They use directional antennas between nodes having the highest degree. A

node having higher degree is more likely to be handling heavy traffic and is hence

equipped with a shortcut link to reduce multi-hops for messages intended for distant

nodes.

Likewise Abhik Banerjee et al. in [13] have reduced APL with the use of directional

antennas along with a distributed self-organizing framework, which figures out highly

connected nodes without using node’s traffic flow. They believe that nodes having

higher traffic flow are better candidates to be connected for path reduction. Traffic

flow in WSNs is bursty in nature [95] hence; the value of this parameter will change

in a random order, resulting as a constant change in nodes selected to use directional

antennas. Directional antennas have a limitation of reducing the covered angle for the

increase in covered distance, hence if a node intends to cover a longer distance; it will

have to direct its energy into a narrower beam-width at the cost of losing connections

with its neighbours. To overcome this deficiency a new scheme is proposed in this

chapter.
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The proposed technique eliminates the deficiency faced in using directional an-

tennas of reducing transmission angle for the increase of transmission distance. It

uses neighbour avoiding walk mechanism for calculating betweenness centrality and

selects a group of nodes that uses variable modulation technique for data transfer.

Variable modulation scheme is employed to guarantee signal interpretation quality

while adding to form long distance relay path without the use of any additional in-

frastructure.

4.3 Variable Rate Adaptive Modulation

(VRAM)

This section discusses how shortcut paths can be added into the network, while using

the available resources and maintaining the topological characteristics of the net-

work. Here, the overall aim is to reduce the mean path length between two randomly

selected nodes, while simultaneously maintaining the energy consumption of nodes,

with the use of variable modulation. Variable modulation scheme enables nodes to

cover a greater distance by just reducing the modulation scheme to a lower index,

from 64QAM to 16QAM . A higher order modulation scheme has a higher path loss

exponent, increasing the bit error rate with increase in distance, hence by using a

lower order modulation scheme (16QAM) for a limited number of nodes, the over-

all data rate is not effected [86]. The selection procedure is explained in the next

subsection.
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4.3.1 Centrality Indices Based On Neighbour Avoiding Walk

Wireless Sensor Networks are conveniently described as graphs G = (V,E), where E

represents the set of edges and V represents the set of vertices. If there exists a path

from a ∈ V to b ∈ V , beginning from a and ending at b then the minimum distance

between node a and b can be denoted as Gd(a, b). By definition Gd(a, a) = 0 for every

set of a ∈ V and Gd(a, b) = Gd(b, a) for any a, b ∈ V . Let σa,b denote the number

of shortest paths from a ∈ V and b ∈ V , where by convention σa,a = 1 for every set

of a ∈ V . If σa,b(z) denotes shortest path from a to b which passes through a node

z ∈ V than the betweenness centrality will be:

BC(z) =
∑

(a,b,z)∈V

σab(z)

σab
. (4.1)

A high centrality score shows that a vertex can reach others on a relatively short

path. For ease in understanding and to control the size of the network, the value of

betweenness centrality is kept between zero and one. The size of a WSN makes the

evaluation of betweenness centrality computationally expensive. Hence, for simplicity

the computation of the betweenness centrality is based on the Bellman criterion,

according to which a vertex z ∈ V lies on the shortest path between vertex a, b ∈ V ,

if and only if Gd(a, b) = Gd(a, z) +Gd(z, b).

Given the shortest path and the pairwise distances, the pair dependency δab(z) =

σab(z)/σab of a pair a, b ∈ V is on an intermediate vertex z ∈ V [18]. Therefore, the

ratio of the shortest path between a and b that z lies on is given by:
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σab(z) =


0 if Gd(a, b) < Gd(a, z) +Gd(z, b)

σaz · σzb otherwise

From this the betweenness centrality of a vertex v is simply the sum of the pair-

dependencies of all pairs of vertices, hence:

BC(z) =
∑

(a,b,z∈V )

δab(z). (4.2)

This shows that betweenness centrality can be determined in two steps:

1. Compute length of the shortest paths between all pair of vertex

2. Sum all pair dependencies

The complexity of determining the betweenness centrality is dominated by the

second step, since O(n2) pair dependencies need to be summed for each vertex and

the running time of the implementation is dominated by the time spent on matrix

multiplication. It is clear that algebraic path counting computes more information

than needed; hence traversal algorithms are used to exploit the scarcity of typical

instances. Brandes et al. in [18] used both breath-first search (BFS) for un-weighted

and Dijkstra’s algorithm for weighted graphs. Considering the amount of nodes to be

traversed for path counting, this thesis emphasises on using the Neighbour Avoiding

Walks (NAW) to reduce this overhead.

In NAW, the walker starting from the sink node, does not visit any node previously

visited up to a certain depth n nor does it visit the neighbour of a previously visited
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Figure 4.1: Long Leg Capability.

vertex up to a distance m. For simplicity, consider the depth n = 1 and distance

m = 1 then the neighbours not being covered by this rule will receive messages

according to a random policy which is normally uniform.

This policy of using NAW with n = 1 and m = 1 has two advantages: a long leg

capability and an enhanced bridge crossing. Fig 4.1 highlights the first advantage:

Suppose that a message that was located at vertex 1 at a previous time step and has

now moved to vertex 7. In case of a memory less system, where a node can visit any

randomly selected node, it can be routed to all the neighbours of vertex 7. Whereas,

according to NAW it can be routed to all the neighbours of vertex 7, except vertex 1

and neighbours of vertex 1.

Figure 4.2: Enhanced Bridge Crossing.
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The second advantage of this mechanism is that, in a network shown in Fig 4.2,

where the walk reaches from a well-connected area to a node which represents the

end of a bridge, then the favourite path of that walk is through the bridge, because

by definition the node at the opposite end cannot be neighbour of the previous node.

The extra stiffness is added in NAW by not visiting neighbours of the previously

visited vertex results in an increased path walked by the walker due to the square

root law of diffusion [46]. Once each node has been visited and betweenness centrality

is calculated by all nodes in the network, then nodes having the highest betweenness

centrality value form long distance links by using VRAM.

4.3.2 Variable Rate Adaptive Modulation (VRAM)

Mobile radio channels are prone to burst errors due to deep fades, even when the

channel Signal to Noise Ratio (SNR) is kept high. This can be reduced by the use of

variable transmission power or by varying the constellation size. In the former, with

the increase in transmission power, the co-channel interference also increases [101].

This leads to the notion of varying the constellation size under uniform transmission

power, so that when a longer distance is to be covered, a lower order constellation is

used and for a shorter distance a higher order constellation is used. This change in

constellation size provides us with variable data rates, while maintaining a constant

bit error rate (BER) [101]. Such an approach also helps avoid bit errors occurring in

bursts, hence if we maintain a constant BER, and only change the modulation scheme

than we can cover a longer transmission distance. This chapter proposes the use of
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Figure 4.3: a) Constellation diagram for 16QAM, b) Constellation diagram for
64QAM.

conventional 16QAM and 64QAM modulation scheme with square constellation as

shown in Fig 4.3 for covering a longer distance.

The basic assumption here is that, the interference from other nodes can be mod-

elled as Gaussian noise and the effect of this interference can be incorporated into

thermal noise power No/2. The target BER Pb of a QAM signal can be related to

the number of symbols in the modulation constellation M according to [25] as.

Pb =
4

b
(1− 1√

M
)Q(

√
3

M − 1
γb). (4.3)

Here, BER is calculated over Rayleigh fading channel, and γb is the average SNR

per bit defined as γb = Es/No. Es is the required energy per symbol at the receiver for

a given BER requirement and b is the constellation size. Using the Chernoff bound

eq 4.3 can be reduced to:
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Pb ≤
4

b
(1− 1√

M
)(

1.5Es
No(M − 1)

)−1. (4.4)

Here M = 2b and the symbol energy can be replaced by (Ebb), where Eb is the

required energy per bit required at the receiver. Hence, eq 4.4 an be used to obtain

the average transmission energy per bit as follows:

Pb
4

(
1

1− 1

2
b
2

) ≤ (
1.5Ebb

No(2b − 1)
)−1,

When further simplified, it reduces to:

Eb ≤
3

2
(
Pb
4

)−1(

√
2b − 1√

2b
)(
No(2

b − 1)

b2
),

Finally:

Eb ≤ (1 + α)
3

2
(
Pb
4

)−1(
(2

b
2 − 1)(2b − 1)

2
b
2

)
No

b2
Gd2. (4.5)

Where α is the drain efficiency of the RF power amplifier and d is the distance

between the transmitter and the receiver G is the antenna gain at both the transmitter

and the receiver. Here, it is assumed that path loss obeys the square root law. Now

for the same transmitters, using same transmission energy but different modulation

schemes (16QAM and 64QAM) eq 4.5 can be reduced to:

(
√

216 − 1)(216 − 1)(d16)
2√

(216)162
=

(
√

264 − 1)(264 − 1)(d64)
2√

(264)642
,
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Here, d16 represents the distance covered by a QAM signal working on a constella-

tion size of 16 and likewise d64 represents the distance coverage of a signal transmitted

using a QAM signal with a constellation size of 64. Now the above expression is sim-

plified to obtain a relation between the distance covered by a 16QAM signal and a

64QAM signal using similar transmitters and under similar environmental conditions,

it results in:

d16 =
2
√

105

15
d64. (4.6)

Eq(4.6) denotes that by using the same amount of transmission energy and un-

der the same BER requirements, a 16QAM signal travels 2
√
105
15

more distance when

compared to 64QAM . The main reason for covering a longer distance is the Eu-

clidean distance between the constellation points of a 16QAM signal when compared

to 64QAM as shown in Fig 4.3. A signal that has a greater distance in its constel-

lation points is less prone to error. A noise signal has to have greater amplitude,

in order to mix one constellation point into another at the receiver, for detection.

Hence, a 16QAM signal can travel a longer distance.

Using this concept,the proposed approach equips nodes having a higher between-

ness centrality, a lower order modulation scheme, to cover longer distances. Fig 4.4

shows the change in network topology after use of VRAM for an area of 1000×1000m2.

Fig 4.4a, shows the initial network setup where random links are formed between

nodes, Fig 4.4b and Fig 4.4c show the area covered by nodes when 3% and 10% of

nodes using VRAM where nodes form links with every neighbouring node inside a
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Figure 4.4: Demonstration of topology modification mechanism. (a) Initial network
with random link formation between nodes. (b) 3% nodes form long distance links
using VRAM. (c) 10% nodes form long distance links using VRAM. (d) Network with
10% nodes forming links using VRAM and 90% nodes using random link formation.
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specific region resulting in increased node degree. The final network formation is

shown in Fig 4.4d where only 10% of nodes use VRAM for long range links and 90%

nodes have random links of the initial setup.

4.4 Simulation Results

The proposed model is evaluated for a network consisting of omni-directional anten-

nas, distributed randomly over a rectangular region. It accesses the impact of using

VRAM for forming long distance relay paths. The simulations were run in Mat-

lab and the proposed model was compared with methods proposed by [13] and [89]

namely Directional-WFB and Socially Inspired respectively. The proposed model is

also compared with a random network, where all the edges are randomly connected to

analyze the change in node degree and it is referred as Omni-directional. The results

shown were averaged for all node pairs and 50 different topologies. The simulation

setup was based on a realistic assumption that, the network can be disconnected due

to limitation in transmission range and any node that cannot be accessed has a path

length of infinity (in these experiments 100000 is our infinity for better realization of

APL).

The first set of simulations, vary the number of nodes in the network for a fixed

network area of 1000× 1000m2. The percentage of nodes forming long distance relay

paths is 10% for optimum performance [13][89]. Nodes are equipped with homo-

geneous amount of energy and use CSMA/CA for packet collision avoidance. It is

assumed that the transmission radius of an omni-directional antenna is 250m. The
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distance covered by directional antennas is obtained from [13], stated as:

r(Θ) = r

√
2π

Θ
. (4.7)

Where r(Θ) is the beam-length for a beam-width Θ and r is the omni-directional

transmission distance.

Figure 4.5: Average path length with varying number of nodes.

Fig 4.5 denotes the variation in APL with change in the amount of nodes present

in the network, under fixed network area. By varying the number of nodes in the

range [10 − 250] it is observed that, Directional-WFB and Socially Inspired have a

similar pattern, this shows that the distributed selection mechanism of node with

highest degree has similar performance to the scheme provided by Socially Inspired,

where a node is selected using an iterative mechanism for long distance relay path
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formation. VRAM outperforms the rest due to its covered angle, the use of a lower

order modulation scheme along with an omni-directional antenna allows the node

to have long distance communication covering 2π radians. The use of directional

antennas, as in Directional-WFB and Socially Inspired limit the node to communicate

in a particular direction only.

As APL is the average distance of a particular node to all the nodes present

in the network, so in case of a directional antenna, a node present in the exact

opposite direction of the directional antenna’s face will have a longer path length and a

packet has to be relayed through neighbouring nodes, this results in an increased path

length. The major improvement in APL is due to the consideration of enhanced bridge

crossing as shown in Fig 4.2. APL is measured in units of 105 due to the consideration

of random networks, where networks can be disconnected, resulting in high APL as

nodes in a network can be in-accessible due to transmission range limitation. VRAM

is the only technique that caters for Enhanced Bridge Crossing, resulting in major

improvement in APL. With a lower number of nodes, APL for Directional-WFB,

Socially Inspired and Omni-directional increases due to widely spread nodes, forming

network chunks. With the increase in number of nodes, these network chunks spread

over and form a single network resulting in a smooth increase in APL.

Fig 4.6 represents the variation in Average Node Degree with the change in number

of nodes for the same network area. Directional-WFB and Socially Inspired have a

lower average node degree as they use directional antennas. Directional antennas

form long distance relay path by breaking their current links and concentrating all
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Figure 4.6: Average node degree with varying number of nodes.

the antenna power into one particular direction, this is executed at the loss of current

links formed in all 2π radians. On the other hand, VRAM forms long distance omni-

directional links. It makes new long distance relay path, while maintaining its current

communication paths, resulting in a higher average node degree.

Figure 4.7: Effect of changing beam width on beam angle and comparison node degree
of VRAM.

Fig 4.7a shows the node degree of a node having links while using an omni-

directional antenna, as the beam-angle of a directional antenna is reduced the beam-
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length increases, decreasing the covered area and hence reducing the node degree

as shown in Fig 4.7b and Fig 4.7c. This trend results in reduced node degree of

Directional-WFB and Socially Inspired. A relatively high node degree value repre-

sents that only 10% of nodes are equipped with directional antennas whereas, the rest

of the nodes have omni directional antennas and they form links such as shown in

Fig 4.7a. VRAM follows a trend shown in Fig 4.7d, due to which 10% of nodes have

higher node degree, resulting in an overall higher node degree. This enables nodes to

relay data in any direction, reducing the overall cost of relaying messages.

The second set of simulation analyses the network performance for varying initial

radius values in the range [100m, 500m]. Number of nodes used is kept constant at

100 nodes. The effect of varying the initial transmission radius on the APL and node

degree is monitored.

Fig 4.8 shows that as the initial radius of a node is increased APL tends to de-

crease for Directional-WFB and Socially Inspired, as they can relay messages to a

greater distance with increase in initial radius. APL for Omni-directional decreases

as more nodes are directly connected to a single node due to extended transmission

radius. Directional-WFB, Socially Inspired and Omni-directional do not cater for the

enhanced bridge crossing problem and hence have cases when the network is parti-

tioned. As the value of the initial transmission radius increases, these inaccessible

nodes become reachable and hence the APL decreases. The proposed mechanism of

choosing the node with the highest betweenness centrality considers such nodes and

hence the APL is always lower. The increase in APL is due to the increase in value of
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Figure 4.8: Average path length with increasing initial radius.

initial radius, more nodes come in direct contact, reducing number of hops and hence

slightly increasing the APL. As the value of initial radius increases, the transmission

radius of a node increases and more and more nodes can be accessed directly, reducing

the APL at very high values of initial radius.

Fig 4.9 represents the variation in Average Node degree with varying the value of

the initial radius. Similar to results shown in Fig 4.6, average node degree of VRAM

is higher than that of simple Omni-directional antennas because in this mechanism,

a node maintains its entire current links while building new long distance communi-

cation links.
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Figure 4.9: Average node degree with varying initial radius value.

4.5 Summary

This chapter introduced the use of VRAM for formation of long distance commu-

nication links to reduce the APL of a WSN. The proposed method overcomes the

deficiencies faced by traditionally used directional antennas of limiting the beam-

width to increase the beam-length. This chapter proposes a mechanism that enables

nodes to calculate the betweenness centrality measure by walking through a lower

number of nodes, using neighbour avoiding walk and it is shown using simulations

that significant performance is achieved by using variable modulation technique, over

use of directional antennas for the formation of long distance relay paths.

The introduction of these long distance communication links reduces the APL of

the network but, it also increases the privacy risk in a network. The nodes forming
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these long length links act as a bridge between distant nodes, ensuring communication

between multiple neighbouring nodes. This capability increases the participation of

these nodes in relaying data between distant nodes and hence, this increases the

criticality of these nodes. A malicious node can eavesdrop and overhear maximum

information, or it can broadcast itself as having the shortest path to maximum nodes

in the network and then alter the incoming messages. An attack by a malicious node

on to a critical node will have a greater impact on the network performance when

compared to an attack on a regular node in the network. The next chapter formally

defines node criticality and then analyses the affect on the criticality of a node due

to the formation of long length links.



Chapter 5

Intuition Based Critical Node

Identification Approach

5.1 Introduction

Critical node discovery is an important process for understanding network vulnera-

bility. A node is deemed as critical, if it plays a vital role in maintaining network

performance and by removing that node, the overall performance deteriorates and in

some cases leads to network partitioning [83] which is highly undesirable. Evaluating

the criticality of nodes is significant in various complex networks. In Wireless Sensor

Networks (WSNs) employing geographical routing, for example, malicious attack or

malfunction of a few beacon nodes leads to fallacious node discovery for the remaining

nodes in the network, thus jeopardizing the stable operation of the routing protocol

[56]. Moreover, in [52] it was observed that removal of 4% of the nodes in a Peer to

73
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Peer Gnutella Network resulted in major fragmentation of the whole network. The

node criticality problem in Peer to Peer and overlay networks was also addressed

in [44]. Finally, in [7] it was shown that in a telecommunication network, the pen-

etration of a virus can be prevented by removing a few critical nodes. The node

criticality problem is significant in network paradigms beyond computer networks.

In road networks, for example, intersections which can be considered as nodes in a

graph theoretic framework, might experience heavy traffic loads when in proximity

to a major landmark. Identifying such critical nodes is significant when investigating

possible extensions of the existing infrastructure [66]. Likewise, in a social network of

terrorist activists, the removal of a few critical nodes can paralyse the communication

in the network, making the network ineffective [53].

Several studies have addressed the node criticality problem and various metrics

have been proposed to characterize the criticality of nodes in a network. In this chap-

ter, based on the preliminary results in [9], a new criticality metric is proposed which

is shown to be more successful in identifying nodes, the removal of which, significantly

affects network operation. The metric encompasses three main node attributes: the

weighted node degree, the variation in link length of the node from its neighbours and

its contribution in forming shortest paths. Unlike previous proposals which take into

account the absolute node degree, this proposal considers the node degree weighted

by the average common neighbours of the node with all its neighbours. The presence

of common neighbours is an indication of the presence of path alternatives which

undermine the criticality of a node. In addition, in order to account for long range
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links which cause nodes to act as relay nodes thus accommodating heavy traffic and

becoming critical for the whole network operation, this chapter introduces the notion

of variation in link length between neighbouring nodes. The diversity in the number

of neighbours and the diversity in link lengths thus contribute to the criticality of a

node and are used to form the diversity index. This then account for the contribution

of each node in forming the routing paths by employing a new technique which is

inspired by voting games in game theory. The metric emanating from this technique

is known as the Banzhaf Power index. The combination of the latter with the diver-

sity index yields the proposed criticality metric which is referred to as the Combined

Banzhaf & Diversity Index (CBDI).

Performance of the proposed metric is evaluated using analysis and simulations.

The evaluation is based on the degradation in performance reported when nodes se-

lected using the criticality metric under consideration are removed from the network.

The proposed metric is compared against other metrics that have been proposed in

the literature, namely the Hybrid Interactive Linear Programming Rounding (HILPR)

proposed in [83], the Controllability of complex networks (Cont) in [59] and the de-

gree centrality, betweenness centrality, closeness centrality used in [34]. The Random

Network Topology, the WaxMan Network Topology and the Small World Network

Topology were considered in the simulation experiments and network performance

was evaluated using a number of performance metrics which include the average

node degree, the average path length, the number of isolated nodes, the network

throughput, the average per packet delay, the average per packet jitter, the number
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of dropped packets and the algebraic connectivity. The latter, defined as the second

smallest eigenvalue of the Laplacian of a network, serves as connectivity robustness

metric. It provides an analytical perspective as to why the proposed metric and its

key features work effectively. Extensive simulations indicate that the proposed criti-

cality metric in the considered scenarios is able to achieve a more severe degradation

in network performance compared to other approaches, indicating that it is superior

in characterizing the criticality of the network nodes.

5.2 Proposed Criticality Metric

As mentioned in the introduction, this chapter proposes a new criticality metric which

is the combination of the Banzhaf power index and the diversity index. This section

explains the reasoning behind such a design choice and formally defines the diversity

index and the Banzhaf power index. It then shows the two are combined to form the

proposed criticality metric.

5.2.1 Diversity index

Diversity index is a measure of the variation of node properties between neighbouring

nodes. This thesis considers variation of two attributes of neighbouring nodes which

are logically related to their criticality: the variability in link lengths and the variabil-

ity in their list of neighbours. Increasing both the variability of link lengths and the

variability in the list of neighbours implies greater node criticality. The proceeding

subsection gives a detailed description of the two and explain how they are combined
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to form the diversity index.

Variation in link length

This attribute measures the variation in the length of the links between neighbouring

nodes. A greater variation in link length certifies the existence of both long distance

and short distance links. A node with the aforementioned property is capable of

acting as a relay node between the nodes in proximity and the distant ones. This

will aid neighbouring nodes in getting their data relayed to distant nodes and vice

versa at a reduced network energy and time cost [110]. Since a node with a higher

variation in link length has a higher probability of acting as a relay node hence, it is

deemed as critical for information dissemination.

Variation of link length is defined as the average difference between the transmis-

sion radii of neighbouring nodes. Assume a graph G = (V,E), where V represents

the set of Nodes and E represents the set of Edges. Each node x in V is characterized

by its transmission radius Tx. For each node x, the set of nodes which lie within the

transmission range of x is the set of its neighbours and is denoted by N(x). The

variation in link length of x is denoted by Dd(x) and is given by:

Dd(x) =
1

|N(x)|
∑

u∈N(x)

(Tx − Tu) (5.1)

In order to demonstrate the way that the variation in link length characterizes

the criticality of node, consider the example network of Fig 5.1. The links between

nodes are drawn to scale so that longer link lengths on the diagram, indicate longer
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Figure 5.1: Node N acts as a relay node between the two network partitions and thus
has a higher variation in link length value compared to node A.

link lengths in the actual network. Nodes A and N in the considered network share

the same node degree. However, node N reports a larger value of the variation in

link length metric, as it has both short and long length links. Node A on the other

hand, only has short length links resulting in a low variation in link length value. The

removal of node A partitions the network, however, it only isolates nodes C and M .

The removal of node N , on the other hand, partitions clusters 1 and 2 thus resulting

in isolation of a far larger number of nodes. This demonstrates the higher criticality

of node N which is reflected in a higher value of variation in link length.

Weighted Node Degree

Node degree was used by Freeman in [34] for determining the criticality of a node.

Despite the simplicity of the method it fails to take into consideration self loops

and one hop reachability of neighbouring nodes which leads to overestimates of node

criticality. Therefore, this thesis avoids the consideration of these redundant paths by
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elaborating on the variability of the list of neighbours of neighbouring nodes, leading

to the notion of weighted node degree. The weighted node degree takes values between

0 and 1, and increases as the number of common neighbour decreases. A greater

number of common neighbours implies more one hop paths between neighbouring

nodes which undermines the criticality of a node. The weighted node degree of x is

represented by Dn(x) and is given by:

Dn(x) =
∑

u∈N(x)

|N(u)\N(x)|
|N(u)|

(5.2)

where \ denotes the set difference and |.| denotes the cardinality of the set. So, the

weighted node degree of a node x is calculated by summing the dissimilarity ratios

of all of its neighbours. The dissimilarity ratio for a particular neighbour u is the

ratio of number of neighbours of u which are not neighbours of x over the set of all

neighbours of u.

Figure 5.2: Example network to highlight the rationale behind the consideration of
the weighted node degree.
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In order to highlight the methodology with which the weighted node degree de-

termines the criticality of a node consider the example network of Fig 5.2. In this

network, nodes A and D share the same node degree but a different weighted node

degree. The weighted node degree of node A is lower than that of node D due to the

link between nodes B and C which causes the neighbours of A to have one common

link. This extra link adds to the redundancy of connections of node A and thus

when node A is removed from the network, the resultant network is still connected

through the link between nodes B and C. On the other hand, the removal of node D

completely isolates node E and hence partitions the network in two segments. This

demonstrates that a node with a higher weighted node degree has a higher influence

on the network upon its removal and is thus a more critical node.

Both the variation in link length and the weighted node degree of a node described

above are used to calculate the diversity index of that node. The diversity index H(x)

is defined as the product of the two metrics such that:

H(x) = Dd(x)Dn(x) (5.3)

It follows from the discussion above that the greater the diversity index, the more

critical a node is. The criticality of a node is further refined by weighing its partici-

pation in path formation.
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5.2.2 Banzhaf power index

In game theory, different assumptions have led to different definitions for determining

the importance of an agent in a game. One of the most prominent among these is

the Banzhaf power index [30]. This index has been widely used primarily for the

purpose of weighted voting games. In a voting game, each voter is assigned a weight

and the coalition of these voters determines the outcome of the game. A game is

considered as a winning game, if the sum of all the weights of the nodes in a coalition

is greater than or equal to a predefined threshold weight. A node has a pivotal

role if its removal transforms a winning game into a loosing game. Nodes with the

aforementioned property are called swing nodes. A node that acts as a swing node

in maximum coalitions is the most critical node and is assigned the highest Banzhaf

power index.

This aforementioned idea is adopted in a communication network setting in order

to characterize the criticality of nodes participating in the network. In the same way

that weights are being used to select coalitions in a voting game setting, the proposed

approach uses the link bandwidths in a communication network setting to select the

nodes participating in shortest path formation. A coalition of nodes is considered as

a winning coalition, if the path they form satisfies the bandwidth requirements of a

particular source destination pair. Therefore, such links that cannot support these

bandwidth requirements are discarded. Once a shortest path has been established, a

node is called a swing node if it participates in the shortest path. The removal of a

node that participates in maximum shortest path routes, will have a higher impact
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on network performance and is thus considered a critical node in the network. So, in

analogy to the voting games setting, a node which acts as a swing node in maximum

coalitions is the most critical node and is assigned the highest Banzhaf power index

formally defined below.

In the graph G = (V,E), I denotes the set of all source destination pairs w = (i, j),

i, j ∈ V . For each w ∈ I, L(w) contains the set of nodes which constitute the shortest

path route that fulfils the bandwidth requirements. A node k that belongs in L(w)

acts as a swing node for the source destination pair w. The Banzhaf power index for

a node is the ratio between, the number of times a node acts as a swing node, over

the total number of times all the nodes in V act as swing nodes. The Banzhaf power

index is denoted by Ck and is given by:

Ck =

∑
w∈I(|L(w)| − |L(w)\k|)∑

p∈V
∑

w∈I (|L(w)| − |L(w)\p|)
(5.4)

5.2.3 Combined Banzhaf & Diversity Index (CBDI)

The proposed criticality metric is obtained by multiplying the diversity index and the

Banzhaf Power Index as shown below:

CBDI(x) = CxH(x) (5.5)

The combination method used is a design parameter and this section is supported

using simulations in section 5.4. The metric is referred to as Combined Banzhaf &

Diversity Index (CBDI ) and refines the mechanism of critical node detection. Ac-
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cording to this index, a node is critical not only if it participates in maximum shortest

path routes but if it is also prominent among its neighbours due to a higher variation

in node attributes. The index, unlike previous approaches, is able to refine nodes

which participate in the same number of shortest paths by differentiating between

nodes which relay information from multiple inputs to multiple outputs and nodes

which relay information from a single input to a single output. Further, it can iden-

tify nodes which can relay data to distant nodes thus having a high probability of

experiencing heavy traffic. Finally, it is able to refine the information obtained by the

node degree by excluding neighbouring nodes whose participation in path formation

is not critical.

5.3 Algebraic Connectivity of a Network

Algebraic connectivity, also referred to as the Fiedler value, is a spectral metric defined

as the second smallest eigenvalue of the Laplacian matrix of a network. Its significance

stems from a theorem by Fiedler [32] which states that a network is disconnected,

if and only if, the algebraic connectivity attains a value of zero. It has thus been

conjectured that the algebraic connectivity can be used as a connectivity or robustness

measure of the network in the sense, that the higher its value is, the more difficult it

is to partition the network. Such a conjecture is supported by a number of theorems

which offer insights towards this direction. The algebraic connectivity is related to the

criticality of a node as it provides an analytical metric with which one can assess the

degradation in network connectivity when the node is removed. This section reviews
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key definitions and theorems pertinent to the algebraic connectivity concept and also

provides an insight on the key features of the proposed criticality metric.

Let G = {V,E} be a graph of |V | = n nodes and |E| = m edges. If G is

undirected then, A(G) = (aij) is the adjacency matrix of G with aij = 1 if nodes i

and j share an edge z ∈ E and aij = 0 otherwise, for i, j ∈ V . The diagonal degree

matrix δ(G) = diag(degi, degi+1, ...degn) is an n × n matrix with the diagonal entry

degi representing the degree of the node i ∈ V and all non-diagonal entries equal

to zero. The Laplacian matrix for such an undirected graph G is an n × n matrix,

L(G) = δ(G)−A(G). In case of a directed graph, the Laplacian matrix is represented

by L(G) = N(G)N(G)t where, N(G) denotes the incidence matrix [65]. The incidence

matrix N(G) is an n × n matrix with nij = 1 if an edge is directed from node i to

j, nij = −1 if the edge is directed from node j to i and nij = 0 otherwise. The

laplacian matrix L(G) of a graph is real, symmetric and non-negative semi-definite

with all its eigenvalues being real and non-negative [48]. These eigenvalues are highly

correlated with the connectivity of a graph and this relation is further elaborated in

the following lemma [71].

Lemma 1: If 0 = λ0(G) ≤ λ1(G) ≤ ... ≤ λn−1(G) are the eigenvalues of the Lapla-

cian matrix L in an ascending order, then λ1(G) > 0 if G is connected. Additionally,

if λi(G) = 0 and λi+1(G) 6= 0, then G has exactly i+1 disjoint connected components.

The zero row and column sum of the Laplacian matrix generates an eigenvalue

of zero which is considered as the smallest eigenvalue λ0 of the matrix. The afore-

mentioned lemma indicates that if a graph is connected then the eigenvalue of zero
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will have a multiplicity of one whereas, if the eigenvalue of zero has a multiplicity

of j then there are j disconnected components of the graph. Similar to the smallest

eigenvalue, the largest eigenvalue λn−1(G) also has a multiplicity of 1 if the graph

is connected [60]. The largest eigenvalue is upper bounded by the maximum degree

Dmax and lower bounded by max (D̄(G),
√
Dmax(G)) [60].

Apart from the smallest and the largest eigenvalues, the second smallest eigenvalue

λ1, which is also referred to as the Fiedler value, is of vital importance for determining

the connectivity of a graph [32]. A higher order Fiedler value, which is strictly larger

than zero, shows a connected graph whereas, a smaller value shows a weakly connected

graph. It is lower bounded by the smallest eigenvalue of zero and upper bounded

by the minimal nodal degree of the network. The minimal nodal degree defines the

minimum number of links that if broken could possibly result in another disconnected

component and hence, the bounds on the Fiedler value can be expressed as [48]:

0 ≤ λ1(G) ≤ n

n− 1
Dmin(G) (5.6)

Here, Dmin is the minimal nodal degree of an incomplete graph. The above inequality

indicates that the algebraic connectivity can be used as a connectivity robustness

measure. The smaller the Dmin value, the easier it is for the network to become

disconnected as fewer node removals are required to lead to network partitioning.

As Dmin decreases, so does the upper bound on the algebraic connectivity and one

may thus conjecture that the easier it is for the network to become disconnected the

more likely it is for the algebraic connectivity to attain a small value. Reversing
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the argument, one may conjecture that the smaller the algebraic connectivity value,

the easier it is for the network to become disconnected. The use of the algebraic

connectivity as a connectivity robustness measure can be further supported by the

following lemma [48][32]:

Lemma 2: If there are two edge disjoint graphs with the same number of nodes

Ga and Gb, then λ1(Ga) + λ1(Gb) ≤ λ1(Ga ∪Gb).

Corollary 1: Likewise, if there are two graphs with the same number of nodes but

different set of edges, such that Ga(V,Ea) and Gb(V,Eb) for Ea ⊆ Eb then the Fiedler

value is non-decreasing and can be represented as, λ1(Ga) ≤ λ1(Gb).

Corollary 1 suggests that the removal of edges from a network, which makes it

easier for the network to become disconnected, leads to a decrease in the algebraic

connectivity. Again reversing the argument one can conjecture that the smaller the

algebraic connectivity value is, the easier it is for the network to become disconnected.

The effect of removing edges from the network on the algebraic connectivity is cap-

tured by Corollary 1. Removal of nodes is also of primal importance as the criticality

of a node is assessed by its impact on the network performance when it is removed.

The following Lemma describes how the algebraic connectivity is affected by node

removal.

Lemma 3: If G1 is the resultant graph after removal of k vertices along with all

the adjacent edges, then:

λ1(G1) ≥ λ1(G)− k

The Lemma suggests that the removal of nodes decreases the lower bound on the
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algebraic connectivity. This means that by appropriate choice of the nodes, one can

decrease the algebraic connectivity thus making it easier for the network to become

disconnected. The above properties of the algebraic connectivity are now used to

explain how a key feature of the proposed criticality metric, namely the weighted

node degree, identifies more critical nodes than if the normal degree was used.

Assume an arbitrary networkG1 and an arbitrary node within the network u1. The

weighted degree of any node becomes higher when the number of common neighbours

with all its neighbours becomes smaller. The number of common neighbours can be

reduced by removing particular edges of the network. Edges are chosen which do not

affect the degree of node u1 and are removed to yield network G2. G1 and G2 have

the same number of nodes. Node u1 maintains its degree in G1 and G2, however, its

weighted node degree in G2 is higher. Since u1 has the same node degree in G1 and

G2, its removal will result in G2 having less edges than G1 by construction. From

Lemma 3 one can thus conclude that:

λ(G2) ≤ λ(G1) (5.7)

The above indicates that when nodes with the same node degree but higher

weighted node degree are removed then the algebraic connectivity of the network

decreases. The weighted node degree can thus be used to refine the node degree

concept and identify more critical nodes.
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5.4 Performance Evaluation

This section discusses the performance evaluation of the proposed criticality index

using simulations conducted on Matlab [61] and the Network Simulator (NS-3) [69].

A comparative study was conducted, the objective of which was to investigate the

performance of the proposed index against other approaches that have appeared in the

literature: the Hybrid Interactive Linear Programming Rounding (HILPR) algorithm

proposed in [83], the algorithm in [59] (Cont) which attempts to reduce the rank of

the routing matrix and the node centrality metrics such as the betweenness centrality,

closeness centrality and degree centrality metrics that are used in [35]. Among all

criticality indices proposed in literature the aforementioned indices were chosen as

they contain some of the features included in the proposed approach, namely the

diversity, the node degree and the participation in shortest paths. In addition, they

have been shown to outperform the other proposals in a number of scenarios. In each

conducted simulation experiment, nodes participating in the network are assigned

a criticality measure based on the criticality index under consideration. A fixed

percentage of the most critical nodes were removed and the degradation in network

performance was evaluated. The most effective criticality index is the one that leads

to a greater degradation in performance.

In the first set of simulation experiments conducted on Matlab network perfor-

mance was evaluated in terms of topological performance metrics, in the second set of

simulation experiments network performance was evaluated in terms of the algebraic

connectivity of the network and in the third set of simulation experiments conducted
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on the NS-3 simulator, network performance was evaluated in terms of the network

centric performance metrics.

5.4.1 Topology Based Evaluation

The first set of simulation experiment conducted on Matlab evaluates the ability of

the proposed metric to choose critical nodes in terms of topology based performance

metrics such as the Average Node Degree, the Average Path Length and the Number

of Isolated Nodes. The Average Node Degree is the average number of neighbours of

all nodes participating in the network. Small average node degree values imply smaller

connectivity and so the smaller the average node degree, the greater is the degradation

in network performance. The Average Path length is obtained by calculating the

average of all path lengths over all source destination paths in the network. High

average path length in a network implies lack of critical nodes which can participate

in shortest path routes. So, the higher the average path length, the greater is the

degradation in network performance. Finally, the Number of Isolated Nodes are the

nodes that have no connections with any other node in the network. High number of

isolated nodes is undesirable as it implies greater network partitioning.

The evaluation was conducted using three different network topologies in an area

of 1000 × 1000m2.The Random Network Topology assumes x and y coordinates of

the nodes which are uniformly distributed in the area under consideration. The

number of nodes were chosen in the range of 10 − 80 and among them 90% of the

nodes were assumed to have a constant transmission range equal to 300m whereas,
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some randomly selected 10% of nodes were assigned a transmission range of 450m in

order to enable long distance links [10]. In the WaxMan Network Model [100], the

probability that a connection is established between any two randomly distributed

nodes u, v in the network P (u, v) depends on the distance d between the nodes as

shown below:

P (u, v) = αe−d/bL (5.8)

where 0 < α < 1 and b <= 1 are constants and L is the maximum distance

between any two nodes. As α increases, the probability of having edges between two

nodes increases, whereas, with the increase in b, the ratio of long distance to short

distance edges increases. The simulation experiments presented later in this section

consider a fixed number of nodes of 80 and considers a constant value of b = 0.5.

In order to analyse the effect of node density on the performance of the network,

the value of α is varied from 20 − 80%. Finally, in the Small World Network Model

[99], N nodes form a one-dimensional lattice with each node placed uniformly on the

boundary of a circle. Each node in the network forms a direct connection with its

kth nearest neighbours, where k is a constant and it represents the edge connectivity

of the network. In this network topology, a network size varying from 20 − 80 was

considered, with a fixed edge connectivity of k = 2. In addition, 10% of the edges

were randomly re-wired to introduce the long range links in the network. These long

range links reduce the average path length between the nodes.

In each of these topologies, the criticality metric was evaluated by removing the
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selected critical nodes from the network and then measuring the network performance.

In order to reduce the variance of the obtained results, each simulation experiment was

repeated 50 times and the values presented, are averages over all obtained outputs.

All the simulation in this section assume a fluid flow model of the network and the

bandwidth of each node is randomly selected according to a uniform distribution

with a maximum value of 2Gbits/sec. Information sources are assumed to be non-

responsive and their data rate is chosen from a uniform distribution in the range

0-2Gbits/sec. In each experiment, the performance of the reference network (referred

to it as the original network) was evaluated and then compared with the performance

of the network when 20% of the total nodes were removed. The nodes which were

removed are the ones which had been assigned the highest criticality value according

to the criticality index under investigation.

Fig 5.3 for each network topology shows the average node degree values obtained in

the original network and compares it with the values obtained when the most critical

nodes were removed using the three criticality metrics under investigation. For the

Random Network Topology, and the Small World Topology, the average node degree

is plotted against the number of nodes within the network. In the WaxMan Topology,

the average node degree is plotted against the parameter α of the model which is a

measure of the edge density within the network. The greater the value of α, the greater

is the edge density and thus the number of edges. It is noticeable that in all cases,

the proposed CBDI criticality metric achieves a larger reduction in the average node

degree, a strong indication of a greater degradation in network performance. This



CHAPTER 5. CBDI 92

(a) Random Network Topology (b) WaxMan Network Topology

(c) Small World Network Topology

Figure 5.3: Average Node Degree versus the number of nodes and α for the Original
network and when nodes are removed using the CBDI, Cont and HILPR algorithms,
in three different network topologies.

implies that the nodes removed using the proposed CBDI metric are more critical.

The highest impact of the proposed approach compared to the others is observed in

the Small World Topology whereas, the smallest impact is reported in the Random

Network Topology. It is worth noting that in the Random Network Topology as the

number of nodes increases, so does the average node degree. This is expected due to

the increase in node density. A similar pattern is observed in the WaxMan Network
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Topology, however, the increase rate is smaller. For the Small World topology, the

average node degree is fairly constant with increasing number of nodes due to the

nature of the model which assumes a constant value for the average node degree

equal to 2.

(a) Random Network Topology (b) WaxMan Network Topology

(c) Small World Network Topology

Figure 5.4: Average Path Length versus the number of nodes and α, for the Original
network and when nodes are removed using the CBDI, Cont and HILPR algorithms,
in three different network topologies.

Fig 5.4, for each considered network topology, we show the Average Path Length

reported in the original network and the network resulting from the removal of the
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critical nodes. The critical nodes were chosen using the proposed criticality metric

and the other two metrics under consideration. Higher Average Path Length values

are desirable, when removing critical nodes, as they imply the removal of nodes

which participate in shortest paths. It is observable that, the proposed metric, is able

to slightly increase the average path length in the WaxMan and Random Network

Topologies, at high α and number of node values respectively. This is expected due to

a higher variability in node attributes when increasing the node density. In the Small

World Network almost zero path length values are reported by the CBDI metric due

to the large number of isolated nodes that it creates.

Finally, Fig 5.5 shows the number of isolated nodes reported in each of the network

topologies under consideration. The number of isolated nodes is shown for increasing

values of the number of nodes and α in the original network and when the critical

nodes have been removed using the considered criticality metrics. The results demon-

strate the superiority of the proposed metric, especially in the case of the Random

Network Topology and the Small World topology. In all three topologies, the removal

of critical nodes using the proposed CBDI criticality metric yields a larger number

of isolated nodes implying a severe degradation in network performance. Increasing

number of isolated nodes suggests that the network becomes increasingly intermit-

tent in nature. It is worth noting that, in the Random Network Topology and the

WaxMan Network Topology, as the number of nodes and α increase, the isolated

nodes decrease. This is expected due to the fact that an increase in the node or edge

density makes isolation of nodes more improbable. On the other hand, in the case of
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the Small World Topology as the number of nodes increases, so does the number of

isolated nodes. This is due to the fact that in this topology the average node degree

is fixed, which means that as the number of nodes increases, the number of nodes

removed also increases which renders more nodes to become isolated. The fact that

the node degree is originally fixed yields zero isolated nodes in the original network,

as shown in Fig 5.5.

(a) Random Network Topology (b) WaxMan Network Topology

(c) Small World Network Topology

Figure 5.5: Number of Isolated nodes versus the number of nodes and α, for the
Original network and when nodes are removed using the CBDI, Cont and HILPR
algorithms, in three different network topologies.
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5.4.2 Algebraic Connectivity Evaluation

This section builds on the argument presented in section 5.3 about the use of algebraic

connectivity as a robustness metric for the connectivity of a network and it is used

here to show that the proposed criticality metric and key constituents such as the

weighted node degree and the variation in link length outperform other proposals

which have been proposed in literature. The evaluation has been simulative with the

experiments conducted on Matlab. The Random Network Topology was considered.

The number of nodes in the considered area were chosen in the range 20 − 80, and

the 10% most critical nodes were removed each time.

The first experiment compares the proposed weighted node degree against the node

degree metric. The weighted node degree aims at refining the criticality assessment of

the normal degree metric by taking into account one hop paths which are identified by

the existence of common neighbours. The reported algebraic connectivity values for

various number of nodes are shown in Fig 5.6 for the original network, for the network

when 10% of the most critical nodes are removed according to the weighted node

degree metric and when they are removed according to the degree centrality metric.

It is observed that weighted node degree achieves the most significant reduction in

the algebraic connectivity value. Since the algebraic connectivity is a connectivity

robustness metric it follows that the weighted node degree renders the network more

susceptible to network partitioning indicating that it is more successful in identifying

the most critical nodes.

The next experiment uses the algebraic connectivity to compare the variation
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Figure 5.6: Comparison of the weighted node degree and the degree centrality metrics
in terms of the algebraic connectivity for different number of nodes in a Random
Network Topology.

in link length against the closeness centrality metric and the betweenness centrality

metric. The variation in link length uses local information (neighbouring link length

information) to identify nodes which are likely to act as relay nodes thus accommo-

dating a large number of active connections. The number of active connections at a

node is also considered by the betweenness centrality metric which, however, requires

full network information in order to calculate all shortest paths in the network. Fig

5.7 shows the reduction in the algebraic connectivity achieved by the closeness cen-

trality, the betweenness centrality and the proposed variation in link length. It is

noticeable that, the betweenness centrality and the variation in link length achieve

the most severe reduction in the algebraic connectivity indicating that they are able

to best assess the criticality of the nodes. In addition, it is clear from the figure that
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despite the fact that the variation in link length requires only local information its

performance is comparable to that of betweenness centrality.

Figure 5.7: Comparison of the Variation in Link Length, closeness centrality and
and betweenness centrality metric in terms of the algebraic connectivity for different
number of nodes in a Random Network Topology.

Finally, the algebraic connectivity is used to compare the performance of the pro-

posed CBDI metric against the performance of the HILPR scheme and the Cont

Scheme. The results are shown in Fig 5.8. We observed that the CBDI scheme re-

moves nodes which reduce the algebraic connectivity to the greatest extent, indicating

that the connectivity of the network is mostly affected. The Cont scheme achieves a

smaller reduction, while the HILPR scheme leads to a slight increase in the algebraic

connectivity despite the node removal.
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Figure 5.8: Comparison of the proposed CBDI metirc with the existing HILPR and
Cont metrics in terms of the algebraic connectivity for different number of nodes in
a Random Network Topology.

5.4.3 Network Centric Evaluation

The final set of experiments aim at evaluating the performance of the proposed crit-

icality metric in more realistic network scenarios. Simulation experiments were con-

ducted on NS-3 Simulator (NS-3) [69] for the evaluation of network performance using

network centric performance criteria such as the total throughput, the average per

packet delay, the average per packet jitter and the number of packet drops. In all the

simulations the Random Network Topology was used to evaluate the performance of

the proposed criticality metric against metrics such as: Cont [59], HILPR [83], Degree

centrality, closeness centrality and betweenness centrality [34].

The evaluation was conducted on a wireless adhoc network of 100 nodes which were

uniformly distributed in an area of 1500× 1500m2 thus forming a Random Network
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Topology. Each node was equipped with a 802.11b transceiver with a transmit power

of 7.5dbm. Out of all the nodes in the network, 15% had the option of transmitting

at a power of 1.5 × 7.5dbm [10] thus forming long range communication links. The

degradation in signal strength as a function of the distance covered was represented

by the Friss loss propagation model. A randomly selected set of 20 source/sink

pairs initiate the communication in the network by transmitting packets at a rate

of 2.048Kb/s each. Packet based transmission was assumed with the packet size

set to 64byte packets. Routing paths within the network were formed using the

OLSR routing protocol [62]. All measurements were obtained in the interval 100 −

300 seconds after the start of the simulation. This provides sufficient time for the

OLSR algorithm to converge to its equilibrium state. The degradation in network

performance was evaluated after 10% of the most critical nodes are removed from the

network. This process was repeated 10 times with the results averaged to decrease

the stochastic uncertainty of the obtained results.

To begin with, the performance of the proposed criticality metric was evaluated

against the HILPR and Cont Algorithms in terms of the throughput achieved. The

throughput is defined as the total number of packets delivered to their destinations

within the network per unit time. Fig 5.9 shows that the achieved throughput is a

function of time when 10% of the nodes are removed using the three metrics under

consideration. It is observed that, the CBDI algorithm reports the largest decrease

in the achieved throughput relative to the original network before node removal.

This demonstrates that the proposed algorithm is successful in choosing more critical



CHAPTER 5. CBDI 101

Figure 5.9: Time evolution of the network throughput for the original network and
when nodes are removed according to the CBDI, HILPR and Cont metrics.

nodes. The decrease in average throughput observed at certain periods of time is due

to long range link enabled nodes attempting to transmit at that time. Since their

transmission power is higher, they attempt to reserve a larger portion of the common

communication medium, thus increasing the probability of collisions and leading to

throughput degradation.

Next, the achieved throughput was used as the performance metric in order to

compare key components of the proposed CBDI metric against similar approaches

which exist in the literature. The first comparison evaluates the weighted node de-

gree metric against the degree centrality metric. The proposed weighted node degree

refines the degree centrality metric by considering as more critical, nodes which have

small number of common neighbours with their neighbours. Smaller number of com-
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Figure 5.10: Time evolution of the network throughput for the original network and
when nodes are removed according to the Degree Centrality and Weighted Node Degree
metrics.

mon neighbours indicates smaller number of one hop path alternatives when the node

is removed. So, upon removal of a node with high criticality, it is easier for the net-

work to become disconnected thus increasing the probability of reporting a smaller

throughput. This is in fact what is reported by the simulation results presented in

Fig 5.10. When removing nodes identified as critical using the weighted node degree,

a larger degradation in throughput is achieved compared to node removal using the

degree centrality metric. This demonstrates the superiority of the weighted node

degree metric.

The next comparison evaluates the proposed variation in link length metric against

the betweenness centrality and the closeness centrality metrics. All three approaches
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Figure 5.11: Time evolution of the network throughput for the original network and
when nodes are removed according to the closeness centrality, betweenness centrality
and Variation in Link Length metrics.

aim at identifying nodes which accommodate the largest number of active connections.

However, the closeness centrality and the betweenness centrality metrics use global

network information whereas, the variation in link length utilizes local information

only to achieve the same thing. The throughput achieved for the original network and

when nodes are removed according to the various metrics are shown in Fig 5.11. The

closeness centrality and the variation in link length achieve significant reduction in

the throughput achieved. It is really striking to note that the betweenness centrality

metric reports similar throughput to the original network prior to node removal. A

possible explanation is the existence of alternative paths which upon node removal

continue to render the network, ensuring high network throughput.
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(a) (b)

(c)

Figure 5.12: Time evolution of the average per packet delay when nodes are removed
based on a) CBDI, Cont and HILPR, b) degree centrality, Weighted Node Degree, c)
closeness centrality, betweenness centrality, Variation in Link Length.
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Based on the above stated results, further experiments were conducted, aiming

at comparing the proposed criticality metric and its key constituents against other

approaches, using other performance metrics. The delay experienced by packets in

transit is an important network attribute which describes its performance. Low delays

are preferable. In wireless ad hoc networks, such as the one considered in this section,

delays are due to a number of reasons: network congestion resulting in queuing delays,

poor channel behaviour, resulting in re-transmissions and contention resulting in large

vacant medium delay times due to the CSMA/CA mechanism. The first performance

evaluation metric that is considered in this section is the average per packet delay.

This is calculated by dividing the total number of delays observed with the number of

delays transmitted throughout the simulation time. Fig 6.7 shows the time evolution

of the average per packet delay reported in the original network and when nodes are

removed according to a number of proposed criticality metrics including the proposed

criticality metric and its key constituents. It is observed that, the proposed CBDI

metric is able to bring a major degradation in performance as the average per packet

delay increases significantly when nodes are removed. In addition, the weighted node

degree does not on average increase the per packet delays however, it does manage to

outperform the degree centrality metric which reports smaller per packet delay values.

When the variation in link length is now compared to the closeness centrality and

the betweenness centrality metrics, it is observed that, they eventually exhibit similar

behaviour by decreasing the per packet delays compared with the original network.

However, what is important is that despite individual constituent elements not always
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(a) (b)

(c)

Figure 5.13: Time evolution of the average per packet jitter observed when nodes are
removed based on a) CBDI, Cont and HILPR, b) degree centrality, Weighted Node
Degree, c) closeness centrality, betweenness centrality, Variation in Link Length.

outperforming other proposals, when combined, achieve a significant degradation in

network performance.

The next performance metric under consideration is the average per packet delay

jitter. This is calculated by dividing the total delay jitter observed throughout the

simulation experiment with the total number of transmitted packets. The delay jitter

is calculated as the variation in packet reception times at the receiver. Increasing

delay jitter values indicate increasing congestion within the network, so small delay
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jitter values are preferable. Fig 6.8 shows the time evolution of the average per

packet delay jitter observed in the original network and when nodes are removed

according to various criticality metrics. It is observed that the proposed CBDI metric

outperforms the other proposals as it manages to significantly increase the delay jitter

thus degrading network performance. The same applies for the weighted node degree

which is also observed to increase the delay jitter. The picture is different in the

case of the variation in link length which is shown to decrease the average delay

jitter relative to the original network and the closeness centrality metric. However, as

mentioned above, despite individual elements, such as the variation in link length, not

outperforming other proposals, when these are combined, cause the proposed CBDI

metric to cause major degradation in network performance.

The final performance metric under consideration in this section is the total num-

ber of dropped packets. High number of dropped packets in the network due to

buffer overflow, is a strong indication of congestion. When nodes are removed from

the network, the number of available paths decreases and the remaining paths are

forced to accommodate all traffic. This makes them more vulnerable to congestion.

When critical nodes are removed, congestion is expected to be more severe and the

number of dropped packets is thus higher. The results of the conducted simulation

experiments are shown in Fig 6.9. It is observed that, during the whole simulation

time the proposed CBDI scheme is able to bring a major increase in the number of

dropped packets compared to HILPR and Cont Algorithms. The other two algo-

rithms report packet drops similar to the ones reported prior to node removal. Fig
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(a) (b)

(c)

Figure 5.14: Time evolution of the total number of packets dropped when nodes are
removed based on a) CBDI, Cont and HILPR, b) degree centrality, Weighted Node
Degree, c) closeness centrality, betweenness centrality, Variation in Link Length.
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6.9 also highlights the superiority of the weighted node degree relative to the degree

centrality metric. Both cause the number of packets dropped to increase, however the

increase achieved by the weighted node degree is higher. The picture for the variation

in link length is different. While the variation in link length leads to an increase in

the number of dropped packets the closeness centrality metric reports an even higher

number. The betweenness centrality metric in fact reports a slight decrease in the

number of dropped packets. This is consistent with the throughput performance anal-

ysis analyzed earlier. Despite the fact that the closeness centrality exhibits superior

performance relative to the variation in link length metric, the superiority of the other

constituent elements of the proposed criticality metric render it to be more successful

than other metrics proposed in literate. In addition, as mentioned before, the vari-

ation in link length requires only local information whereas the closeness centrality

requires full network information thus increasing the implementation complexity.

5.5 Summary

This chapter highlights the contribution of critical nodes in network operation and

demonstrates how the network reacts when these critical nodes are affected. It pro-

poses a new criticality index which is based on the diversity of node attributes within

the network and the participation of each node in forming shortest path routes. It

also presents a detailed evaluation of performance of the proposed metric under vari-

ous network topologies using multiple performance metrics and it is observed that the

proposed metric outperforms existing approaches by showing a greater degradation in
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network performance when the critical nodes, selected using this index, are removed

from the network.



Chapter 6

Optimization Based Spectral

Partitioning for Node Criticality

Assessment

6.1 Introduction

The identification of critical nodes is vital for accessing network vulnerability and

security [9]. The failure of a few critical nodes can have an adversarial effect on net-

work performance varying from slight degradation in the Quality of Service up to the

complete breakdown of the network [47]. The significance of critical nodes has been

highlighted in a number of examples most of which are explained in chapter 1 & 5.

Some of these algorithms are based on intuition, whereas others are based on mathe-

matical abstractions of networks of arbitrary topology and are thus characterized by

111
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properties which can be verified analytically prior to implementation. This chapter

adopts the latter approach and casts the node criticality problem in an optimization

based framework. This formulation is divided into two optimization problems: an

algebraic connectivity minimization problem, which addresses the topological aspects

of node criticality and a min-max aggregate utility problem which addresses the con-

nection oriented nature of the node criticality. The problems are related in depth as

the connections can only establish source-destination paths on the underlying topol-

ogy. However, we treat them as two separate problems and we consider suboptimal

solutions for both problems which are combined to yield the proposed criticality iden-

tification scheme. The proposed criticality identification scheme is then derived by

combining suboptimal solutions for both these problems.

In order to characterize the topological notion of node criticality, a node is con-

sidered critical when it contributes mostly to keeping the network connected or al-

ternatively when its removal leads to a minimization of the network connectivity.

A popular metric which characterizes the connectivity of a network is the algebraic

connectivity. The metric was introduced by Fiedler in [32] and is defined as the

second smallest eigenvalue of the Laplacian matrix of the network. It has been es-

tablished in a number of studies [32][26][63] that algebraic connectivity serves as a

good measure of connectivity robustness in the sense that the smallest its value is,

the closer the network is in becoming disconnected. So, the first optimization prob-

lem under consideration in this chapter is the problem of finding the nodes which,

when removed, minimize the algebraic connectivity of the network. A basic but te-
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dious approach to solve the aforementioned problem is to use an exhaustive search

over all sub-graphs which result from the removal of each node of the network. This

approach assumes knowledge of the entire network topology and can thus become

computationally expensive when dealing with large network structures. In addition,

when multiple critical nodes need to be found, the approach becomes computationally

expensive with the number of subgraphs that need to be considered increasing com-

binatorially with the network size. For this reason, a number of suboptimal solutions

have been proposed in literature [57][96][102][20]. These suboptimal solutions utilize

the elements of the Fiedler vector which is the eigenvector associated with the second

smallest eigenvalue of the Laplacian of the network. Each element of the eigenvec-

tor naturally corresponds to a node in the network. The most popular suboptimal

node criticality metric is the aggregate squared difference of Fiedler vector elements

between neighbouring nodes [57][96] which has been shown to approximate the opti-

mal solution using both analysis and simulations. Recent advances, which allow the

distributed calculation of the Fiedler vector values [14] have enabled the distributed

implementation of the proposed criticality metric. However, the main drawback of the

distributed implementation is that a global maximisation consensus algorithm must

be employed which can be slow and significantly increases the convergence time.

This thesis adopts an alternative approach to obtaining a suboptimal solution

of the original algebraic connectivity minimization problem by employing spectral

partitioning concepts. It is well known that the elements of the Fiedler vector assume

positive and negative values in the range [−1, 1] and that a splitting value s can
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be used to partition the network in two clusters (the first cluster containing all the

nodes with corresponding Fiedler vector values less than s). Different values of s

yield different types of cuts such as bisection, ratio cut, sign cut and gap cut [32].

The Fiedler clusters are known to be well connected [14] and in addition it has been

shown that for various types of networks [88], which go beyond double community

structures, they possess the desired property that they have nearly equal number

of vertices with minimum number of edges in-between them [63]. In this chapter,

based on the latter property, a node is considered critical if it lies on the boundary

of the Fiedler clusters. This is achieved by adopting the sign cut approach which

leads to a node being considered critical if it has at least one neighbour with a

corresponding Fiedler vector value of different sign. This approach is attractive to

be implemented in a distributed manner and allows each node to decide by itself

whether it is a critical node. In addition, it is demonstrated here that, this approach

is directly related to the approach in [57][96] as the nodes which lie on the boundary

of the Fiedler clusters report high values of the aggregate squared Fiedler vector value

differences, which is the criticality metric proposed therein. However, when a single

critical node is required and a maximization algorithm needs to be employed, the

proposed algorithm offers the advantage that it significantly reduces the distributed

computational complexity as the maximization algorithm needs to be applied only

over a reduced set of nodes, namely the ones which have the same Fiedler vector

element sign. It is also demonstrated through simulations that significant reduction

in convergence time is achieved, and along with this the solution is near optimal, in
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the sense that it approximates to a very good extent, a lower bound on the achieved

algebraic connectivity which we derive analytically.

As pointed out above, the proposed change of sign method can lead to multiple

nodes being detected as critical and so, when a single node is required, a metric

must be utilized to decide on the most critical node among the ones which lie on the

boundary of the Fiedler clusters. Existing works [8] have adopted metrics presented

in [57][96], however, this chapter considers an alternative metric which takes into

account the users of the underlying network and their source destination paths. The

algebraic connectivity depends only on the topology of the underlying network and

the criticality metric must thus be complemented to account for the intuitive notion

that the users of the network must also be taken into consideration when assessing

the criticality of a node. This complementary information is offered by the second

optimization problem that is consider in this chapter. It has been well established

in the literature that the rate allocation algorithms of the network users attempt to

maximize the aggregate utility of the network over the capacity constraints [49]. So,

in this chapter a node is considered critical when its removal degrades the network

performance to the greatest extent i.e. they minimize the maximum of the aggregate

utility function. This optimization problem requires full network information in order

to be solved and in addition the complexity of the exhaustive search solution increases

combinatorially with the network size when multiple nodes need to be selected. Thus,

in this chapter a suboptimal solution is presented which identifies as critical, the

nodes which maximize the square root of the number of active connections at each
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node multiplied by the aggregate input data rate. The combination of these two

suboptimal solutions results in the proposed criticality metric such that it considers

as critical the nodes which maximize the latter criticality metric over the nodes which

lie on the boundary of the Fiedler clusters.

Performance evaluation of the proposed criticality metric was performed using ex-

tensive simulations conducted on Matlab and the NS-3 simulator. Since the criticality

metric is obtained by combining suboptimal solutions of two optimization problems

therefore, it is first established that these suboptimal solutions are not conservative.

When a single critical node is removed, the proposed suboptimal solutions are very

close to the optimal ones which are obtained using the exhaustive search approach.

When multiple nodes are removed the suboptimal solutions are close to a lower bound

which is obtained analytically. Later, the proposed metric was evaluated against other

metrics which have been proposed in literature: the betweenness centrality [34], the

closeness centrality, the degree centrality [35], the Hybrid Interactive Linear Program-

ming Rounding (HILPR) proposed in [82], the Controllability of complex networks

(Cont) in [59], the suboptimal solution of eq 6.15 [102][20] and the suboptimal solu-

tion of Eq (6.16) [57][96]. The evaluation is based on the degradation in performance

reported when nodes selected using the criticality metrics under consideration are re-

moved from the network. The considered network is a wireless ad-hoc network where

the x and y coordinates of the nodes are randomly chosen according to uniform dis-

tributions. It is established here that, the proposed criticality metric outperforms the

other approaches in terms of the achieved network throughput, the average network
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delay, the average network jitter and the number of dropped packets.

6.2 Problem Formulation

The proposed method for identifying critical nodes is based on the solution of two

optimization problems: the algebraic connectivity minimization problem and a min-

max aggregate utility problem. This section, introduces the relevant mathematical

framework which is used to formulate these problems mathematically and also present

some of the relevant approaches present in the literature.

6.2.1 Algebraic Connectivity Minimization

Algebraic connectivity of a graph is the second smallest eigenvalue of the graph Lapla-

cian and it is a measure of how well a graph is connected. In the Graph G = (V,E)

where |V | = n and |E| = m are the number of nodes and edges respectively. The

incidence matrix A is the n×m matrix where the existence of an edge l ∈ E between

node i and j defines the lth column of the matrix with ali = 1 and alj = −1. For such

a graph the Laplacian matrix can be determined by:

L = AAT =
m∑
l=1

ala
T
l (6.1)

The diagonal entries of this Laplacian matrix Li,i denote the degree of the node i

and the non diagonal entries denote the existence of a link between two nodes. It is

easy to state here that L is positive semi-definite and L1 = 0 where 1 is the vector
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of all ones.

Algebraic connectivity has been observed to serve as a connectivity robustness

measure in the sense that the lower its value is, the closer the network is in becoming

disconnected. The latter property has motivated the use of the algebraic connectivity

in assessing node criticality. A node is considered to be critical when it contributes

mostly to keeping the network connected. One may thus define as critical, the nodes

which when removed minimize the algebraic connectivity of the network. This opti-

mization problem, referred to as optimization problem P , is shown formally below:

P : CN = arg min
α∈V

µ(G(V − α)) (6.2)

One way of solving P when a single node is removed is through exhaustive search.

However this approach is computationally expensive. In addition, when multiple

nodes are removed, the complexity of the exhaustive search solution increases combi-

natorially with increasing network size. So, people have sought suboptimal solutions

which are simple to implement in a distributed manner. The most popular solutions

are inspired from the following characterization of the algebraic connectivity [65] using

the Rayleigh quotient of y with respect to L:

µ(L) = min{y
TLy

yTy
|y 6= 0,1Ty = 0} (6.3)

If we substitute y with the normalized vector v = y/||y|| in eq 6.3 then, it can be

written as:
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µ(L) = min{vTLv| ||v|| = 1,1Tv = 0} (6.4)

which can also be expressed in the form:

µ(L) = min{
n∑
i=1

∑
j∈Ni

(vi − vj)2| ||v|| = 1,1Tv = 0} (6.5)

where Ni is the set of neighbours of node i. The minimum is achieved when v is the

Fiedler vector of the Laplacian L. Each Fiedler vector entry naturally corresponds

to a node in the graph. It can thus be deduced from eq 6.5 that the node which

contributes the most to the algebraic connectivity is the one with the maximum sum

of squared Fiedler vector value differences with neighbouring nodes i.e
∑

j∈Ni
(vi−vj)2.

One of the suboptimal solutions that can reduce the computational complexity of

solving eq 6.2 is built by substituting the function G(V − α) with L in eq 6.2 where,

from eq 6.1. We know that L = (Lo − uuT ) where, uuT = (
∑m

k=1 xkhkh
T
k ). Here,

Lo is the Laplacian matrix for the original network and xk is a boolean variable that

is 1 if the edge k is connected to the node α and is zero otherwise. By substituting

G(V − α) in eq 6.2 we have:

min µ(Lo −
m∑
k=1

xkhkh
T
k ) (6.6)

s.t. x ∈ {0, 1}m

The first order partial derivative of the aforementioned optimization function with
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respect to xk gives us the first order approximation of the decrease in µ(L) if the node

α is removed from the graph G.

∂

∂xk
µ(Lo −

m∑
k=1

xkhkh
T
k ) (6.7)

Now we know that if v is the normalized Fiedler vector then we have:

µ(L(x))v = L(x)v (6.8)

By multiplying vT to both sides of eq 6.8 we get:

vTµ(L(x))v = vTL(x)v (6.9)

Since v is normalized, we have:

µ(L(x))(vTv) = vT (L(x))v (6.10)

µ(L(x)) = vTL(x)v (6.11)

Now if we take partial derivative of both sides of eq 6.11 we have:

∂

∂xk
µ(L(x)) = vT

∂L(x)

∂xk
v (6.12)

Hence, by substituting eq 6.7 into eq 6.12 we have:
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vT
∂(Lo −

∑m
k=1 xkhkh

T
k )

∂xk
v (6.13)

By performing matrix multiplication, we can rearrange eq 6.13 into:

vT
∂Lo
∂xk

v − vT ∂(
∑|P |

l=1 xkhkh
T
k )

∂xk
v (6.14)

Now as we know that, Lo is not a function of xk and that vT ∂Lo

∂xk
v is the algebraic

connectivity of the original network, thus in order to solve the original optimization

problem stated by eq 6.6, we need to determine the node that maximizes the func-

tion vT (
∑m

k=1 xkhkh
T
k )v. This can also be illustrated in the form of an optimization

problem such as [102] [57] [20]:

CN = arg max
i∈V

∑
j∈Ni

(vi − vj)2 (6.15)

A slight variant of the aforementioned optimization problem has also been pro-

posed in [57] and [96]

CN = arg max
i∈V

∑
j∈Ni

vj(vi − vj)
1− v2i

(6.16)

The solutions of eq 6.15 and eq 6.16 constitute suboptimal solutions of the op-

timization problem P as indicated in [57]. More specifically, in [57] the metrics are

derived using approximations of the difference in the algebraic connectivity when a

particular node is removed. Bounds on the estimation error are then established
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which can be used to characterize how conservative these approximations are. The

distributed criticality metrics and their analysis are generalized in [58]. Therein, the

authors show that under certain conditions the distributed metrics create the same

importance order as the approximation based centralized solutions. As a result of

recent advances in the distributed calculation of Fiedler vector values [14], these sub-

optimal solutions are amenable for implementation in a distributed manner. The main

drawback of the distributed implementations, as indicated by the authors in [57][20],

is that, a maximization consensus algorithm must be employed over the entire set of

nodes present in the relevant graph which increases significantly the computational

overhead. This chapter offers an alternative suboptimal solution which alleviates the

aforementioned problem thus reporting smaller convergence times.

6.2.2 Min-Max Aggregate Utility

The algebraic connectivity, which has so far been used to assess node criticality,

only takes into account the topology of the underlying network. However, intuition

suggests that apart from the network topology, the network users also have a key role

to play when assessing the criticality of a particular node. Nodes which are utilized

by many source destination paths, or nodes which accommodate large amounts of

data traffic, can be considered more critical than others. This subsection utilizes the

Network Utility Maximization (NUM) framework proposed by Kelly in [50] to cast

these intuitive notions in a formal optimization based framework.

Consider a network which consists of a set of traffic sources S and a set of links L.
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Each network user s ∈ S injects data into the network with a rate denoted by xs. The

data is transferred from its source s ∈ S to its destination via a route which comprises

of a set of links collected in the set L(s) representing the route. Each link l ∈ L is

characterized by a finite capacity cl. To each user xs assign a utility function Us(xs)

which represents the satisfaction a user gets from a particular sending rate allocation.

The utility functions are assumed to be strictly increasing, continuously differentiable

and strictly concave. The objective of the network user collaboration is to maximize

the aggregate utility function subject to the capacity constraints. Therefore, a node is

considered as critical if its removal results in the highest degradation in the aggregate

utility function of the network. This is expressed formally below:

Q : CN = arg min
k∈Vc

max
s∈(S\k)

∑
s

Us(xs) (6.17)

subject to
∑

s:l∈(L(s)\L(k))

xs ≤ cl ∀l (6.18)

over xs ≥ 0 (6.19)

The optimization problem of eq 6.17 is a mixed integer discrete continuous prob-

lem, discrete in the minimization over the set of nodes and continuous in the max-

imization over the sending rates. One may employ the exhaustive search approach

to obtain the optimal solution when a single node is removed. However, this ap-

proach is computationally expensive and requires full network information. In ad-

dition, when multiple nodes are removed the complexity of the exhaustive search

approach increases combinatorially with network size. A number of algorithms have
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been proposed in literature to obtain more efficient optimal and suboptimal solutions

[70][105]. This chapter offers, a suboptimal solution which leads to a distributed,

simple to evaluate node criticality metric.

6.3 Proposed Algorithm

This section describes the proposed criticality metric which is based on suboptimal

solutions of the optimization problems P and Q described in the previous sections.

The rationale behind the offered suboptimal solutions is explained.

6.3.1 Algebraic Connectivity Minimization

The proposed suboptimal solution of problem P is based on spectral partitioning

considerations. Spectral partitioning, refers to the methodology with which a graph

can be partitioned into connected clusters using spectral properties of the graph,

namely the elements of the Fiedler vector. As a result of the property 1Tv = 0 in eq

6.5 the elements of the Fiedler vector attain both positive and negative values in the

range [−1, 1]. The following theorem establishes how the Fiedler vector elements can

be used to partition the graph into clusters which are well connected [33].

Theorem 1. Let G be a finite connected graph with N vertices and vi be the Fiedler

vector value corresponding to node i. Then for any s ≥ 0:

M(s) = {i ∈ N |vi + s ≥ 0 (6.20)
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the sugbraph G(s) induced by G on M(s) is connected.

A similar theorem exists for s ≤ 0. Different values of s yield different types

of cuts [33]. This chapter adopts the sign cut approach in which case s is equal

to 0. The above theorem only establishes the connectivity of the obtained clusters.

However, a number of other results indicate that spectral partitioning can produce

cuts with a good ratio of cut edges to separated vertices [22]. This implies that spectral

partitioning methods yield strongly connected clusters of approximately equal size,

loosely connected between them. This property motivates the proposed solution. As

the objective here is to identify nodes which when removed minimize the algebraic

connectivity and it is expected that if an edge lying in the spectral partitioning cut-set

is removed from the network, it will render the clusters even less loosely connected

thus significantly decreasing the algebraic connectivity of the network. Therefore,

in this chapter, such a node is considered critical whose removal will result in the

removal of an edge from the spectral partitioning cut-set. As mentioned above, this

chapter adopts the sign cut approach which partitions the network into two well-

connected clusters. All the nodes of the first cluster have positive corresponding

Fiedler vector elements whereas, all the nodes of the second cluster have negative

Fiedler vector elements. The cut-set thus comprises of all the edges which connect

nodes with corresponding Fiedler value elements of different sign. Therefore, such a

node is considered as critical who has at least one neighbouring node with a Fiedler

vector element of different sign. In mathematical terms a node i ∈ V is critical if it

satisfies:
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sign(vi) is +ve and sign(vj) is -ve

or

sign(vi) is -ve and sign(vj) is +ve (6.21)

where sign is the sign function and vi ∈ V are the elements of the Fiedler vector.

Figure 6.1: Example network where the Fiedler values are indicated at the corre-
sponding nodes.

The aforementioned concept is demonstrated through the sample network of Fig

6.1. The network consists of two well connected subgraphs. These are loosely con-

nected between them by means of a single link. The Fiedler vector values are cal-

culated and indicated on the diagram. It is observed that the Fiedler vector values

corresponding to the nodes in the left-hand subgraph have positive values, whereas,

the Fiedler vector values corresponding to nodes in the right-hand subgraph have neg-

ative values. Intuition suggests that the nodes which are critical are the ones which
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connect the two subgraphs via the single edge and can be observed in Fig 6.1. The

nodes that connect the two subgraphs have Fiedler vector values of different signs.

The question that arises is whether the proposed criterion is indeed a suboptimal

solution of the algebraic minimization problem P in eq 6.2. In subsequent sections,

the suboptimality of the proposed solution is demonstrated using simulations. This

section demonstrates the suboptimality by highlighting its relation to the criticality

criterion in eq 6.15 which has been demonstrated [102] to constitute a suboptimal

solution. In particular, the nodes which are detected as being critical according to

the proposed criterion of eq 6.21 also report high aggregate squared Fiedler difference

values
∑

j∈Ni
(vi− vj)2 which implies that they are also critical according to criterion

eq 6.15. The analytical verification of this observation is an open problem. This

observation is important as it suggests that the maximization of eq 6.15 does not

have to be done over the entire set of nodes but only over the ones which have Fiedler

element values of the same sign. This can significantly reduce the implementation

complexity of eq 6.15.

This relation is demonstrated using the network of Fig. 6.2 which comprises of 80

nodes. The network consists of two well connected subgraphs loosely connected by a

small set of edges. Each node is coloured according to the magnitude of the absolute

value of the quantity under investigation. Fig. 6.2(a) shows that, at each node i the

magnitude of the calculated Fiedler element value vi whereas, Fig. 6.2(b) shows the

magnitude of the aggregate squared difference value
∑

j∈Ni
(vi − vj)2. It is observed

that, there is a tendency for the Fiedler elements to attain their lowest value at nodes
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(a) (b)

Figure 6.2: Example network where at each node we highlight a) Fiedler vector values,
b) Difference in Fiedler vector value across the network.

which lie in the sign cut-set. As one moves away from the sign cut-set the Fiedler

values tend to increase. In addition, it is observed that, nodes which lie in the sign

cut-set tend to attain large aggregate squared difference values. This demonstrates

the relationship between eq 6.21 and eq 6.15.

The proposed change of sign approach is amenable for implementation in a dis-

tributed manner. Recent techniques [14], allow the distributed calculation of Fiedler

values at each node. Then, the only thing that a node needs to do in order to classify

itself as critical is to check whether at least one of its neighbours has a Fiedler value

with a different sign than itself. However, this approach leads to multiple nodes being

detected as critical. What if a single node needs to be selected? Among the nodes

which lie in the sign cut-set how do we choose the one which is the most critical? In

our recent work in [8] we have chosen the node which maximizes the sum of squared
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differences
∑

j∈Ni
(vi − vj)

2, whereas, this chapter chooses an alternative criterion

which is based on a distributed suboptimal solution of the problem Q in (6.17).

6.3.2 Min-Max Aggregate Utility

Here, the strict concavity of the utility functions is relaxed to assume linear utility

functions Us(xs) = xs. The proposed criticality metric is obtained using suboptimal

solutions of two approaches. The first approach is via the directional derivative along

the directions of rate deductions due to link removal. Let F (x∗) =
∑

s Us(x
∗
s) denote

the aggregate utility function evaluated at the optimal sending rates at which the

maximum is achieved. When a link l ∈ L is removed from the network then all the

sources s which utilize link l denoted by S(l) will be deprived from the ability to

send data. This is expected to lead to a reduction in the cost function F (.) along the

directions xs, s ∈ S. Our aim is to remove a link which will cause maximum reduction

in the cost function F (.). By employing steepest descent considerations a removal

which maximizes the directional derivative is thus sought. We thus investigate the

effect of removing link l on F by considering the directional derivative of F along the

unit vector ~yl =
∑

s∈S(l)

1√
nl

~is, where nl is the cardinality of S(l) and ~is is the unit vector

along the direction xs. The directional derivative D~ylF evaluated at the equilibrium

point x∗ is given by
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D~ylF = ~yl.5 fx=x∗ = (6.22)

1
√
nl

∂F

∂x1
+

1
√
nl

∂F

∂x2
+ ...+

1
√
nl

∂F

∂xn

Since the utility functions are assumed linear:

D~ylF =
√
nl (6.23)

Since the objective is to minimize F (x∗) links l are sought which maximize the

directional derivative. The other approach is by direct calculation of the reduction

in F (x∗) when a link l is removed. Due to the linear utility function assumption,

F (x∗) =
∑
s∈S

x∗s. When a link l is removed, all the sources s which utilize link l will

be deprived from the ability to send data. This will result in a reduction in F (x∗)

by an amount ∆y∗l =
∑

s∈S(l)
x∗s. Since the objective is to minimize F (x∗), links l are

sought which report the highest input data rate ∆y∗l . We combine the aforementioned

approaches to classify as critical the links which satisfy:

CN = arg max
l∈L

√
nl∆y

∗
l (6.24)

Despite the fact that the discussion has so far been made with reference to link

removal, the derived criterion of eq 6.24, also applies to node removal. n is the total

number of connections traversing the node, whereas ∆y∗ is the input data rate at the
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node. The dependence of the criticality metric on n is in line with the well known

betweenness centrality criterion. The dependence on the input data rate is in line

with the intuitive notion that the more data traverses a node the more critical it is.

The input data rate at a particular node is a quantity that can be calculated locally.

The number of active connections, however, is readily available locally only in systems

which maintain per connection states at each node. When such per connection states

are not available, estimates of the active connections can be used instead. Such

estimates can be generated online using parameter identification techniques proposed

in literature [54].

Algorithm 1: Distributed Critical Node Identification.

Initialization: Every node i shares corresponding Fiedler vector component to its1

neighbouring nodes and stores a flag bit fi = 1, set t← 0
Step 1:2

if vi > 0 and vj < 0 ∀ j ∈ Ni then3

calculate 4βi(t) =
√
niyi. Each node i transmits 4βi(t) to its neighbours with4

vj > 0 and computes: 4βi(t) = max{4βi(t),4βj(t)}j ∈ Ni

else5

fi = 0, 4βi(t) = 06

end7

end8

Step 2:9

if (t mod D)= 0 then10

each node checks weather fi = 1 or not,11

Critical Node = arg max{4βi(t),4βj(t)} , j ∈ Ni12

else13

At all nodes observing a sign change with vi > 0 and vj < 0, set fi = 1. Each14

node i transmits 4βi(t) to its neighbours with vj > 0 and computes:
4βi(t+ 1) = max{4βi(t),4βj(t)} j ∈ Ni

end15

end16

if 4βi(t+ 1) 6= 4βi(t) then17

4βi(t+ 1)←4βi(t), t = t+ 1, set fi = 018

end19

Return to Step 220
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The obtained suboptimal solutions of the two considered optimization problems

are then combined to yield the methodology with which the most critical node in the

network is identified. The methodology is as follows. The change of sign approach

of eq 6.21 is first used to identify all the nodes which lie in the sign cut-set. Among

the nodes which lie in the sign cut-set, the most critical is the one which maximizes

the cost function of eq 6.24. The proposed approach is amenable for implementation

in a distributed manner. Recently proposed techniques [14] allow the distributed

calculation of the Fiedler elements at each node. After the Fiedler elements are

calculated at each node, the nodes employ beacon message exchange to share their

Fiedler elements with their neighbours. If a node detects that the sign of the Fiedler

value of one of its neighbours is different than its own sign, then it identifies itself

as lying in the sign cut-set of the network graph. All the nodes that lie in the sign

cut-set calculate the
√
n∆y cost of eq 6.24 and initiate a blind flooding algorithm

to share their cost with all the other nodes lying in the sign cut-set. When a node

in the sign-cut set receives a cost initiated from another node in the sign cut-set it

compares the two, and if the maximum is its own cost it identifies itself as a critical

node and rebroadcasts the maximum of the two. This approach guarantees that when

the algorithm terminates, only one critical node is left within the network which is

the one which has the highest cost among all the nodes which lie in the sign cut-set.

Note that the blind flooding algorithm is implemented only over the nodes which

share the same Fiedler element sign. This achieves significant savings in computation

effort relative to other approaches. Below, is the pseudocode of the proposed method.
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6.4 Analysis

In this section, we derive analytically a lower bound on the algebraic connectivity

when a single node is removed from the network and use it iteratively to evaluate

how conservative our suboptimal solutions are when multiple nodes are removed from

the network.

Theorem 2. Let G = (V,E) be a graph of n nodes with eigenvalues 0 ≤ ∧2 ≤

∧3 ≤ ... ≤ ∧n. Then, upon removal of a node w node from the graph, the algebraic

connectivity of the resultant graph is lower bounded by:

λ ≥ ∧2 −
u22

1 + (bn − u22)/(∧2 − ∧n)
(6.25)

where

u2 =
∑
w∈n

∑
j∈Ni,i∈w

(vi − vj), (6.26)

bn = n(tr(A)− u2) +
√
n(1− n)f(A) (6.27)

and

f(A) = tr

(
A− tr(A)

2
I

)2

−

(
2

(
u2 −

tr(A)

2

)2
)

(6.28)

with
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tr

(
A− tr(A)

2
I

)2

= tr(A2)− (tr(A))2

2
(6.29)

Here, A is the Laplacian matrix defined by the node w that is being removed from

the graph.

Proof. We use the eigenvalue decomposition of L = QDQT whereD = Diag(0,∧2, .....,∧n)

is the diagonal matrix of ascending eigenvalues and Q is an orthogonal matrix with

corresponding eigenvectors of L in its columns. The eigenvalues of a Laplacian matrix

L can be found using Lv = λv, therefore, in this expression we substitute L to get

[87]:

(QDQT )vj = ∧jvj (6.30)

Where vj is the linear combination of the eigenvectors corresponding to the jth

eigenvalue ∧j of L. The removal of w nodes from the network reduces D by a factor

uuT where u = QThl and hl is lth column of the incidence matrix A of the network

[38]. Thus we have:

Q(D − uuT )QTvj = ∧jvj (6.31)

We know from [41] that, the eigenvalues of eq 6.31 can be obtained by solving

D − uuT − λI for the determinant of the matrix, where I is the identity matrix [41]:

det(D − uuT − λI) = 0 (6.32)
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det(D − λI)det(I − (D − λI)−1uuT ) = 0 (6.33)

Eq 6.33 can be reduced to [41]:

n∏
i=1

(∧i − λ)

(
1−

n∑
i=1

u2i
(∧i − λ)

)
= 0 (6.34)

This shows that, the eigenvalue of eq 6.31 can be computed by finding the roots

of the secular equation:

1 =
n∑
i=1

u2i
∧i − λ

(6.35)

We solve eq 6.35 for the the eigenvalue λ of the network that results after the

removal of w node from the network. Here, we know that u1 = 0 and u2 =∑
w∈n

∑
j∈Ni,i∈w(vi − vj). Therefore we have:

u22
∧2 − λ

= 1−
n∑
i=3

u2i
∧i − λ

(6.36)

This can be re-arranged into:

λ = ∧2 −
u22

1 +
∑n

i=3 u
2
i /λ− ∧i

(6.37)

According to the eigenvalue interlacing theorem, the algebraic connectivity of

network that results from the removal of a node is bounded by 0 ≤ λ2 ≤ ∧2 [42].

Theorem 3. Let X be a graph with n vertices and let Y be obtained by removing a



CHAPTER 6. OPTIMIZATION BASED SPECTRAL PARTITIONING 136

vertex from X then [42]:

λi−1(L(X)) ≤ λi(L(Y )) ≤ λi(L(X))

We used Theorem 3 along with the observation in eq 6.37, concludes that, the LHS

is a decreasing function whereas the RHS is an increasing function of λ, therefore we

obtain the lower bound of λ by using the appropriate substitution of λ = ∧2 > λ2.

This gives us:

λ ≥ ∧2 −
u22

1 +
∑n

i=3 u
2
i /(∧2 − ∧n)

(6.38)

From [77] it is known that
∑n

i=1 u
2
i ≤ bn, thus we approximate

∑n
i=3 u

2
i with the

difference bn − u22 to obtain the final expression of eq 6.25, where:

bn = n(tr(A)− u2) +
√
n(1− n)f(A) (6.39)

and f(A) is:

f(A) = tr

(
A− tr(A)

2
I

)2

−

(
2

(
u2 −

tr(A)

2

)2
)

(6.40)

In eq 6.40 the square of the matrix can be avoided by using eq 6.41 [77].

tr

(
A− tr(A)

2
I

)2

= tr(A2)− (tr(A))2

2
(6.41)
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Here tr(A2) = ||A||2f and ||A||f is the Frobenius matrix norm of A.

6.5 Performance Evaluation

This section evaluates the performance of the proposed criticality metric using sim-

ulations conducted on Matlab [61] and on the Network Simulator (NS-3) [69]. This

section first assess how conservative the suboptimal solutions are with reference to the

posed optimization problems, and then evaluates the ability of the proposed method

to choose the most critical nodes in the network. The criticality of a fixed number of

nodes is assessed by evaluating the degradation in performance achieved when these

nodes are removed from the network. Here, a comparative study is conducted to in-

vestigate the performance of the proposed metric against other approaches that exist

in literature such as the Betweenness Centrality [34], the Closeness Centrality, the

Degree Centrality [35], the exhaustive search approach, the Hybrid Interactive Linear

Programming Rounding (HILPR) metric proposed in [82], the controllability of com-

plex networks (Cont) approach in [59], the suboptimal solution of eq 6.15 which is

referred to as the Sum Squared Difference approach (SSD) [102][20], the suboptimal

solution of eq 6.16 which is referred to as the Normalized Sum Squared Difference

approach (NSSD) [57][96] and a previously proposed approach which is referred to

as Spectral Partitioning for Node Criticality approach (SPNC) [8]. The simulation

results of this chapter indicate that the suboptimal solutions are not conservative and

that the proposed criticality metric chooses the most critical nodes in the network as

it achieves the greatest degradation in performance when these nodes are removed.
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6.5.1 Algebraic Connectivity Suboptimality

This subsection evaluates based on simulations conducted on Matlab, the ability of the

change of sign approach, incorporated in the proposed metric, to serve as a suboptimal

solution of the posed algebraic connectivity minimization problem i.e. to identify

nodes which when removed achieve algebraic connectivity values which are close to

the minimum. It also compares the change of sign approach with other approaches

which have been proposed in literature in terms of the algebraic connectivity achieved.

As the objective here is to focus on the topological aspects of the proposed criticality

metric these simulations do not account for network users. To find a single critical

node the proposed approach first employs the change of sign approach to find the

set of nodes which lie in the sign cut-set and among these it finds the ones which

maximize the
√
nl parameter. The parameter nl at a particular node l is found by

calculating the number of times the node l participates in the shortest path, among

all shortest paths between all possible source destination pairs.

Here, simulation experiments are executed on an area of 1000× 1000m2 in which

100 nodes are randomly deployed. The x and y coordinates of the nodes are drawn

from a uniform random distribution. The nodes employ wireless communication to

form a wireless ad hoc network. In order to evaluate the performance of the considered

criticality metrics as a function of the transmission radius of the nodes, the considered

transmission radius values are kept in the range 100m to 200m. To avoid random

fluctuations due to single simulation run, simulations were conducted for 20 different

network topologies and the results were then averaged.
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(a) (b)

(c) (d)

Figure 6.3: Algebraic Connectivity versus the trasnsmission radius when: a) & b) a
single node is removed from the network, c) & d) five nodes are removed from the
network.
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Fig 6.3a & 6.3b show the algebraic connectivity of the aforementioned network as

a function of the transmission radius when only one node, the most critical in the

network, is removed. In these simulations, the proposed change of sign approach is

tested against the exhaustive search approach, the betweenness centrality, the close-

ness centrality, the degree centrality, the HILPR, the Cont, the SSD and the NSSD.

Note that when a single node is removed the optimal algebraic connectivity value

can be found using the exhaustive search approach i.e. the algebraic connectivity is

calculated when each node is removed from the network and the minimum among all

calculated values is recorded.

The first thing to note is that, as expected, the algebraic connectivity increases

monotonically as the transmission radius increases. The other thing to note is that

at almost all transmission range values, the proposed change of sign approach, man-

ages to yield the smallest algebraic connectivity value which is surprisingly very close

to the optimal value calculated using the exhaustive search approach. This demon-

strates that the proposed suboptimal solution is not conservative in the sense that it

yields algebraic connectivity values which are close to the optimal. A similar study

when conducted for the removal of 10 nodes from the network yields that it is com-

putationally expensive to use the exhaustive search approach therefore, in order to

evaluate the suboptimality of the proposed approach it is compared with the lower

bound calculated in section 6.4. The results are shown in Fig 6.3c & 6.3d. The results

indicate that all criticality metrics report similar algebraic connectivity values which

are close to the lower bound. This again demonstrates the fact that the proposed
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suboptimal solution is not conservative.

6.5.2 Network Utility Maximization Suboptimality

The main objective of this set of simulation experiments is to evaluate how conserva-

tive the proposed criticality metric is in solving the min-max optimization problem

of eq 6.17. Since a suboptimal solution is proposed, it is crucial to evaluate the de-

gree with which the metric identifies nodes which when removed lead to aggregate

utility functions which are close to the optimal. The optimal cost function is found

by employing an exhaustive search approach i.e. the maximum aggregate utility is

calculated, when each node is removed from the network and the minimum is found

among all values calculated. The utility function used in this section is logarithmic

in nature as it has been observed as common practice in the available literature. The

simulations setup for the problem at hand considers an area of 100 × 100m where

50 nodes are deployed with the x and y coordinates drawn from a uniform random

distribution. Each node is characterized by a transmission radius of 30m. At each

time instant, a particular number of users inject data into the network along specific

data routes. Where the number of users vary from 5 to 20 and the reported results

are averaged over 50 experiment repetitions, in order to decrease the inaccuracies

due to the random nature of the setting. As the proposed criticality metric incor-

porates the number of users traversing the node which is related to the betweenness

centrality metric, therefore, the proposed approach is not only compared with the

optimal but also with the betweenness centrality metric. For each considered number
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of users, a single node is removed from the network according to the criticality metric

under consideration, and results recorded for the the maximum aggregate utility of

the resulting network. In order to appreciate the level of the cost function reduction

achieved the comparison also includes the maximum aggregate utility value prior to

node removal which is referred to as the original network. The incorrect selection of

the critical node is reported as the maximum network utility, which in the considered

scenario will be a node that creates a bottleneck for the network and thus bounds

the maximum aggregate utility, such a node upon removal will render the network

with a higher aggregate utility. The results are shown in Fig. 6.4. It is observed

that the proposed criticality metric yields smaller maximum aggregate utility values

than the betweenness centrality metric which are close to the optimal values. This

demonstrates the near optimality of the proposed solution.

Figure 6.4: Aggregate network utility versus number of node in a network when
critical nodes are selected using various approaches.
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6.5.3 Computational Complexity

It has been established in section 6.3 that the proposed change of sign approach is

related to the sum of squared differences approach of eq 6.15 in the sense that nodes

which lie in the sign cut-set report high sum of squared difference values. However,

the main benefit of the proposed approach is that the maximization algorithm does

not have to be performed over the entire node set but only over the nodes which report

the same sign of the Fiedler value element. In order to demonstrate, the significant

reduction in computational effort achieved the proposed algorithm in algorithm 1

is compared with the maximization consensus algorithm proposed in [57] in terms

of the computational time required for the algorithm to reach an equilibrium. In

the simulation experiments that are conducted, nodes are deployed in an area of

1000× 1000m2 with their x and y coordinates drawn from a uniform distribution. In

order to evaluate the computational effort for different node densities and network

sizes we consider number of node values are varied in the range 100 to 1000. Each

node is assumed to have a fixed transmission radius of 250m. The computational time

for the two approaches as a function of the number of nodes is shown schematically

in Fig. 6.5. It is observed that the proposed approach is able to achieve significant

reductions in the computational time. These reductions become larger with increasing

network size.
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Figure 6.5: Computational time versus the number of nodes for the proposed approach
and the maximization consensus algorithm of [57].

6.5.4 Network Centric Evaluation

Having established the suboptimality of the proposed solutions, and the significant

reduction in implementation complexity achieved, in the final set of experiments, per-

formance of the proposed criticality metric is evaluated in a more realistic network

scenario. The simulation experiments are conducted on the NS-3 Simulator [69] and

the network performance evaluated using network centric performance criteria such

as the total network throughput, the average per packet delay, the average per packet

jitter and the total number of packets dropped. In all the simulations the performance

of the proposed metric is compared against metrics such as, betweenness centrality,

closeness centrality, degree centrality, Hybrid Interactive Linear Programming Round-

ing (HILPR), the Controllability of complex networks (Cont),the Sum Squared Differ-

ence (SSD) approach, the Normalized Sum Squared Difference (NSSD) approach and

the previously proposed Spectral Partitioning for Node Criticality (SPNC) approach
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[8].

The evaluation was conducted on an area of 1500 × 1500m2, where 100 wireless

adhoc network nodes were placed using a uniform random distribution. Each node was

equipped with a 802.11b transceiver with a transmit power of 7.5dbm. 15% of them

had an option of transmitting at a power 1.5 × 7.5dbm [10] thus forming long range

communication links. The degradation in signal strength as a function of the distance

covered was represented by the Friss loss propagation model. A randomly selected

set of 20 source/sink pairs initiate the communication in the network by transmitting

packets at a rate of 2.048Kb/s each. Packet based transmission was assumed with

the packet size set to 64byte packets. Routing paths within the network are formed

using the OLSR (Optimized Link State Routing) protocol [62]. All measurements

are obtained in the interval 100− 300 seconds after the start of the simulation. This

provides sufficient time for the OLSR algorithm to converge to its equilibrium state.

The degradation in network performance is evaluated after 10% of the most critical

nodes are removed from the network. This process is repeated 10 times with the

results averaged to decrease the stochastic uncertainty of the obtained results.

The first comparison evaluates the performance of the proposed approach against

the metrics under consideration in this chapter for the network throughput that is

achieved. The throughput of a network is defined as the total number of packets

delivered to their destinations within the network per unit time. Fig 6.6a, 6.6b and

Fig 6.6c, 6.6d show the achieved throughput after a single and 10% of the most

critical nodes are removed from the network respectively. It is observed that, the
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(a) (b)

(c) (d)

Figure 6.6: Time evolution of network throughput for the original network, and
when a) & b) A single node, c) & d) 10% of the most critical nodes are removed
according to betweenness centrality, closeness centrality, degree centrality, Hybrid
Interactive Linear Programming Rounding (HILPR), the Controllability of complex
networks (Cont),the Sum Squared Difference (SSD) approach, the Normalized Sum
Squared Difference (NSSD) approach and the Spectral Partitioning for Node Criti-
cality (SPNC) approach.
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proposed approach reports the highest decrease in the achieved throughput relative

to the approaches that already exist in literature. This demonstrates that the pro-

posed algorithm is successful in identifying the most critical nodes of a network. The

decrease in average throughput observed at certain periods of time is due to the long

range link which have a higher transmitter power compared to the rest of the nodes

in the network. The increase in power enables them to cover a larger distance for

relaying data and thus reserve a larger portion of the network, increasing the prob-

ability of collision in the network. This results in a similar trend observed by the

original network and all the criticality metrics under consideration of a decrease in

throughput at around 200sec.

The next experiments were conducted aiming at comparing the proposed criticality

metric against other approaches using the average per packet delay of the network.

The delay experienced by packets in transit is an important network attribute which

describes its performance. Low delays are preferable. In wireless ad hoc networks,

such as the one considered in this study, delays are due to a number of reasons:

network congestion resulting in queuing delays, poor channel behaviour resulting in

re-transmissions and contention resulting in large vacant medium delay times due to

the CSMA/CA mechanism. This chapter considers the average per packet delay as

the performance metric. This is calculated by dividing the total number of delays

observed with the number of packets transmitted throughout the simulation time.

Fig 6.7 shows the time evolution of the average per packet delay reported in the

original network and when nodes are removed according to approaches that exist in
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(a) (b)

(c) (d)

Figure 6.7: Time evolution of the per packet delay for the original network, and
when a) & b) A single node, c) & d) 10% of the most critical nodes are removed
according to betweenness centrality, closeness centrality, degree centrality, Hybrid
Interactive Linear Programming Rounding (HILPR), the Controllability of complex
networks (Cont), the Sum Squared Difference (SSD) approach, the Normalized Sum
Squared Difference (NSSD) approach and the Spectral Partitioning for Node Criti-
cality (SPNC) approach.
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literature and the proposed criticality metric. It is observed that the proposed metric

is able to bring a major degradation in performance as the average per packet delay

increases significantly when nodes are removed. This is evidence of the fact that

the proposed approach is more accurate in identifying the most critical nodes of a

network. However, in Fig 6.7a and partly in 6.7c it is observed that in some cases

the performance of the proposed metric is comparable to the performance of other

metrics such as the Cont and Closeness Centrality, as similar average per packet delay

values are reported when nodes are removed. However, it must be noted that even in

these cases the proposed metric is the metric of choice, as it has been demonstrated

earlier in Fig 6.6, that it outperforms the other proposals in terms of the degradation

in throughput achieved.

Next, the average per packet delay jitter is conducted as the performance metric.

This is calculated by dividing the total delay jitter observed throughout the simu-

lation experiment with the total number of transmitted packets. The delay jitter is

calculated as the variation in packet reception times at the receiver. Increasing delay

jitter values indicate increasing congestion within the network, so small delay jitter

values are preferable. Fig 6.8 shows the time evolution of the average per packet

delay jitter observed in the original network and when nodes are removed according

to various criticality metrics. It is observed that the proposed metric outperforms

other metrics when multiple nodes are removed and it reports a comparable average

per packet jitter when a single most critical node is removed. Despite a comparable

reduction in average per packet jitter, the proposed approach is considered as the
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(a) (b)

(c) (d)

Figure 6.8: Time evolution of the per packet jitter for the original network, and
when a) & b) A single node, c) & d) 10% of the most critical nodes are removed
according to betweenness centrality, closeness centrality, degree centrality, Hybrid
Interactive Linear Programming Rounding (HILPR), the Controllability of complex
networks (Cont), the Sum Squared Difference (SSD) approach, the Normalized Sum
Squared Difference (NSSD) approach and the Spectral Partitioning for Node Criti-
cality (SPNC) approach.
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(a) (b)

(c) (d)

Figure 6.9: Time evolution of the number of dropped packets for the original net-
work, and when a) & b) A single node, c) & d) 10% of the most critical nodes are
removed according to betweenness centrality, closeness centrality, degree centrality,
Hybrid Interactive Linear Programming Rounding (HILPR), the Controllability of
complex networks (Cont), the Sum Squared Difference (SSD) approach, the Normal-
ized Sum Squared Difference (NSSD) approach and the Spectral Partitioning for Node
Criticality (SPNC) approach.
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better choice for identification of the most critical node in the network due to the

prominent reduction in average throughput of the network reported in Fig 6.6.

Finally, the total number of dropped packets is considered as the performance

metric. High number of dropped packets in the network due to buffer overflow, is a

strong indication of congestion. When nodes are removed from the network, the num-

ber of available paths decreases and the remaining paths are forced to accommodate

all traffic. This makes them more vulnerable to congestion. When critical nodes are

removed, congestion is expected to be more severe and the number of dropped packets

is thus higher. The results of the conducted simulation experiments are shown in Fig

6.9. It is observed that, during the whole simulation time the proposed scheme is

able to bring a major increase in the number of dropped packets compared to other

approaches thus making it a viable option for identifying critical nodes in a network.

6.6 Summary

This chapter proposed a new metric with which critical nodes can be identified in

computer networks. The problem is posed in an optimization based framework and a

metric is developed by combining suboptimal solutions of two optimization problems:

the algebraic connectivity minimization problem which captures the topological as-

pects of node criticality and the min-max aggregate utility problem which captures

its connection oriented nature. It is shown here that, the suboptimal solutions are not

conservative and it is demonstrated through extensive simulations that the proposed

method is effective and superior relative to the other approaches. The method was
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evaluated on a wireless ad-hoc network. However, the problem formulation has been

general and it thus opens the way for its application in other types of complex net-

works such as transportation networks, biological networks and water pipe networks.

In the future, such extensions will be pursued in parallel with the development of a

more efficient distributed algorithm that takes into account the change in the Fiedler

vector elements across the network.



Chapter 7

Conclusion and Future Work

This chapter provides the conclusion of the work presented in this thesis along with

a brief overview of a future direction of research.

7.1 Conclusion

The change in APL of a network upon removal or addition of a node is among the

key considerations when dealing with critical node identification or accessing network

vulnerability. This thesis, addressed this critical node identification problem by first

identifying the parameters that affect the APL of a network, which is shown in litera-

ture to be computed using the complete knowledge of the network, where each nodes

computes its distance from every other node in the network. This tedious approach

is replaced by a much simpler and computationally less expensive approach in this

thesis where, the network is broken down into branch and leaf nodes and then the

APL approximated. The proposed approach when tested against existing approaches

154
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using extensive simulations has shown to outperform existing approaches in terms of

computational complexity.

The APL of a network, as established in this thesis, plays a major role in ap-

proximating the average time it takes for a message to be decimated throughout the

network and numerous research has been done in order to reduce the APL of a net-

work. Existing approaches achieve this goal by either equipping nodes with special

high power antennas that would cover a longer distance, equip nodes with special di-

rected antennas for a directed beam forming or would rely on addition of a dedicated

wire, connecting different nodes for increasing the connectivity of the network. This

thesis eliminated this requirement of adding special hardware by proposing a new

Variable Rate Adaptive Modulation (VRAM) scheme, that changes the modulation

schemes to achieve long distance communication. The proposed approach reduces the

APL of a network and improves the communication between nodes. It was observed

here that, the proposed approach reported an average improvement of 41% in reduc-

ing the APL of a network and it reported an average 21% increase in the average

node degree of the network when compared to existing approaches. The increase in

average node degree is evidence to the fact that more nodes are directly connected

with each other and thus message sharing among distant nodes in a network will take

a shorter amount of time. This led to the deduction that a critical node will be the

one that would increase the APL of a network upon its removal and will therefore

increase the time taken for communication between nodes in the network. Numerous

approaches exist in literature that work on identifying critical nodes in a network.
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A number of approaches that exist in literature mainly deal with the geographic

location of nodes or the networks traffic flow pattern to identify these critical nodes

of a network whereas, this thesis proposes two approaches, the first being an intu-

itive approach, that identifies critical nodes of a network (nodes that result in the

highest decrease in the performance of the network upon their removal), based on

a newly defined diversity index which is combined with an existing Banzhaf power

index approach. The newly defined diversity index comprises of the diversity in the

link length capability of a node and is referred to as the variation in link length metric

and the diversity in weights of the node degree which is referred to as the weighted

node degree. The combined affect of the diversity index and the banzhaf power index

has been reported to outperform existing approaches in identifying critical nodes in

a network. The identification of these critical nodes will aid in timely adaptation of

the network so that their influence on the performance of the network can be miti-

gated. The proposed approach when tested for the affect it has on the topology of

a network when nodes are removed based on it, then it was observed that a 7% and

18% percent increase in average path length of the random and WaxMan network

topology respectively took place and a total paths elimination for the small world

network topology was observed. Furthermore, it reported a 13%, 28% and 68% de-

crease in the average node degree for the random, WaxMan and Small World network

topologies respectively which means that the identified/removed node was connected

to multiple node in the network thus breaking multiple connections upon its removal.

The proposed approach also outperformed existing approaches in terms of increas-



CHAPTER 7. FUTURE WORK 157

ing the number of isolated nodes in a network. The increase in number of isolated

nodes is the evidence to the fact that the network has been partitioned into multiple

disconnected components. The proposed approach reported a 150%, 400% increase

in the number of isolated nodes in the random and Small World network topologies

respectively and a small increase of 0.8% decrease in the number of isolated nodes in

a WaxMan network topology. This small increase is negligible when it comes to really

large networks. The proposed approach was also tested against other approaches for

analysing the connectivity and the affect it had on the performance of the network

and it was observed that the critical nodes identified by the proposed approach when

removed from the network result in a decrease in the algebraic connectivity of a net-

work by 58% whereas, as for the performance of the network, the Throughput of the

network degraded by 22% for the random network topology and it was backed by an

increase in the average delay, average jitter and average number of dropped packet

by 33%, 45% and 75% respectively. These all are evidence to the fact that the identi-

fied critical node is vital for maintaining normal network functionality and upon its

removal the network undergoes major performance degradations.

In order to justify the claims made in the aforementioned work, a mathemati-

cal framework was also built which uses suboptimal solutions for two optimization

problems, namely the algebraic connectivity minimization and the network utility

maximization problem. The resultant solution of these optimization problems when

used to identify critical nodes in a network has been shown to outperform exiting

work in identifying critical nodes in a network. In this thesis, a lower bound on
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the algebraic connectivity is also calculated that identifies the affect on the algebraic

connectivity of the network when a certain node is removed from the network. The

critical node identified using this mathematical abstraction resulted in a reduction in

the algebraic connectivity of the network by 22% which denotes that the network is

loosely connected and the removal of a few more nodes can easily partition the net-

work. It is also reported in this thesis that, the loosely connected network formed after

removing the identified critical node results in a bottleneck close to the center of the

network which increases the network congestion, reduces network throughput by 16%

and increases the average per packet delay, the average number of dropped packets

and the average jitter experienced in the network by 6%, 4% and 6% receptively. The

proposed approach is complimented in this thesis with a distributed implementation

that is computationally less complex and can be implemented in complex networks.

It was observed that the proposed approach reduces the average computation time

of a network by 36% when compared to existing approaches in the network. These

statistics clearly state that the proposed approach outperforms existing approaches

in identifying critical nodes in a network and that these nodes when removed result in

a higher degradation in performance of the network, therefore, in order to maintain

normal network functionality, it is necessary to timely identify these critical nodes

and take appropriate measures.
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7.2 Future Direction of Research

This thesis proposes solutions to two major problems, the first being the estimation of

the average path length of a network and the second being the identification of critical

nodes in a network. In the first problem, the underlying assumption is of reducing an

arbitrary network into a tree structure, the elimination of this assumption will lead

to multiple open problems and this can be used as a future direction of work.

The second problem that is being addressed by this thesis initiates its own set of

problems that can be addressed in the future. The first being that, as a conventional

approach the vulnerability of a network is estimated for a particular instance when

the most critical node is removed from the network, but in real life scenarios, most of

the networks have a recovery mechanism with the aid of which they adapt and change

the network structure to regain maximum network utility. A new direction of research

in this domain would be of finding a particular critical node, who’s removal will have

an impact that cannot be recovered by the network with the aid of a conventional

recovery mechanism.

Along with this, another open problem that originates from this thesis is the

design of an efficient distributed critical node identification mechanism. This thesis

also proposes a distributed mechanism for identification of critical nodes but it relies

only on the sign of the Fiedler vector elements that correspond to each node in the

network. It was observed during this thesis that, the magnitude of the Fiedler values

decreases as one moves to a node close to the center of the network (the sign cut

region) and it increases as one moves away from this region. As a future direction
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of research, the use of this change in magnitude along with the change in sign would

help in forming a more efficient distributed critical node identification mechanism.
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