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Abstract: The preservation of natural assets is nowadays an essential commitment. In this regard, 15 
root systems are endangered by fungal diseases which can undermine the health and stability of 16 
trees. Within this framework, Ground Penetrating Radar (GPR) is emerging as a reliable non-17 

destructive method for root investigation. A coherent GPR-based root-detection framework is 18 
presented in this paper. The proposed methodology is a multi-stage data analysis system that is 19 
applied to semi-circular measurements collected around the investigated tree. In the first step, the 20 
raw data are processed by applying several standard and advanced signal processing techniques, 21 

to reduce noise-related information. In the second stage, the presence of any discontinuity element 22 
within the survey area is investigated by analysing the signal reflectivity. Then, a tracking algorithm 23 
aimed at identifying patterns compatible with tree roots is implemented. Finally, the mass density 24 
of roots is estimated by means of continuous functions, to achieve a more realistic representation of 25 
the root paths and to identify their length in a continuous and more realistic domain. The method 26 

was validated in a case study in London (UK), where the root system of a real tree was surveyed 27 
using GPR and a soil test pit was excavated for validation purposes. Results support the feasibility 28 
of the data processing framework implemented in this study. 29 

Keywords: Assessment of Tree Roots; Ground Penetrating Radar (GPR); Tree Root Mapping; Tree 30 
Root Mass Density; Multi-stage Data Processing Framework 31 

 32 

1. Introduction 33 

Trees and forests are valuable resources to humankind and the nature. Trees are essential for 34 

life, as they provide oxygen, store carbon, stabilise the soil, protect the land from erosion and provide 35 
food and habitats for wildlife [1]. There is scientific evidence regarding the effects that trees and 36 
forests have on human health [2, 3], as they contribute to the reduction of pollution [4, 5] and noise, 37 
[6], provide food and medical substances [7], and serve as a source of essential products, including 38 
timber, fuel, waxes, oils, gums, and resins [1]. Trees and forests provide much needed resources and 39 

protection for different species. They protect buildings, infrastructures and crops from sunlight, 40 
winds, and flooding [7], and reduce energy consumption for heating and cooling of buildings [8]. 41 
Finally, trees also have a significant social and economic value, as they provide a pleasant 42 
environment for recreational activities [1, 9], contribute in increasing social interaction [10], and 43 
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increase business income and property values in urban environments [11]. For the reasons mentioned 44 

above, the safeguarding, health monitoring and assessment of trees, forests and woodland are of 45 
paramount importance. 46 

Among all the tree organs, roots are of vital importance because of their critical functions in 47 
health of trees and plants. In fact, they provide anchorage and support [12], absorb minerals and 48 

water from the soil, store carbohydrates and synthesise hormones [1]. The typical tree root system is 49 
composed of two main root types, namely the woody roots and the non-woody (or fine) roots [13]. 50 
The first group is composed of more prominent and more rigid roots, which have undergone 51 
secondary growth and have an eternal lifespan. These roots form a structure which is responsible for 52 
the anchorage of the tree in the ground [1]. On the other hand, fine roots absorb water and nutrients 53 

from the soil [1], synthesise the rooting hormone, and are accountable for root exudation and 54 
symbiosis with soil microorganisms. As suggested by their name, fine roots usually are small in 55 
diameter (< 2 mm) and are not subject to secondary thickening. Besides, their lifespan does not exceed 56 
some weeks, depending on soil conditions and temperature [1]. 57 

However, even if roots can be up to 65% of a tree’s total biomass [14], they are essentially found 58 

below the soil surface, which results in a limited understanding of the tree root system architecture 59 
and development, as well as of their interaction with the surrounding environment [13]. This carries 60 
several problems, especially concerning the health of the plant itself. In fact, fungal infections of roots 61 
are among the main causes of trees’ diseases [15]. Fungi usually spread from the roots of dead trees 62 

[16] and infect trees that have been weakened by other factors, such as climatic changes or other types 63 
of disease [17]. The infection then induces root rotting and moves to the lower stem of the tree, until 64 
no anchorage or sustain is provided anymore, and the tree dies either of disease or by wind-throw 65 
[16]. 66 

Within this context, it is evident that the understanding of a tree's state of health is very 67 

dependent on the assessment of its root system. Locating tree roots and evaluating their extension 68 
and depth, is an essential and necessary task for a number of reasons, ranging from the conservation 69 
of the natural heritage to the provision of safety conditions in urban areas. Various methodologies 70 
are available to map the structure of a tree root system, and these can be divided into destructive and 71 
non-destructive testing (NDT) methods. Destructive methods include excavation, uprooting and the 72 

profile wall technique [18]. These methods are unpractical and unsuitable for large-scale forestry 73 
applications and, above all, they can also cause irreversible damage to trees [18-20]. Not last, 74 
destructive testing methods allow for the investigation of root systems only at the time of sampling, 75 
and therefore are of limited value for investigating roots’ development or the progress rate of a fungal 76 

infection. 77 
On the other hand, NDT methods are increasingly being acknowledged as effective for the 78 

investigation of root systems without harming or causing irreversible damage to the tree. Various 79 
NDT methods have been tested for root mapping, including X-ray tomography, nuclear methods and 80 
magnetic resonance [21-23], acoustic methods and electrical resistivity tomography [24]. Among 81 

these, ground-penetrating radar (GPR) is a fast, reliable [25] and cost-effective [26, 27] non-destructive 82 
method used to detect changes in the physical properties within the shallow subsurface [28]. A GPR 83 
system’s transmitting antenna emits electromagnetic (EM) pulses that propagate into the investigated 84 
medium in the form of waves [28]. When encountering a dielectric contrast, a part of the energy is 85 
back-reflected and recorded by a receiving antenna. Once collected, GPR data can be displayed in 86 

different ways, allowing for a representation of the subsurface in both two and three dimensions. 87 
GPR has been extensively employed in a wide range of applications and several disciplines, such 88 

as archaeological investigations [29], bridge deck  inspections [30], landmines’ detection [31], and 89 
civil and environmental engineering applications [32, 33] for decades. Regarding the use of GPR for 90 
tree root systems’ investigations, until about twenty years ago roots were considered as an unwanted 91 

source of noise, i.e., an obstacle that complicated the EM characterisation of soil profiles [34, 35]. 92 
According to the literature, GPR has been used for mapping tree root systems since 1999 [36]. From 93 
that time onward, GPR use in this area has increased [14, 38], due to its non-invasiveness and the 94 
rapidity of data collection. Most importantly, measurements can be easily repeated on a routine base, 95 
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thereby allowing for a more comprehensive monitoring of the roots’ growth process. Recent studies 96 

have focused on the use of GPR for large-scale investigations in forestry engineering and many efforts 97 
have been spent on the mapping of the tree root systems’ architecture [39]. More specifically, these 98 
studies were focused on the assessment of the roots’ interconnections with root systems belonging to 99 
nearby trees [40], the estimation of the tree root systems’ mass density and the improvements of the 100 

roots’ detection by advanced GPR signal processing techniques [13]. 101 
The present work reports the results of an experimental campaign conducted on a test site 102 

located in an urban park in London, United Kingdom. In particular, a GPR-based root-detection 103 
framework was tested on a diseased tree. The main aim of this research is to demonstrate the 104 
capability of mid-range frequency GPR antenna systems in efficiently reconstructing the architecture 105 

of tree root systems. To achieve this aim, the objective of this study are as follows: i) to provide root 106 
density maps at different depths, in order to interpret local variations of the root concentration; ii) to 107 
prove the feasibility of the proposed method by way of comparison between the results achieved and 108 
ground-truth information collected by soil excavation. 109 

2. Materials and Methods  110 

2.1. The Test Site 111 

The survey was carried out in Gunnersbury Park, Ealing, London (United Kingdom) (Figure 1). 112 
The tree under investigation, a sycamore (Acer pseudoplatanus), was identified for this study by the 113 
London Borough of Ealing’s Tree Service. This tree is located along a tree-lined avenue inside the 114 

park, at a distance of ~ 10 m from the adjacent trees.  115 

 116 
Figure 1. Study site for the GPR investigation (Map data: Google, Landsat/Copernicus). 117 

The concerned tree was under observation since 2010, according to the “Friends of Gunnersbury 118 
Park and Museum” registered charity, as “a significant cavity of over 10% of the stem was present” [41]. 119 
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Over the past decade, tree's conditions had deteriorated, as significant levels of rot and decay were 120 

found, creating hazards to local residents and users of the park. To this effect, a decision was made to 121 
cut the tree down and GPR investigations were carried out before falling the tree.  122 

On the survey day, the weather was sunny, with temperatures between 19° and 21° Celsius and a 123 
humidity of 39%. Furthermore, it is important to note that the last episode of light rain occurred ten 124 

days before the survey [41]. 125 

2.2. The GPR Survey Technique 126 

The survey technique followed a circular GPR acquisition method, as described in [38]. This survey 127 
methodology was chosen due to the particular configuration of a typical root system, which expands 128 
radially from the trunk of the tree outwards [42, 43]. In fact, GPR surveys carried out around the trunk 129 

with constant radial distance have proven capable of providing a quasi-perpendicular scanning of the 130 
root systems [13]. 131 

Also, the investigation was carried out on the portion of the tree root system developing below the 132 
natural soil, excluding the area covered by an adjacent asphalt pavement (i.e. performing the scans 133 
along semi-circular transects) (Figure 2). 134 

 135 

Figure 2. Detail of the survey setup. 136 

A set of 36 semi-circular scans were performed around the investigated tree. The first survey 137 
transect was positioned 0.50 m from the bark, in order to allow enough space for the GPR equipment 138 
to manoeuvre around the tree trunk. Subsequently, the spacing between the lines of the scan was set to 139 
0.30 m. Consequently, an overall area of 218.04 m2 was surveyed around the tree, with an outer radius 140 
of 11.86 m and an inner radius of 1.36 m. Figure 3 shows a rendering of the GPR survey setup’s main 141 

characteristics. 142 
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 143 

Figure 3. Rendering of the GPR survey setup. 144 

2.3. The GPR Equipment 145 

The Opera Duo ground-coupled GPR system, manufactured by IDS GeoRadar (part of Hexagon) 146 
was employed for testing purposes [44, 13]. The system includes two mono-static antennas of 700 MHz 147 
and 250 MHz central frequency. Data were collected using a time window of 80 ns, discretised across 148 

512 samples. The horizontal resolution was set to 3.06 × 10-2 m. For the purposes of this study, only data 149 
collected using the 700 MHz antenna were analysed, in order to provide the highest effective resolution 150 
of the deepest layers of the root system. 151 

2.4. The Excavation for Validation Purposes 152 

In order to validate the results obtained through the processing of the GPR data (described in detail 153 
in the following paragraphs), an excavation was carried out near the investigated tree. The exact 154 
location of the excavation area was determined a-posteriori based on the results obtained, in order to 155 
be able to dig a defined area where the preliminary data analysis had highlighted the presence of 156 
potential targets. 157 

The excavation took place about three months after the GPR survey. In the meantime, the tree was 158 
felled as planned, and it was necessary to wait for the technical time of the trunk removal from the 159 
investigation area. The whole activity, including finding the area coordinates, excavation, roots’ 160 
measurements and excavation coverage, was completed in three days. 161 

An area of 4 m per side was accurately identified (Figure 4), based on the coordinates of the GPR 162 

survey (see Subsection 3.5). The excavation was then carried out by removing layers of ~0.10 m of soil 163 
at a time. 164 
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 165 

Figure 4. Verification of the accuracy of the excavation area’s coordinates. Note that the tree was felled 166 
before the excavation stage (the trunk base is visible on the left-hand side of the picture). 167 

2.5. The Data Processing Framework 168 

2.5.1. Preliminary Signal Processing Stage 169 

The primary purpose of this stage is to reduce noise-related information from the GPR data, as 170 
well as to achieve quantitative information and easily interpretable images for the data analysis and 171 
interpretation stage. A signal processing methodology was implemented, based on a combination of 172 

standard and more advanced techniques [45, 46], which can be applied to any GPR root system’s 173 
investigation. The raw data were therefore processed based on the following sequence of processing 174 
steps: 175 

• Zero-offset removal: GPR signal can be distorted by low-frequency signal trend (known as “wow”) 176 
or initial direct current (DC) shifts, which can conceal the actual EM reflections. The result is a GPR 177 

trace with an average amplitude different from zero, which could affect the results of further signal 178 
processing steps. The application of a dewow filter allows to obtain GPR traces with a mean value equal 179 
to zero. 180 

• Time-zero correction: in order to compare the reflection time and consequently the depth of the 181 

buried targets, it is necessary to set a unique time-zero point for the GPR data. However, due to factors 182 
such as the air gap between the transmitting antenna and the soil surface or the ground-level 183 
inhomogeneities, the position of the air-ground surface reflection could vary across the different A-184 
scans. To this extent, the air layer between the signal source point and the ground was eliminated across 185 
the whole sequence of A-scans. 186 

• Time-varying gain: the GPR signal rapidly attenuates when it propagates through the investigated 187 
media. This is due to the dispersive nature of the EM waves, which relates to the electrical properties of 188 
the medium. For this reason, the response from deep targets can be hardly detected, especially in case 189 
of lossy materials. The application of a time-varying gain to each GPR trace compensates for the rapid 190 
fall of the signal, equalising the amplitudes and making the response from deeper targets more clear. 191 

In the present study, a spherical and exponential (SEC) function was employed to compensate the 192 
energy loss by applying a linearly increasing time gain combined with an exponential increase. 193 
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• Singular Value Decomposition (SVD) [47]: the SVD filter aims to reduce the ringing noise, i.e., a 194 

repetitive type of clutter with a high correlation between traces, which can easily lead to data 195 
misinterpretation. On the other hand, reflections due to potential targets are more random and 196 
scattered, and therefore less correlated. The SVD filter operates by decomposing an image into a set of 197 
different sub-images, each of which contains features with a gradually increasing correlation. With this 198 

approach, ringing noise can be separated from the real response of the targets. 199 

• Frequency-wavenumber (F-K) migration [47]: in a GPR investigation, the response of a target is 200 
associated with a hyperbolic feature. This is caused by the difference in the travel time of the EM waves, 201 
while the antenna is moved along the scanning transect. Although this output is acceptable for target 202 
identification, the tracking of an object (e.g. tree roots) across several B-scans requires a more focused 203 

and accurate localisation. The F-K migration transforms an unfocused space-time GPR image into a 204 
focused image showing the object’s true location and size with the corresponding EM reflectivity. The 205 
velocity of the host medium in this paper is assumed as constant and it was estimated by means of a 206 
trial and error procedure between permittivity values over-migrating and under-migrating the data. 207 

2.5.2. Analysis of Discontinuity Elements  208 

The presence of elements of discontinuity (e.g., manmade subsurface features such as pipes, 209 
conduits or the multi-layered structure of a road pavement) in a dataset including a tree root system 210 
architecture are regarded as a potential disruptive factor for the correct execution of the data processing 211 
methodologies presented in this paper. 212 

In this specific case study, the presence of a transversal element in the investigated area, such as a 213 
road pavement and an underground pipe, interrupts the continuity of the data and creates the 214 
conditions for the generation of false alarms in the mapping process of the roots. The potential presence 215 
of these disturbing elements must therefore be identified before the application of the main tree root 216 
tracking algorithm. For this purpose, a processing algorithm based on the methodology proposed in 217 

[48] is introduced in the main data processing framework. An analysis of the data reflectivity is carried 218 
out, in order to clearly identify the presence of features not related to roots. If present, these 219 
inhomogeneities are subsequently reprocessed with dedicated signal processing techniques (e.g. in the 220 
case of a road pavement structures [48]), or their reflections are simply removed from the GPR data (e.g. 221 
in the case of pipes or other similar manmade buried features). 222 

2.5.3. Tree Root Tracking Algorithm 223 

This stage of the methodology is adapted from [38] and is composed of two main parts. First, the 224 
initial hypotheses (the data acquisition method and the dielectric properties of the medium), and the 225 
data input settings (the outcomes of the pre-processing algorithm, the matrix dimensions and the GPR 226 

data acquisition settings) were outlined. 227 

Following this, an iterative procedure was executed in order to analyse the output of the pre-228 
processing stage. The methodology was based on the comparison of the amplitude values, in a random 229 
position of the 3D domain, with a given threshold. The following steps were then performed: 230 

• Preliminary hypotheses: the proposed model is based on two main hypotheses regarding: 231 

o the data acquisition method (longitudinal or circular transects) 232 

o the dielectric properties of the investigated medium 233 

The acquisition method was performed by rotating the GPR antenna around the tree with a 234 
constant radial distance. As it was already stated, this was due to the radial distribution of roots 235 
around a tree trunk, and the necessity to achieve a quasi-perpendicular scanning of the targets. 236 
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The algorithm has therefore been developed with reference to a three-dimensional system of 237 

cylindrical coordinates, in which the vertical axis is identified by the axis of the tree trunk and the 238 
origin is positioned at its intersection with the plane matching the ground level. The coordinates 239 
of the system are the depth 𝑧, the angular coordinate 𝜃 and the radial coordinate 𝜌. 240 

In regard to the relative dielectric permittivity of the medium 𝜀𝑟 , this was calculated using a 241 

hyperbolic velocity analysis method. This compares the observed reflection hyperbolas with the 242 
velocity-specific hyperbolic functions, in order to find the function that best fits the data [46]. For 243 
the purpose of this application, the wave propagation velocity v in the medium was taken as the 244 
average value of velocities, estimated by the application of the hyperbola fitting method to several 245 
roots’ reflections evenly picked up across the entire survey area. 246 

• Data input: the algorithm expands upon GPR data from the pre-processing phase, in the form of a 247 
three-dimensional matrix of real numbers 𝐀(𝐼, 𝐽, 𝐾), composed by the signal amplitude values in 248 
a random point of coordinates (𝑖, 𝑗, 𝑘). The index 𝑖 indicates the number of GPR scans, limited to 249 
𝐼, the index 𝑗 corresponds to the scan direction, limited to 𝐽, and 𝑘 is the vertical coordinate going 250 
into the ground, limited to 𝐾. According to a reference polar coordinate system, the coordinates 251 

of a random point (𝑖, 𝑗, 𝑘) can be expressed as follows: 252 

 
𝑥 = 𝜌(𝑖) ∙ 𝑐𝑜𝑠𝜗(𝑗) 

𝑦 = 𝜌(𝑖) ∙ 𝑠𝑖𝑛𝜗(𝑗) 

𝑧 = 𝑧(𝑘) 

(1) 

(2) 

(3) 

• Iterative procedure: the aforementioned assumptions and input information are essential to develop 253 
an iterative procedure for the tracking of a root system. Figure 5 shows a flowchart of the 254 
methodology followed in this stage. 255 

o Target identification: the algorithm evaluates the amplitude values in a random position of the 256 

3D domain. In order to filter out the amplitude values that did not likely relate to tree roots, a 257 
threshold was set. This threshold value is established a-priori based on a preliminary analysis of 258 
the data collected, in an effort to isolate as many hyperbolas as possible. Hence, the algorithm is 259 
set to analyse the domain until a signal amplitude value greater than the threshold is found. This 260 

step is necessary to identify the apices of the reflection hyperbolae (i.e. the apices of the roots) and 261 
filter out amplitude values unrelated to candidate root targets. 262 

o Correlation analysis: this step is focused on the investigation of further vertices in the closest 263 
vicinity of those identified at the target identification stage. This is preformed to pinpoint other 264 
potential amplitude values greater than the threshold. This analysis has been improved in the 265 

present study compared to the original version presented in [38], as the area in which the 266 
correlation is sought has been extended to four further points within the 3D domain, i.e., a(i+1, j-1, 267 
k-1), a(i+1, j+1, k-1), a(i+1, j-1, k+1), a(i+1, j+1, k+1) (see Figure 5). This improvement allows to smooth 268 
the correlation analysis process, including all the points of the 3D domain that could ideally belong 269 
to the development of a root. 270 

o Tracking of the root: the algorithm isolates correlated points, creating a vector for the mapping 271 
of individual roots. 272 

o Reconstruction of the root system architecture in a 3D domain: vectors identified at the previous 273 
step are positioned in a 3D environment in order to represent the geometry of the tree root system. 274 
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 275 

Figure 5. Flowchart of the tree root tracking algorithm's iterative procedure. 276 

It is important to point out that in order to avoid the inclusion in the map of roots not belonging 277 
to the investigated tree, the root mapping algorithm is designed to perform a spatial correlation that 278 

follows the most likely directions of roots (i.e. from the trunk - source point - outwards). Therefore, the 279 
resulting renderings are only related to the examined tree, and do not include any potential root 280 
belonging to adjacent trees (Figure 6). If present, these will result as uncorrelated with the mapping 281 
process and, hence, will be excluded by the algorithm. 282 

 283 

Figure 6. Layout of the roots’ main directions in the case of two adjacent trees. Directions of roots of a 284 
reference tree (e.g., the tree under investigation in this study) (in green) are not compatible with the roots’ 285 
directions of a nearby adjacent tree (in red).  286 

INVESTIGATED TREE ADJACENT TREE 
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2.5.4. Root Mass Density Estimation 287 

At present, the quantification of the tree roots mass density is considered a controversial task. In 288 
this regard, it should be specified that most of the studies deal with the quantification of tree root’s 289 
biomass, which is an indirect output of GPR data [19]. Several studies have been carried out on this 290 
topic, both in field conditions [37] and in controlled environment [49], achieving reasonably good 291 

results. However, the accuracy of current methodologies still is limited. At present, the limiting factor 292 
for a correct root density estimate is the root water content that, if too low, can lead to a sub-estimation 293 
of root biomass. It should be concluded that existing evaluation methods are currently unable to 294 
provide reliable estimates. In this context, the novelty of the presented methodology lies in a new 295 
root density index evaluation, based on root location and length as obtained from the root mapping 296 

algorithm modelling process. The following stage of the presented methodology is therefore developed 297 
to provide a representation of the density of roots in the investigated area, with the main aim of 298 
identifying local changes of density. 299 

First, best-fitting functions were used to better approximate root paths in the 3D domain, as well 300 
as to identify the length of each root in a continuous domain. Before evaluating the length of the roots 301 

in a specified domain, it is necessary to express these in an analytical form. Each root is a 3D curve with 302 
a radial expansion that starts from the centre of the tree trunk. The only way to express 3D curves is 303 
through parametric equations or positional vectors [50]. As an example, a 3D curve can be expressed 304 
either as: 305 

 

𝑥 = 𝑓(𝑡) 

𝑦 = 𝑔(𝑡) 

𝑧 = 𝑞(𝑡) 

(4) 

(5) 

(6) 

or as: 306 

 �⃗� = ⟨𝑓(𝑡), 𝑔(𝑡), 𝑞(𝑡)⟩ 
(7) 

where {𝑡 ∈ 𝑅|0 ≤ 𝑡 ≤ 1} is the parametric variable between zero and one that is chosen arbitrarily. To 307 

fit a parametric curve on a given set of 3D points, a polynomial function of nth order is used to 308 
approximate each of the parametric functions [50] 309 

 
𝑥 = ∑ 𝑎𝑖𝑡𝑖

𝑛

𝑖=0

 (8) 

 
𝑦 = ∑ 𝑏𝑖𝑡𝑖

𝑛

𝑖=0

 (9) 

 
𝑧 = ∑ 𝑐𝑖𝑡𝑖

𝑛

𝑖=0

 (10) 

The coefficients 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 are evaluated using least squares [51]: 310 
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A =(W𝑇W)−1W𝑇X  

B =(W𝑇W)−1W𝑇Y  

C =(W𝑇W)−1W𝑇Z  

(11) 

(12) 

(13) 

where A, B and C are vectors {A, B, C ∈ 𝑅𝑛} that contain the coefficients 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖. The matrices X, Y 311 
and Z are column vectors {X, Y, Z ∈ 𝑅𝑠} that contain the predicted 𝑥, 𝑦, 𝑧 coordinates using the root 312 
detection algorithm. The number of measurements is denoted with the letter s. Notably, when 𝑛 > 𝑠, 313 

the system becomes underdetermined and no solution without constraints can be obtained. Thus, the 314 
number of measurements must always be greater than or equal to the order of the chosen polynomial. 315 
Lastly the matrix W {W ∈ 𝑅𝑛×𝑠} is: 316 

 
𝑾 = [

𝑡1
𝑛 ⋯ 𝑡1

0

⋮ ⋱ ⋮
𝑡𝑠

𝑛 ⋯ 𝑡𝑠
0
] (14) 

where 𝑡1, 𝑡2 … . 𝑡𝑠, {𝑡 ∈ 𝑅|𝑡𝑖+1 − 𝑡𝑖 =
1

𝑠
} are a set of equidistant points defined in the closed interval [0, 317 

1]. 318 

Knowing the analytical expression of the vector �⃗� makes it possible to evaluate its length for a 319 

given sample. The length of vector �⃗� with respect to 𝑡 equals with [50]: 320 

 

𝐿(𝑡) = ∫ ‖
𝑑�⃗�

𝑑𝑡
‖

𝑡

0

𝑑𝑡 (15) 

The derivative of the vector �⃗� with respect to 𝑡, equals with the derivative of its components: 321 

 𝑑𝑥

𝑑𝑡
= ∑ 𝑖𝑎𝑖𝑡

𝑖−1

𝑛

𝑖=1

 (16) 

 𝑑𝑦

𝑑𝑡
= ∑ 𝑖𝑏𝑖𝑡𝑖−1

𝑛

𝑖=1

 (17) 

 𝑑𝑧

𝑑𝑡
= ∑ 𝑖𝑐𝑖𝑡

𝑖−1

𝑛

𝑖=1

 (18) 

Therefore, the integral in (15) can be rewritten as [50]: 322 

 

𝐿(𝑡) = ∫ √(∑ 𝑖𝑎𝑖𝑡𝑖−1

𝑛

𝑖=1

)

2

+ (∑ 𝑖𝑏𝑖𝑡𝑖−1

𝑛

𝑖=1

)

2

+ (∑ 𝑖𝑐𝑖𝑡𝑖−1

𝑛

𝑖=1

)

2
𝑡

0

𝑑𝑡 (19) 

The integral above is evaluated using numerical methods (Simpson’s rule, Gaussian quadrature) 323 
[52]. The length 𝐿 is related to 𝑡, thus it can be calculated for a given segment, giving us the ability to 324 
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map the length of the roots in a specified domain. The degree of the polynomial 𝑛 should be chosen 325 

with caution since large values can give rise to over-fitting, resulting in poor generalisation capabilities 326 
of the fitted polynomial, whereas small values can decrease the overall resolution. As a rule of thumb, 327 
the order of the polynomial should be less than half the number of measurements 𝑛 < 𝑠/2.  328 

Once the length of the root was known, the domain was partitioned into reference volume units, 329 

the dimensions of which depend on the circular scan spacing and the depth resolution required for the 330 
density investigation. The length of roots contained in the reference volume was then evaluated as 331 
follows: 332 

 
𝑑 =

∑ 𝐿𝑖
𝑛
𝑖=1

𝑉
 (20) 

where 𝑑 is the density [m/m3], 𝑛 is the number of roots contained in a reference unit of volume 333 
𝑉 [m3] and 𝐿𝑖 is the length of the root [m]. 334 

3. Results 335 

3.1. Preliminary Signal Processing Stage 336 

The use of a pre-processing phase on the GPR data allowed to achieve a more effective detection 337 
of targets with a significant reduction of noise-related features. To elaborate, the application of the 338 
SVD filter has reduced the effect of reflections from the horizontal layers as well as the multiple 339 

reflection patterns caused by ringing noise. Figure 7 shows the result of the application of the 340 
discussed signal processing steps. Figure 7(a) and Figure 7(b) clearly show the application of the 341 
standard processing techniques and the SVD filter. In particular, the latter has proven effective in 342 
significantly removing noise-related features. 343 

Moreover, the application of the F-K migration filter allowed to obtain a more focused 344 

representation of the hyperbolic targets, including the roots, hence contributing to improve the 345 
effectiveness of the proposed algorithm in the next phase. It is in fact fair to comment that, without 346 
the application of this particular filter, it was frequent to have false alarms, i.e. points belonging to 347 
the tail of the hyperbolas (therefore not representing the actual position of the target) with amplitude 348 
values satisfying the threshold value conditions. These points were not discarded by the algorithm 349 

and generated false positives. Thus, the application of the migration process has proven to increase 350 
the reliability of the algorithm for the detection and tracking of roots in the subsequent steps. Figure 351 
7(c) shows the result of the F-K migration to the pre-processed data. It is possible to notice how the 352 
tails of the hyperbolas have retracted towards the apexes (i.e. the real position of the targets), forming 353 
unique focused points. In addition to this, it is important to observe that the migration provided an 354 

estimation for the value of the permittivity equal to 12, which corresponds to a velocity of the 355 
electromagnetic wave equal to 4.33e+7 m/s. 356 
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 357 

Figure 7. B-scan (a) before the application of the preliminary signal processing stage, (b) after the 358 
application of standard signal processing and SVD filter, and (c) after the application of the F-K migration. 359 

3.2. Analysis of Discontinuity Elements: the Detection of a Buried Structure  360 

An in-depth analysis of potential elements of discontinuity across the collected set of B-scans – 361 
as per the requirements discussed in Section 2.5.2 - revealed the presence of a buried structure, 362 
recurring from scan 17 onwards (Figure 8). In order to better understand the nature of such a feature, 363 

a tomographic approach was followed to allow for a more comprehensive analysis of the investigated 364 
area. For this purposes, C-scans [45] were created at different depths, which highlighted the presence 365 
of a subsurface linear structure, approximately 2 m wide and 5 m distant from the tree, crossing the 366 
investigation area (Figure 9). The analysis of both B-scans and C-scans suggests the presence of a 367 

reinforced concrete structure, as hyperbolic and evenly spaced reflections, potentially attributable to 368 
reinforcement bars, can be observed. Considering the layout of the site and the characteristics of the 369 
feature (i.e., estimated dimensions and construction materials), the latter was interpreted to be a 370 
conduit, serving an artificial lake located in the vicinity of the survey area. 371 

 372 

Figure 8. A B-scan showing the presence of a buried structure (highlighted by the red dashed square). 373 

a) 

b) 

c) 
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 374 

Figure 9. C-scans of the investigated area at (a) 0.31 m of depth and (b) 0.45 m of depth. The red dashed 375 
areas clearly show the presence of a buried structure. 376 

In addition to the above, it is important to note that a difference in the appearance of the ground 377 
was noticed, based on a visual inspection carried out on the study area. This feature was observed 378 
exactly at the location coordinates of the identified structure (Figure 10). It is therefore reasonable to 379 

assume that a conduit was introduced in relatively recent times, and that the required excavation and 380 
groundwork have interfered with the existing root system, cutting off roots and undermining the 381 
already decayed conditions of the tree. 382 

 383 

Figure 10. Aerial view of the investigated area. The red dashed area highlights a difference in the ground 384 
appearance matching the identified location of the discontinuity feature. 385 

INVESTIGATED TREE 

a) 

b) 
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In terms of the data processing, the presence of this particular feature interferes with the 386 

application of the tree root tracking algorithm in the following stages. In addition, it implies that no 387 
roots are present within the volume occupied by the identified underground structure. For the 388 
purposes of this study, it was therefore decided to remove the reflections related to this particular 389 
type of discontinuity feature. A processing framework based on the methodology introduced in [48] 390 

was hence followed. The analysis of the data reflectivity was carried out to quantitatively locate the 391 
buried structure and eliminate the related reflections from the B-scans. Figure 11 shows the 392 
application of this processing scheme, proving that analysing the signal reflectivity is a valid tool to 393 
achieve an accurate detection of major elements of discontinuity. 394 

 395 

Figure 11. An example of the GPR reflectivity analysis. (a) B-scan after the preliminary signal processing 396 
stage, (b) analysis of the signal reflectivity, showing a maximum value at the section coordinates of the 397 
identified buried feature, and (c) B-scan after a targeted trace removal. 398 

3.3. Tree Root Tracking Algorithm 399 

Following the application of the preliminary signal processing stage and the analysis of the 400 

signal discontinuity, the tree root tracking algorithm was applied for the reconstruction of the root 401 
system architecture in a three-dimensional environment. Figure 12 shows the outcome of this 402 
procedure, that is a 2D planar view (a) and a 3D view (b and c) of the reconstructed root system 403 
architecture. To aid with the interpretation of results, shallow-buried roots (i.e. within the first 25 cm 404 
of soil) and deeper roots (i.e., below the first 25 cm of soil) have been represented with different 405 

colours. 406 

The analysis of the results showed that reflections were located within the first 0.70 m of soil. 407 
This is apparently not in line with the expectation for the root system of sycamore trees, as their roots 408 
can reach a depth of approximately 1.40 – 1.50 m [53, 54]. Nevertheless, Crow [54] reports that 90% 409 
to 99% of tree roots are usually found within the first metre of soil. The absence of reflections from 410 

deeper roots could be linked to the presence of death roots, having a value of dielectric permittivity 411 
close to that of the soil. Similarly, as shown in Figure 12, a discontinuity of the root system is visible 412 
in certain areas, mainly in the central region of the investigated soil. This could be likely an effect of 413 
the conduit installation, which may have interfered with the original structure of the root system and 414 

caused irreversible damage.  415 

Finally, it is worth noting that the algorithm is designed to discard shorter segments, which 416 
might relate to non-root targets (e.g. boulders). The results achieved at this stage of the data 417 
processing are consistent with this particular algorithm feature. 418 

a) 

b) 

c) 
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3.4. The Root Mass Density Maps 419 

The architecture of the root system was then further investigated through the evaluation of the 420 
root density at different depths (Eq. 20). The investigated domain was divided into reference volumes 421 
of 0.30 m × 0.30 m × 0.10 m, where the dimension 0.30 m was chosen for consistency with the spacing 422 
between the scans, and the depth dimension 0.10 m was selected for consistency with the excavation 423 

steps performed at the validation stage. Hence, the domain was analysed to determine the total root 424 
length per reference unit. 425 

Figure 13, Figure 14 and Figure 15 show the outcomes of this processing stage, where several 426 
areas with a high density of roots can be identified. In order to further analyse the density variations, 427 
the maps were divided into homogeneous zones, as shown in Table 1. The minimum and maximum 428 

density values, the average density and standard deviation were calculated at every identified area. 429 

From the analysis of the density maps, the domain portion with a greater root mass density is 430 
from a depth of 0.20 m to a depth of 0.60 m (Figure 13(c) and Figure 14). This is also supported by the 431 
analysis of the maximum values reported in Table 1 for these depths. More specifically, the left 432 
quadrant of the investigated domain presents a greater density of roots between 0.20 m and 0.30 m 433 

of depth, with maximum values ranging from 0.88 m/m3 to 1.05 m/m3 (Table 1 - x coordinates -12.60 434 
m to 0.00 m, y coordinates 0.00 m to 4.20 m) (Figure 13(c)), and between 0.50 m and 0.60 m of depth, 435 
with maximum values between 1.00 m/m3 and 1.11 m/m3 (Table 1 - x coordinates -12.60 m to 0.00 m, 436 
y coordinates 0.00 m to 4.20 m) (Figure 14(c)). On the other hand, the right quadrant presents higher 437 

values of root density between 0.20 m and 0.40 m, with peaks up to 1.44 m/m3 (Table 1 - x coordinates 438 
0.00 m to 4.20 m, y coordinates 0.00 m to 4.20 m, depth 0.20 m – 0.30 m) (Figure 13(c) and Figure 439 
14(a)). A higher root density on the left and the right quadrants can be likely interpreted as an indirect 440 
consequence of the root system’s interconnection with two adjacent trees, located respectively on the 441 
North-West and the South-East directions from the investigated one. In fact, it is reasonable to assume 442 

that the root density of a specific tree could be higher at root interconnection areas, as roots of 443 
individual trees tend to have a closer arrangement between themselves, due to their own interaction 444 
with the root systems of adjacent trees. Finally, it should be emphasised that, although the 445 
aforementioned high root density concentrations are present, the average density values are still low 446 
across the overall investigation area. This confirms that, for each homogeneous area identified, an 447 

important amount of areas with very low or zero density can be found. 448 
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 449 

Figure 12. Reconstructed map of the tree root system architecture: (a) 2D planar view, (b) 3D view from 450 
South-West, and (c) in a 3D view from North-West. The grey block represents the volume occupied by the 451 
buried feature. 452 

a) 

b) 

c) 



Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 32 

 

 453 

Figure 13. Root mass density maps at different depths. a) from 0 m to 0.10 m, b) from 0.10 m to 0.20 m, and 454 
c) from 0.20 m to 0.30 m. 455 

a) 

b) 

c) 
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 456 

Figure 14. Root mass density maps at different depths. a) from 0.30 m to 0.40 m, b) from 0.40 m to 0.50 m, 457 
and c) from 0.50 m to 0.60 m 458 

a) 

b) 

c) 
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 459 

Figure 15. Root mass density map from 0.60 m to 0.70 m 460 

Table 1. Root mass density zoning for the investigated tree. 461 

Root Mass Density Zoning 

Depth [m] 

x y 
Minimum 

value [m/m3] 

Maximum 

value [m/m3] 

Average 

value [m/m3] 

Standard 

deviation 

[m/m3] 
From [m] 

To 

[m] 
From [m] 

To 

[m] 

0.10 - 0.20 

-12.60 -8.40 0.00 4.20 0.00 0.00 0.00 0.00 

-8.40 -4.20 0.00 4.20 0.00 0.00 0.00 0.00 

-4.20 0.00 0.00 4.20 0.00 0.67 0.01 0.08 

0.00 4.20 0.00 4.20 0.00 0.76 0.02 0.10 

4.20 8.40 0.00 4.20 0.00 0.35 0.01 0.05 

8.40 12.60 0.00 4.20 0.00 0.00 0.00 0.00 

-12.60 -8.40 4.20 8.40 0.00 0.00 0.00 0.00 

-8.40 -4.20 4.20 8.40 0.00 0.00 0.00 0.00 

-4.20 0.00 4.20 8.40 0.00 0.00 0.00 0.00 

0.00 4.20 4.20 8.40 0.00 1.05 0.03 0.15 

4.20 8.40 4.20 8.40 0.00 0.00 0.00 0.00 

8.40 12.60 4.20 8.40 0.00 0.00 0.00 0.00 

-12.60 -8.40 8.40 12.60 0.00 0.00 0.00 0.00 

-8.40 -4.20 8.40 12.60 0.00 0.00 0.00 0.00 

-4.20 0.00 8.40 12.60 0.00 0.00 0.00 0.00 

0.00 4.20 8.40 12.60 0.00 0.00 0.00 0.00 

4.20 8.40 8.40 12.60 0.00 0.00 0.00 0.00 

8.40 12.60 8.40 12.60 0.00 0.00 0.00 0.00 
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0.20 - 0.30 

-12.60 -8.40 0.00 4.20 0.00 0.91 0.15 0.21 

-8.40 -4.20 0.00 4.20 0.00 1.05 0.15 0.23 

-4.20 0.00 0.00 4.20 0.00 0.88 0.04 0.13 

0.00 4.20 0.00 4.20 0.00 1.44 0.06 0.19 

4.20 8.40 0.00 4.20 0.00 0.91 0.09 0.18 

8.40 12.60 0.00 4.20 0.00 0.58 0.05 0.12 

-12.60 -8.40 4.20 8.40 0.00 0.91 0.07 0.17 

-8.40 -4.20 4.20 8.40 0.00 1.07 0.06 0.17 

-4.20 0.00 4.20 8.40 0.00 0.00 0.00 0.00 

0.00 4.20 4.20 8.40 0.00 0.75 0.01 0.07 

4.20 8.40 4.20 8.40 0.00 1.41 0.10 0.21 

8.40 12.60 4.20 8.40 0.00 0.92 0.03 0.14 

-12.60 -8.40 8.40 12.60 0.00 0.00 0.00 0.00 

-8.40 -4.20 8.40 12.60 0.00 0.00 0.00 0.00 

-4.20 0.00 8.40 12.60 0.00 0.65 0.04 0.10 

0.00 4.20 8.40 12.60 0.00 0.36 0.04 0.09 

4.20 8.40 8.40 12.60 0.00 0.00 0.00 0.00 

8.40 12.60 8.40 12.60 0.00 0.00 0.00 0.00 

0.30 - 0.40 

-12.60 -8.40 0.00 4.20 0.00 1.27 0.05 0.15 

-8.40 -4.20 0.00 4.20 0.00 0.57 0.03 0.09 

-4.20 0.00 0.00 4.20 0.00 0.86 0.10 0.20 

0.00 4.20 0.00 4.20 0.00 1.27 0.14 0.24 

4.20 8.40 0.00 4.20 0.00 0.68 0.06 0.13 

8.40 12.60 0.00 4.20 0.00 0.73 0.10 0.17 

-12.60 -8.40 4.20 8.40 0.00 0.43 0.00 0.03 

-8.40 -4.20 4.20 8.40 0.00 0.74 0.04 0.13 

-4.20 0.00 4.20 8.40 0.00 0.00 0.00 0.00 

0.00 4.20 4.20 8.40 0.00 0.55 0.02 0.08 

4.20 8.40 4.20 8.40 0.00 0.76 0.08 0.17 

8.40 12.60 4.20 8.40 0.00 0.31 0.01 0.05 

-12.60 -8.40 8.40 12.60 0.00 0.00 0.00 0.00 

-8.40 -4.20 8.40 12.60 0.00 0.00 0.00 0.00 

-4.20 0.00 8.40 12.60 0.00 0.34 0.01 0.05 

0.00 4.20 8.40 12.60 0.00 0.50 0.03 0.09 

4.20 8.40 8.40 12.60 0.00 0.00 0.00 0.00 

8.40 12.60 8.40 12.60 0.00 0.00 0.00 0.00 
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0.40 - 0.50 

-12.60 -8.40 0.00 4.20 0.00 0.35 0.02 0.07 

-8.40 -4.20 0.00 4.20 0.00 0.63 0.04 0.12 

-4.20 0.00 0.00 4.20 0.00 1.09 0.10 0.21 

0.00 4.20 0.00 4.20 0.00 1.06 0.12 0.23 

4.20 8.40 0.00 4.20 0.00 0.67 0.04 0.12 

8.40 12.60 0.00 4.20 0.00 0.65 0.04 0.12 

-12.60 -8.40 4.20 8.40 0.00 0.49 0.01 0.05 

-8.40 -4.20 4.20 8.40 0.00 0.62 0.03 0.11 

-4.20 0.00 4.20 8.40 0.00 0.00 0.00 0.00 

0.00 4.20 4.20 8.40 0.00 0.31 0.01 0.06 

4.20 8.40 4.20 8.40 0.00 0.39 0.01 0.05 

8.40 12.60 4.20 8.40 0.00 0.32 0.00 0.03 

-12.60 -8.40 8.40 12.60 0.00 0.00 0.00 0.00 

-8.40 -4.20 8.40 12.60 0.00 0.00 0.00 0.00 

-4.20 0.00 8.40 12.60 0.00 0.00 0.00 0.00 

0.00 4.20 8.40 12.60 0.00 0.00 0.00 0.00 

4.20 8.40 8.40 12.60 0.00 0.00 0.00 0.00 

8.40 12.60 8.40 12.60 0.00 0.00 0.00 0.00 

0.50 - 0.60 

-12.60 -8.40 0.00 4.20 0.00 1.01 0.12 0.19 

-8.40 -4.20 0.00 4.20 0.00 0.62 0.05 0.13 

-4.20 0.00 0.00 4.20 0.00 1.11 0.10 0.22 

0.00 4.20 0.00 4.20 0.00 1.02 0.16 0.24 

4.20 8.40 0.00 4.20 0.00 1.00 0.10 0.19 

8.40 12.60 0.00 4.20 0.00 1.41 0.07 0.17 

-12.60 -8.40 4.20 8.40 0.00 0.45 0.02 0.08 

-8.40 -4.20 4.20 8.40 0.00 0.60 0.04 0.11 

-4.20 0.00 4.20 8.40 0.00 0.00 0.00 0.00 

0.00 4.20 4.20 8.40 0.00 0.29 0.00 0.03 

4.20 8.40 4.20 8.40 0.00 1.00 0.05 0.14 

8.40 12.60 4.20 8.40 0.00 0.64 0.01 0.07 

-12.60 -8.40 8.40 12.60 0.00 0.00 0.00 0.00 

-8.40 -4.20 8.40 12.60 0.00 0.81 0.03 0.12 

-4.20 0.00 8.40 12.60 0.00 0.86 0.05 0.15 

0.00 4.20 8.40 12.60 0.00 0.00 0.00 0.00 

4.20 8.40 8.40 12.60 0.00 0.00 0.00 0.00 

8.40 12.60 8.40 12.60 0.00 0.00 0.00 0.00 
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0.60 - 0.70 

-12.60 -8.40 0.00 4.20 0.00 0.34 0.04 0.09 

-8.40 -4.20 0.00 4.20 0.00 0.30 0.00 0.03 

-4.20 0.00 0.00 4.20 0.00 0.66 0.04 0.11 

0.00 4.20 0.00 4.20 0.00 1.24 0.10 0.18 

4.20 8.40 0.00 4.20 0.00 0.36 0.02 0.08 

8.40 12.60 0.00 4.20 0.00 0.00 0.00 0.00 

-12.60 -8.40 4.20 8.40 0.00 0.00 0.00 0.00 

-8.40 -4.20 4.20 8.40 0.00 0.35 0.01 0.04 

-4.20 0.00 4.20 8.40 0.00 0.00 0.00 0.00 

0.00 4.20 4.20 8.40 0.00 0.56 0.02 0.08 

4.20 8.40 4.20 8.40 0.00 0.33 0.01 0.06 

8.40 12.60 4.20 8.40 0.00 0.00 0.00 0.00 

-12.60 -8.40 8.40 12.60 0.00 0.00 0.00 0.00 

-8.40 -4.20 8.40 12.60 0.00 0.00 0.00 0.00 

-4.20 0.00 8.40 12.60 0.00 0.00 0.00 0.00 

0.00 4.20 8.40 12.60 0.00 0.00 0.00 0.00 

4.20 8.40 8.40 12.60 0.00 0.00 0.00 0.00 

8.40 12.60 8.40 12.60 0.00 0.00 0.00 0.00 

3.5. Results Validation through Excavation 465 

A representative excavation section was identified after the application of the data processing 466 
framework, in order to limit the validation stage to a useful portion of the overall investigated area 467 

(i.e., 218.04 m2).  468 

A square area of 4 m x 4 m was therefore selected on the South-West side of the investigated tree 469 
(Figure 16). The selection was made based on the root mass density distribution in the area and their 470 
expected depth. The excavation was performed by removing layers of ~ 0.10 m of soil up to ~ 0.50 m. 471 
It is worth noting that soil was significantly dry and compact in the whole excavation area. Its 472 

removal therefore presented considerable difficulties, as the excavation had to be carried out with 473 
reduced size tools, to ensure accurate operations and avoid accidental damage of the roots.  474 

 475 

Figure 16. Rendering of the surveyed area, showing the position of the excavated site. 476 
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Several roots were found as a result of the validation survey, as shown in Figure 17. A root with 477 

an average diameter of 0.06 m crosses the bottom-right part of the excavation for a length of about 478 
2.53 m, at a depth varying between 0.26 m and 0.50 m. However, a local increase of density was not 479 
found in the concerning density maps (i.e., depth ranges between 0.20 m and 0.30 m, between 0.30 m 480 
and 0.40 m, and between 0.40 m and 0.50 m). This is due to the particular orientation of the root, that 481 

crosses the investigated area along the South-East – North-West direction, transversely to an 482 
imaginary radial line traced from the trunk of the tree investigated (Figure 18). 483 

 484 

Figure 17. The excavated site. 485 

 486 

Figure 18 An outline of the survey, showing the orientation of the excavated coarse root (in red) within 487 
the test pit area.  488 



Remote Sens. 2020, 12, x FOR PEER REVIEW 25 of 32 

 

Given a typical configuration of a root system, where roots expand radially from the centre of 489 

the tree outwards, it is unlikely that the identified coarse root belongs to the tree under consideration. 490 
On the contrary, this root likely belongs to the tree located in the vicinity of the investigated one, as 491 
its direction matches with that conceivable for the nearby root system (see Figure 6). This result 492 
proves the validity of the proposed methodology in automatically excluding targets not belonging to 493 

the investigated tree. 494 

A cluster of roots was also found at the top of the excavation area at a depth between 495 
approximately 0.20 m and 0.25 m. Its position matches with the outcomes of the map in the depth 496 
range 0.20÷ 0.30 m (Figure 19). Similarly, a root with an average diameter of 0.04 m was excavated at 497 
the top-right corner, and an evidence was again found in the 0.20 m – 0.30 m density map. 498 

Finally, the left-hand side of the excavation area was dug to validate the local density increase, 499 
as highlighted by Figure 20(c) and Figure 21(c). Two roots with an average diameter of 0.04 m and a 500 
depth varying from 0.05 m (top-left corner) to 0.20 m (bottom-left corner) were excavated. 501 
Considering their position and the diameter similarity, it is reasonable to state that these sections 502 
belong to the same root, that develops deeper than the performed excavation depth for a short stretch. 503 

As shown in Figure 20 and Figure 21, the development of the excavated roots resembles the outputs 504 
of the density maps. Lastly, roots of smaller dimensions, grouped together to form a single cluster, 505 
were found at a short distance from the two aforementioned roots (Figure 21(a)). 506 

 507 

Figure 19. (a) The excavated root cluster, and (b) a zoom of the 0.20 m – 0.30m density map. The yellow 508 
circle highlights an area with increased density, corresponding to the cluster of roots.  509 

a) b) 
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 510 

Figure 20. The excavated root at the top-left corner of the excavated area, (a) detail of the excavation, (b) 511 
development of the root, and (c) a zoom of the 0.10 m – 0.20m density map. The yellow circle highlights an 512 
area with an increased density, corresponding to the excavated root. 513 

 514 

Figure 21. The excavated root at the bottom-left corner of the excavated area, (a) development of the root, 515 
and (b) a zoom of the 0.20 m – 0.30m density map. The yellow circle highlights an area with an increased 516 
density, corresponding to the excavated root. 517 

In addition, the presence of numerous boulders was detected (Figure 22), the main size of which 518 
exceeded 0.15 m in some cases. Some of the boulders were found along the top edge of the excavation 519 
area, whereas other boulders were found along the left edge. 520 

a) 

c) 

b) 

b) 
a) 
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 521 

Figure 22. Boulders found along the top edge of the excavation area. The boulder in the foreground has a 522 
main axial dimension of about 0.15 m. 523 

However, no evidence of their presence was found in the root mass density maps. This confirms 524 

the validity of the proposed algorithm, as this is designed not to consider short segments, not 525 
correlated with root targets. 526 

4. Discussion 527 

The case study reported in this paper demonstrates the validity of the proposed methodology 528 
for the assessment of tree root systems. The method validation carried out through excavation and 529 

the subsequent roots exposure, confirms that GPR can detect roots as well as that the presented data 530 
processing framework is able to reconstruct their pattern and provide crucial information on their 531 
mass density. 532 

The data processing framework explained in Section 2.5.3, requires to input a minimum amount 533 
of information related to the specific GPR survey, such as the number of scans carried out and the 534 

relative dielectric permittivity of the medium, making the data analysis relatively fast. Furthermore, 535 
the combination of the presented signal processing techniques allows for a broad applicability of the 536 
proposed methodology. A selection of standard techniques was performed to minimise the risk of 537 
data overprocessing. As for the more advanced techniques, such as the SVD filter and the F-K 538 

migration, their application has been calibrated to overcome fundamental issues, such as the presence 539 
of ringing noise and the accurate localisation of targets, without affecting the original data. The 540 
combination of the above-discussed parameters and processing steps can be regarded as a step 541 
forward for the development of a fully automated root system analysis methodology, for use of 542 
practitioners and end-users. At present, the selection of the threshold value for use in the tree root 543 

tracking algorithm is the only step requiring the operator's intervention, as explained in Section 2.5.3. 544 
Future research could task itself towards the automation of this particular step, using iterative 545 
estimations [55] or machine-learning methods, such as the back-propagation [56]. 546 
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Regarding the survey methodology, a circular GPR acquisition method was followed, as 547 

explained in Subsections 2.2 and 2.5.3. This method, chosen mainly due to the typical shape of a root 548 
system (i.e. expanding radially from the trunk of the tree outwards), has the advantage of being more 549 
inclusive and precise compared to a longitudinal acquisition method. In fact, circular transects allow 550 
to scan the roots in a quasi-perpendicular set-up, i.e. an optimal condition in GPR data collection. 551 

Furthermore, this methodology allows to collect information related to the examined tree only, 552 
excluding the detection of root targets from neighbouring trees. This feature is essential for the 553 
evaluation of the root system of individual trees, in case more focused analyses are required. 554 
However, the circular acquisition turned up to be more time-demanding compared to traditional 555 
linear acquisitions. It is in fact fair to comment that, if the purpose of the survey relates to the 556 

assessment of multiple trees (e.g., a tree-lined avenue), the circular acquisition method turns up to be 557 
onerous and time-consuming. A desirable future prospect of the current research is therefore to adapt 558 
the discussed methodology into a linear acquisition method, to facilitate the concurrent investigation 559 
of multiple nearby trees. 560 

In regard to the outcomes produced by the tree root density maps, the evaluation of the mass 561 

density has proven to be an effective tool in assessing the root system conditions and its interaction 562 
with manmade constructions. To this extent, the provision of routine inspections could be of valuable 563 
support to evaluate the health conditions of root systems, as density variations over time can be used 564 
as an effective quantitative indicator of any potential diseases or fungal attacks. An early-stage 565 

identification of the problem could favour immediate remedial actions, and contribute to save the 566 
tree and prevent the spreading of the infection. It is also worthy to note the impact of the proposed 567 
methodology in large-scale forestry applications, especially in areas with a high density of trees. 568 
Implementation of routine inspections could help to identify mass-density-related issues for 569 
individual trees (e.g. trees requiring special care) much more accurately, as the outcomes of the 570 

methodology are independent from the root system of nearby trees. 571 

5. Conclusions 572 

The present study clearly demonstrated that the use of non-destructive testing (NDT) methods 573 
for the investigation of tree root systems is the new frontier of forestry practices and the conservation 574 
of the naturalistic heritage. Due to its ease of use, non-intrusiveness and the cost-effectiveness, 575 

viability of the ground penetrating radar (GPR) technique was proven for root inspection purposes, 576 
with a special focus on root detection and the three-dimensional mapping of the root system 577 
architecture.  578 

In this paper, the authors report an investigation within the context of forestry applications with 579 

GPR, aiming at detecting tree roots and reconstructing the geometry of a tree root system through a 580 
novel data processing methodology. A multi-stage interpretation algorithm was introduced in order 581 
to reconstruct the tree root patterns based on the collected GPR data. The proposed methodology is 582 
based on the provision of semi-circular scans, which expand outwards radially starting from the 583 
trunk of the tree. Initially, a signal processing stage was applied, to remove noise-related information 584 

and enhance the response from the real targets. Subsequently, a tracking algorithm was used in order 585 
to locate and automatically track viable root paths. Lastly, the identified roots were expressed 586 
through continuous functions in order to map the root mass density analytically. A case study is 587 
presented, in which the proposed method was successfully applied. The tracking algorithm has 588 
proven effective to identify both the shallow (i.e. within the first 25 cm of soil) and the deep (i.e. below 589 

25 cm from the surface of the soil) root structures. Based on this outcome, root mass density maps at 590 
different depths were estimated. To prove the validity of the proposed methodology, a validation 591 
survey was carried out, in which a part of the investigated area was excavated, and tree roots were 592 
exposed. The density maps were in good agreement with the actual root structure, as it was 593 
demonstrated by the orientation of the bigger roots excavated as well as by the presence of clusters 594 

of finer roots. In addition to this, the presence of boulders of appreciable size was not detected, 595 
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although these features were found at several sections and depths within the excavated area. Finally, 596 

the proposed methodology has proven effective to map the root pattern and identify mass-density-597 
related issues for individual trees, independently from the root systems of nearby trees. 598 

It is believed that this research has contributed and added value to the existing knowledge 599 
within the context of understanding the conditions of tree roots in complex environments (e.g., urban 600 

environments), supporting the premise that GPR is a powerful NDT method for large scale forestry 601 
applications. 602 
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