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Abstract 36 

Spinal cord injury (SCI) is a common cause of disability, which often leads to sensorimotor cortex 37 

dysfunction above the spinal injury site. However, the cerebral regional effects on metabolic 38 

information after SCI have been little studied. Here, adult Sprague-Dawley rats were divided into acute 39 

and chronic treatment groups and sham groups with day-matched periods. The BBB (Basso, Beatti 40 

and Bresnahan) scores method was utilized to evaluate the changes in behaviors during the recovery 41 

of the animals, and the metabolic information was measured with the 1H-observed/13C-edited NMR 42 

method. Total metabolic concentrations in every region were almost similar in both treated groups. 43 

However, the metabolic kinetics in most regions in the acute group were significantly altered (p<0.05), 44 

particularly in the cortical area, thalamus and hippocampus (p<0.01). After long-term recovery, some 45 

metabolic kinetics were recovered, especially in the temporal cortex, occipital cortex and medulla. 46 

The metabolic kinetic changes revealed the alteration of metabolism and neurotransmission in 47 

different brain regions after SCI, which present evidence for the alternation of brain glucose oxidation. 48 

Therefore, this shows the significant influence of SCI on cerebral function and neuroscience research. 49 

This study also provides the theoretical basis for clinical therapy after SCI, such as mitochondrial 50 

transplantation.  51 

 52 

Keywords: Spinal cord injury; Neurotransmitters; Metabolic kinetics; Brain regions; NMR;  53 
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Introduction 54 

Spinal cord injury (SCI) is a common neurological injury that is associated with functional 55 

deficits and is also a major cause of disability. In traumatic SCI, the primary insult damages cells and 56 

initiates a complex secondary injury cascade, which cyclically produces the death of neurons and glial 57 

cells, ischaemia and inflammation (1). Secondary injury, which occurs hours to months after the initial 58 

primary traumatic insult, contributes to metabolic stress and progressive tissue damage and serves as 59 

a prime target for therapeutic intervention (2). Although numerous neuroprotective, neural 60 

regenerative and rehabilitation exercise therapies have been translated from preclinical studies into 61 

clinical trials, to date, there are no efficient or reliable clinical treatments available for SCI patients. 62 

One potential reason holding back improvements in SCI therapy lies in current strategies which focus 63 

on local changes at the spinal injury site and neglect the intimate interconnection with the brain (3). 64 

In recent years, there has been increasing evidence that SCI leads to alterations in brain structure, 65 

function and metabolite, by direct effects of nerve damage, secondary mechanisms, and also by longer 66 

term injury consequences such as paralysis and neuropathic pain (4). Several studies have shown that 67 

SCI resulted in central nervous system injury and structural reorganization of the spine and brain (5, 68 

6). Cortical functional reorganization in the sensorimotor areas have been demonstrated in the later 69 

stages of SCI (7, 8). In addition, the deafferentation and loss of sensorimotor function after SCI not 70 

only directly impacts the sensorimotor system, but also influences other regions, such as the insular, 71 

cerebellar, medial prefrontal, anterior cingulate and temporal cortices, which are crucial for processing 72 

emotional information and modulating attentional states (9). SCI also induces multiple disturbances 73 

in the metabolic network, including oxidative stress, glycolysis, amino acid and lipid metabolism (10, 74 

11). Rapid release of excessive glutamate and other neurotransmitters that may directly contribute to 75 
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cellular damage has been observed following SCI (12). However, previous studies have mainly 76 

focused on the SCI site or local area, hence the cerebral regional effects on metabolic information after 77 

SCI have been little studied, such as metabolite concentrations and metabolic kinetics of 78 

neurotransmitters and some other energetically related neurochemicals. 79 

After SCI, mitochondria dysfunction occurred in the brain during the acute phase, followed by 80 

inflammatory response and ER stress aroused at subacute phase (13). While normal brain function 81 

requires a stable energy supply, disturbances in brain energy metabolism have been associated with 82 

neurological dysfunctions and cognitive impairment (14). Glucose is considered as the main substrate 83 

for neuronal energy metabolism in the mammalian brain (15). It has also been estimated that the 84 

cycling between glutamine (Gln) and glutamate (Glu) accounts for more than 80% of cerebral glucose 85 

consumption (16). The tight coupling between the Glu–Gln cycle and brain energetics is largely tied 86 

to the nearly 1:1 stoichiometry between glucose oxidation and the rate of astrocytic Glu uptake (17). 87 

Thus, it is valuable to investigate the imbalance of brain energy metabolism in neurons and astrocytes 88 

and explore the pathogenesis of neurological disorders after SCI (18). 89 

1H observed/13C-edited (POCE) nuclear magnetic resonance (NMR) technique is a promising 90 

approach for investigating the metabolic kinetics in astrocytes, specific neurons and their interactions 91 

(19). Metabolic information between neuronal and astrocytic interaction can be investigated by the 92 

POCE method combined with the infusion of 13C-labeled glucose/acetate (20-22). We hypothesized 93 

that SCI could produce lasting deficits in brain metabolism. Thus, the purpose of the present study 94 

was to evaluate the effect of SCI on regional metabolic concentrations and rates of turnover of 95 

glutamate, glutamine, and GABA (γ-aminobutyric acid) and other metabolites in the rat brain. The 96 

changes in metabolic information could reveal the influence on different brain regions, which could 97 
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present evidence for the alternation of regional cerebral glucose oxidation and cerebral function after 98 

SCI. Furthermore, this study could provide the theoretical basis for clinical therapy after SCI, such as 99 

mitochondrial transplantation. 100 

 101 

Methods 102 

Animals 103 

The experimental protocols were approved by the animal care and use committee in Wuhan 104 

Institute of Physics and Mathematics, the Chinese Academy of Sciences. In order to investigate the 105 

changes of metabolic information among different brain regions after spinal cord injury, the severe 106 

spinal cord injury (SCI) model was used in the current study. However, this surgery can cause great 107 

trauma to animals, with many postoperative complications such as urinary retention and high mortality. 108 

Due to their different physiological structures, there is a much higher mortality rate in male rats than 109 

in female rats, even when the bladder is messaged two or three times per day. Therefore, to save the 110 

number of animals, female rats are often used in this kind of studies (23-25).  111 

In the current study, 52 female adult Sprague-Dawley rats (n=12 for each group in the NMR study, 112 

and n=4 for the histology study) were ordered from VITAL RIVER (Beijing, China) and kept in SPF 113 

(Specific pathogen Free) animal residence (Wuhan, China). Rats were housed in plastic cages (three 114 

animals per cage) in a climate-controlled room with 12 h of light-dark illumination cycle at 25±1 ºC 115 

and relative 50 ± 10% humidity. During the experiment, all rats were allowed free access to laboratory 116 

standard food (Product No: 190011304, WQJX Biotech, Wuhan, China) and water. Due to failure 117 

related to animal surgery (n=3) and tail vein catheterization (n=4), seven of the 48 rats were not 118 

included in the data analysis. 119 
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Animal experiment 120 

At first, all animals were randomly divided into four equal groups: the acute SCI treatment group 121 

(three days after injury), chronic SCI treatment group (28 days after injury) and the sham controls with 122 

day-matched periods (without SCI). Each subject was given a unique identification number, and the 123 

information of the experimental group was blinded to the operators, which could potentially influence 124 

outcomes of the experimental groups. 125 

For animal surgery, a rat was anesthetized with 1% pentobarbital (i.p., 5mg/100g). A sagittal 126 

incision was made at the lower dorsal part of the thoracic segment to expose the T7-T9 vertebral plate 127 

and spinous processes. The T8 vertebral plate was cut and removed under a surgical microscope to 128 

expose the intact dura. The animal was transferred to beneath the IH impactor which was equipped 129 

with a 4 mm tip, and the incision site was centered. The SCI was induced by contusion (200 kdyne) to 130 

the exposed segment, resulting in a severe contusion injury. Then the muscle layers and skin layers 131 

were sutured together after contusion. Animals in the control group only suffered sagittal incision and 132 

laminectomy for spinal cord exposure, but without contusion by the impactor. After the operation, all 133 

animals were carefully monitored for their mental status, such as eating, drinking, urination, as well 134 

as edema and ulcers. A Water Gel pack and food pellets were provided at the bottom of the cage for 135 

up to 72 h after SCI. Penicillin was continuously injected at 100000 units/time/day up to 7 days. The 136 

bladder was massaged 2-3 times per day until recovery of spontaneous urinary function. At the end, 137 

two rats died during the operation procedures and one died from paralytic intestinal obstruction. 138 

 139 

Basso, Beattie, and Bresnahan (BBB) Locomotor Scale 140 

In order to assess the motor function, all animals in the chronic SCI group and its related control 141 

group were placed in an uninterrupted open field and allowed unrestricted movement. Rats were 142 
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allowed to move freely and scored for their ability to use their hindlimbs. A 21- point BBB locomotion 143 

scale was used based on the movement of joints, placement of paws and coordination of forepaw and 144 

hind limbs (26). The BBB scores were determined 0, 1, 2, 3 and 4 weeks post-SCI to assess recovery 145 

of locomotion in the chronic SCI treatment group. 146 

 147 

Perfusion and histology of the spinal cord 148 

Rats from sham (Acute) (n=2) and Acute SCI (n=2) groups were anesthetized with 1% 149 

pentobarbital (i.p., 6mg/100g), and transcardially perfused with 0.9% saline (~300 ml, room 150 

temperature), followed by buffered 4% formaldehyde solution. The spinal cord of the eighth thoracic 151 

segment was taken, fixed in 4% formaldehyde for 24 hours, then embedded with alcohol gradient 152 

dehydration and paraffin. The horizontal and transverse sections of the spinal cord were cut and stained 153 

with HE (Hematoxylin eosin staining) and Nissl (Nissl’s staining) for histopathology examination 154 

under a microscope (Leica, Wetzlar, Germany). 155 

 156 

Infusion techniques 157 

The metabolic kinetics were assessed with the 13C enrichment into different carbon positions of 158 

metabolites after the infusion of [1-13C] glucose. For this method, the higher enrichment of [1-13C] 159 

glucose in the blood could yield greater sensitivity for detection. Therefore, the rats were fasted 160 

overnight (15-18h) to reduce the endogenous unlabeled glucose level before the experimental day.  161 

On the experimental day, rats were initially anesthetized with 4.0-5.0% isoflurane mixed with air, 162 

and 1.5-2.5% isoflurane to maintain the anesthesia state. The adequate level of anesthesia was verified 163 

by a lack of withdrawal response to a foot pinch. Then, one lateral tail vein was catheterized with PE50 164 

tubing (Instech, PA, USA) for the infusion of [1-13C] glucose, and the tube was immobilized to the tail 165 

with adhesive paper tape. Then those animals were recovered for about 15 minutes until they showed 166 

free movement and normal grooming. The infusion line was connected to a swivel (Instech, PA, USA) 167 
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and suspended from the center of the cage to avoid entanglement of the line during the rat movement. 168 

The other end of the swivel was connected to the infusion pump (Fusion100, Chemyx, TX, USA) with 169 

PE50 tubing. After everything was set up, the animal was allowed to recover for another 15 min. Then, 170 

[1-13C] glucose was infused through the lateral tail vein following a former infusion protocol (22) and 171 

the infusion ceased after 20 minutes. During the whole procedure, the rat had freedom of movement 172 

in the cage (22). All animals were sacrificed by the head-focused microwave irradiation method (1kW, 173 

Tangshan Nanosource Microwave Thermal Instrument Manufacturing Co. Ltd., Heibei, P.R. China). 174 

Then a blood sample (~1 mL) was withdrawn and the brain was manually dissected into 11 different 175 

regions as described previously (22): cerebellum (CE), medulla (MED), midbrain (MID), thalamus 176 

(THA), hypothalamus (HYP), hippocampus (HP), striatum (STR), frontal cortex (FC), occipital cortex 177 

(OC), parietal cortex (PC), and temporal cortex (TC). The tissue was weighed, frozen in liquid nitrogen, 178 

and stored at -80℃  until further processing. Four rats failed due to very low [1-13C] glucose 179 

enrichment (<10%), caused by the failure of tail vein catheterization. Thus, the cerebral data from 180 

these animals were ignored. Therefore, there were 41 rats that successfully completed the study, 181 

including 20 rats from the two separate control groups (10 by 10) and 21 rats from the two SCI groups 182 

(9 for acute SCI and 12 for Chronic SCI). 183 

 184 

Sample collection and preparation 185 

The preparation of brain tissue extracts was conducted using the same methanol-ethanol 186 

extraction method which was described in our previous work (27). Briefly, HCl/methanol (80 μL, 0.1 187 

M) was added to the brain samples, and the tissues were initially homogenized with Tissuelyser 188 

(Tissuelyser II, QIAGEN, German) for 90s at a frequency of 20 Hz. Then, 400 μL ethanol (60%, 189 
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vol/vol) was added to the mixture and the mixture was homogenized again under the same conditions. 190 

The homogenate was centrifuged at 14000 g for 15 min and the supernatant was collected. The entire 191 

extraction procedure was repeated twice with 1200 μL 60% ethanol. All the supernatants were 192 

collected and lyophilized with the centrifugal drying apparatus (Thermo Scientific 2010, Germany) 193 

after removing the organic solvent (ethanol and methanol) in the vacuum under normal temperature. 194 

The lyophilized products were re-dissolved in phosphate buffer (600µL D2O with 0.2 M 195 

Na2HPO4/NaH2PO4, pH=7.2). The solution was mixed evenly with a high-speed vortex and 196 

centrifuged at 14000 g for 15 min, and the supernatant (500 μL) was transferred to a 5 mm NMR tube 197 

for 1H-NMR analysis. 198 

 199 

Acquisition of NMR spectra 200 

All NMR spectra were acquired in a random order at 298 K using a BrukerAvance III 600 MHz 201 

NMR vertical bore spectrometer (BrukerBiospin, Germany). The samples were detected with POCE 202 

(Proton observed carbon editing, 1H -[13C]-NMR) pulse sequence which has been widely used for 13C 203 

enrichment in different positions of metabolites after infusion of 13C labeled chemical tracer (21). 204 

Briefly, this method consists of two spin-echo measurements, one without a broad-banded inversion 205 

pulse applied at the 13C frequency (total metabolites concentrations, 12C+13C), and the other one with the 206 

inversion pulse (the difference of the proton signals which connected with 12C and 13C in the metabolites, 207 

12C-13C). Thus, the subtraction between these two yields only 13C-labeled metabolites of the spectra. The 208 

following acquisition parameters were used: number of scans - 64; repetition time – 20 s; sweep width 209 

- 20 ppm; acquisition data - 64 K; echo time-8 ms. 210 

 211 
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NMR Spectra Processing 212 

All FID signals of 1H-NMR spectra were converted and the phase and baseline correction were 213 

manually performed in the commercial software Topspin 2.1 (Bruker Biospin, GmbH, Rheinstetten, 214 

Germany). Then the spectra was automatically processed with a home-made software NMRSpec (28) 215 

in MATLAB (Freely available from the author upon request: jie.wang@wipm.ac.cn).  216 

Relative concentration calculation 217 

At first, the phase and baseline corrected POCE spectra were loaded into NMRSpec. Then the 218 

peak alignment, integrations of peaks and chemical related peaks were automatically completed. The 219 

extract ratio for a sample was an unpredicted value, and it was hardly the same as the others. Therefore, 220 

it was better to complete the normalization before further analysis. All peak areas and spectra data 221 

were normalized with the conventional probabilistic quotient normalization (PQN) method (29), 222 

which has been widely used in metabolomics research (30, 31). For the relative concentration 223 

calculation, the average chemical related peak area in the Sham (Acute) group was set as reference ‘1’, 224 

then the relative concentrations of this metabolite in every sample was calculated from the quotient 225 

between the same location of the NMR spectrum and that averaged peak area. Then the average 226 

concentration and standard error of various metabolites in different experimental groups were 227 

calculated according to the method described above. 228 

Metabolic enrichment calculation 229 

The 13C related NMR spectrum was obtained by subtracting the two spin-echo measurements in 230 

the POCE spectrum (2×13C), and the 13C fractional enrichment was calculated from the ratio between 231 

this 13C related NMR spectrum and the non-edited (12C +13C) spectrum. Thus, this value is not related 232 

to the tissue weights and the extraction ratios, and the original peak integrations in the POCE spectrum 233 
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used for the analysis. 234 

Data analysis 235 

In this study, all rats were randomly assigned to the experimental procedures including housing 236 

and feeding. Single-factor analyses of variance were performed to determine the difference in the level 237 

of metabolites, 13C fractional enrichment in different positions of metabolites, and BBB scores. 238 

Differences of the amino acid levels and 13C fractional enrichments were identified with Student t-test 239 

with adjustment of p-value for Bonferroni correction. All results were presented by mean ± SEM. 240 

 241 

Results 242 

Basso, Beattie and Bresnahan (BBB) Locomotor Scale 243 

The BBB score was used to evaluate and compare the motor function and recovery of the animals 244 

in the chronic SCI treatment group with the chronic sham group. The BBB score for the chronic SCI 245 

group (n = 12) showed improvement with a mean initial score of 6.00 ± 0.84 in the first week which 246 

increased to a mean score of 15.08 ± 1.71 by the fourth week (Fig. 1). Based on the results of the 247 

comparison, the animal gradually recovered during the first three weeks, and reached the optimum 248 

level around the 3rd week. In addition, some of the rats had recovered well by the end of the 4th week 249 

(n=4). 250 

SCI leads to neurons death and glial cells activation 251 

In the sham group, the gray and white matter structures of the spinal cord are clear, the cells are 252 

evenly distributed and orderly arranged, neurons and glial cells are clearly visible, and no cavities and 253 

necrotic tissues are observable (Fig. 2). In the acute SCI group, the structure of the injury site is 254 

disordered, and the boundary between the gray matter and white matter of the spinal cord is unclear. 255 
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Cavities and necrotic tissues can be seen, neurons disappeared, and a large number of activated glial 256 

cells migrated into the lesion site, transforming into foam cells under phagocytosis (Fig. 2). Thus, the 257 

animal model for the SCI treatment was successfully constructed. 258 

POCE NMR Spectrum of brain extracts 259 

In order to evaluate the total concentrations of metabolites and metabolic kinetics in different 260 

brain regions, the POCE NMR pulse sequence was employed to investigate the metabolic 261 

compositions of the brain extracts in the current study. Here a typical series of POCE NMR spectra 262 

for four different groups are illustrated in Fig. 3. The relative concentrations of the metabolites were 263 

obtained from the PQN normalized non-edited spectrum (upper four spectra); and the total 264 

concentrations of 13C labeled metabolites were calculated by subtracting the two series of spectra in 265 

POCE data which are shown in the lower four spectra. 266 

Metabolites concentration in different brain regions after SCI 267 

To explore the changes of metabolites in different brain regions, which might be related to 268 

neurobehavioral abnormalities after SCI, the relative concentrations of metabolites in four different 269 

groups (Acute SCI vs. Sham (Acute); Chronic SCI vs. Sham (Chronic)) were compared among 11 270 

brain regions. After comparison, the concentrations of most metabolites did not change in these two 271 

pairs. For example, several metabolite concentrations (glutamate, GABA and aspartic acid (Asp)) are 272 

illustrated in Fig. 4. For these metabolites, there were only a few changes among 22 pair comparisons 273 

in each metabolite (two group pair × 11 brain regions). Glutamate was significantly decreased only in 274 

FC for the chronic SCI group (Fig. 4A, p=0.002). However, there were opposite changes observed for 275 

GABA in the cortex and deep brain areas, and GABA was increased in HYP (p=0.008) and TC 276 

(p=0.035, Fig.4B). Furthermore, there was an increase in Asp at regions of MED and HP (p=0.004 and 277 
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0.008, Fig. 4C). However, changes in metabolite concentration after SCI were similar in both acute 278 

and chronic groups. In order to pursue the influence of SCI on brain function, it was valuable to 279 

investigate the changes of the 13C enrichment in various metabolic positions for different groups during 280 

[1-13C]-glucose infusion. 281 

Metabolic 13C enrichments in different brain regions 282 

With the infusion of [1-13C]-glucose, different positions of metabolites were labelled via the 283 

tricarboxylic acid (TCA) cycles in GABAergic and glutamatergic neurons and astroglia cells. For the 284 

first TCA cycles in neurons, Glu4 (glutamatergic neuron) and GABA2 (GABAergic neuron) were 285 

labeled with 13C probe, and Gln4 was labeled in astroglia cells. Then the other carbon positions in 286 

metabolites were gradually labelled with further TCA cycles.  287 

For the acute SCI model, 13C enrichments in different positions of metabolites among most brain 288 

regions were decreased, especially for the cortex (FC, OC, PC and TC), MID, MED and HYP (Fig. 5, 289 

Fig. 6 and Fig. S1). After chronic SCI treatment, the metabolic kinetics in the cortex was recovered, 290 

especially for OC and TC (Fig. 5B and S1). However, the 13C enrichments in some regions were 291 

decreased, such as THA and CE (Fig. 6A and S1). In order to show the tendency of changes, 13C 292 

enrichment in different positions of metabolites for the cortex (FC and TC) and sub-cortex (THA and 293 

HP) are illustrated in the main text (Fig. 5 and Fig. 6), respectively. 294 

Most enrichment of 13C labeled amino acids from [1-13C] glucose in the prefrontal cortex of 295 

different groups exhibited significant changes. The 13C enrichments in Glu4 (p=0.037), Asp3 (p=0.028), 296 

GABA3 (p=0.048) and Glx3 (p=0.046) in the acute SCI group were found to be significantly lower 297 

than in the acute sham group. In addition, Glu4 (p=0.011), Asp3 (p=0.001), Glu3 (p=0.023), GABA3 298 

(p=0.016), Glx2 (p=0.023) and Ala (p=0.001) in the chronic SCI group was also found to be 299 
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significantly different from the chronic sham group (Fig. 5A). For the temporal cortex, there were only 300 

significant differences observed in the acute SCI group, such as Glu4 (p=0.029), GABA3 (p=0.035), 301 

Asp3 (p=0.004), Glu3 (p=0.016), Glx3 (p=0.022) and Glx2 (p=0.026), and only Glu4 (p=0.043) in the 302 

temporal cortex dramatically changed in the chronic SCI group (Fig. 5B). 303 

Compared with the acute SCI treatment, THA had more fractional 13C enrichment in different 304 

types of metabolites in the chronic SCI group, such as Glu4 (p=0.005), GABA4 (p=0.005), Asp3 305 

(p=0.001), GABA3 (p=0.033), Glx3 (p=0.018), Glx2 (p=0.011) and Ala3 (p=0.01). However, only Glu4 306 

(p=0.047) and Gln4 (p=0.047) were decreased in the acute SCI group (Fig. 6A). The enrichments of 307 

Glu4 and Gln4 were significantly decreased in the hippocampus in both groups (Fig. 6B). 308 

 309 

Discussion 310 

SCI is defined as damage to the spinal cord which temporarily or permanently causes changes in 311 

its structure and function, and the structural dysfunction can induce the changes of metabolic activity 312 

in the central nervous system. The cerebral regional effects on the metabolic information are also 313 

known to be closely associated with changes in the cerebral structure and function. 314 

Metabolite concentrations and SCI 315 

Alternations of metabolic information have been used as biological markers for more widespread 316 

physiological changes in the brain and SCI site. Recent studies have described metabolic changes in 317 

cortical activation during sensory and/or motor tasks in cervical myelopathy and patients with SCI (7, 318 

32). It has been shown that the levels of NAA (N-acetyl-aspartic acid), Cr (Creatine), Ins and Glu were 319 

increased in the thalamus/striatum of rats after SCI (33). However, another study reported that NAA 320 

and GABA levels were reduced in the thalamus of SCI patients with neuropathic pain compared to 321 
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those without pain and healthy controls (34). The current study also focused on examining the 322 

metabolite changes in different brain regions after SCI. However, there were few changes in metabolic 323 

concentrations in most brain regions which is not consistent with former findings. Compared with 324 

previous work, the current 1H-NMR method used has much higher signal to noise value than the in 325 

vivo MRS approach (33, 34). Furthermore, the tissue volume detected by the in vivo MRS method is 326 

always standard cuboid or square shapes, which is not consistent with the real shape of the brain region. 327 

In this study, the cerebral regional tissues were dissected and the metabolites extracted and measured 328 

using the 1H-NMR method which is more accurate compared to the in vivo method. 329 

 330 

Metabolic kinetics and SCI 331 

In general, the metabolic kinetics in most brain regions were significantly decreased in both acute 332 

and chronic groups. Thus, SCI was observed to exert significant effects on the TCA cycle, which 333 

mainly occurs in mitochondria, and generates ATP and metabolites for survival and growth (35). 334 

Mitochondria dysfunction in the brain always occurred during acute SCI, followed by the 335 

inflammatory response and ER stress aroused in the subacute phase (36), which plays a key role in the 336 

development of secondary pathophysiology after contusion SCI (37). The results highlight an acute 337 

and chronic deficit in mitochondrial bioenergetics associated with SCI that may lead to a novel 338 

approach for neural restoration after SCI. 339 

With different methods targeting mitochondria dysfunction, multiple groups have reported that 340 

this yields neuroprotection, tissue sparing, and functional recovery (38, 39). Mitochondrial 341 

transplantation is emerging as a potential therapeutic to maintain mitochondrial function after injury, 342 

consequently improving chronic functional outcome (40). Although this therapy is relatively new, 343 
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mitochondrial transplantation is effective in promoting recovery after ischemic injury to cardiac tissue 344 

(41). Many pharmacological agents that have proven beneficial for the treatment of SCI in vivo to 345 

some extent affect mitochondria or mitochondrial function (39). For example, the antibiotic 346 

minocycline was found to have neuroprotective effects and induced behavioral and cellular recovery 347 

after SCI in rats (42). NACA treatment significantly maintained acute mitochondrial bioenergetics and 348 

normalized GSH levels following SCI, and the prolonged delivery resulted in significant tissue sparing 349 

and improved recovery of hindlimb function (43). 350 

 351 

Regional effects and SCI 352 

The metabolic information, required to determine metabolic fluxes, commonly vary with cerebral 353 

regions as shown in the human (44), rat (45) and mouse (46) brains. Both the cerebral cortex and deep 354 

brain regions have their own variation characteristics after SCI. Comparisons of metabolic enrichment 355 

in the cerebral cortex, thalamus and hippocampus revealed substantial and highly significant regional 356 

variations (Fig. 5 and 6). 357 

In previous studies, the cerebral cortex was selected as a whole region in order to compare 358 

regional changes in metabolite concentrations (45). However, the regional cerebral effects on 359 

metabolic information in the brain cortex after SCI have been little studied. The present study revealed 360 

changes in different brain cortices and showed distinct variations of metabolic kinetics in the cortex. 361 

The frontal cortex showed that the 13C enrichment in neurotransmitters were markedly decreased in 362 

both chronic and acute groups. However, the impact of SCI on the TC (Fig. 5B) and OC (Fig. S1B) 363 

were mainly significantly decreased in the acute group (Fig. 5), and the alterations were mostly 364 

recovered after long-term recovery. A greater understanding of how sensory-motor function reorganize, 365 
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both spontaneously after injury and in response to therapeutic interventions, is necessary in order to 366 

develop repair strategies that maximize function and are readily translatable to clinical practice. It has 367 

recently been shown that, in humans, physiotherapy can improve neurocognitive deficits associated 368 

with SCI (47). From the finding in the present study, it could be proposed that metabolic changes in 369 

cortical regions (sensorimotor) reasonably overlap with the ones positively affected by physiotherapy 370 

in humans. Thus, the present study offers an animal-based neurophysiological explanation of a 371 

behavioral effect observed in humans. Furthermore, this study also provides the neurophysiology-372 

based understanding for designing brain–machine interfaces that could restore the lost motor function 373 

for improving rehabilitation (48).  374 

The reorganization observed at the cortical level could also occur at the subcortical level (49). 375 

Nonetheless, subcortical reorganization could in principle occur either in the thalamus (50) or 376 

brainstem (51). The thalamus plays a central role in modulating the selection, execution, modification 377 

of motor programs, nociception and almost all sensory modalities (52). The changes after SCI lead to 378 

the reorganization of the thalamus (53). The present study revealed changes in the thalamus that 379 

showed a higher TCA cycle flux compared with the hippocampus, which suggests distinct kinetics in 380 

the rat. The 13C enrichment amino acids in the thalamus mainly decreased in the chronic group, while 381 

only Glu4 and Gln4 were significantly decreased in the acute group, which might indicate that SCI in 382 

rats could produce lasting deficits in thalamus metabolism.  383 

 384 

Neuronal types and SCI 385 

The impact of SCI on excitatory transmitters (Glu) was greater than on inhibitory 386 

neurotransmitters (GABA) in most brain regions, especially for the acute SCI group (Cerebral 387 



19 
 

alterations -Fig. 5, 6 and S1: 9 regions for Glu4 and 2 regions for GABA2). Glutamate and glutamine 388 

are relatively abundant amino acids in the brain that are critical for neuronal function (54), and they 389 

were involved in the regulation of brain energy metabolism (18). A dysfunction in the homeostasis, 390 

recycling, and metabolism of glutamate also participates in the course of many chronic 391 

neurodegenerative diseases (18). Alteration of this cyclic nature of Glu and Gln has been shown to 392 

play an important role in the regulation of various neurological disorders, including epilepsy, multiple 393 

sclerosis, traumatic brain injury, schizophrenia, and brain tumors (55).  394 

Neuropathic pain after SCI was also reported to be always associated with altered thalamic 395 

anatomy, biochemistry, and activity, which may result in disturbed thalamocortical circuits (34). The 396 

glutamatergic metabolism, glial proliferation, glial hypertrophy, or activation might be factors 397 

contributing to intense neuropathic pain after SCI (34). There is no doubt that unbalanced metabolism 398 

of neurotransmitters may be involved in the process of neuropathic pain. Specifically, it has been 399 

shown that neuropathic pain after SCI is associated with changes in thalamic neurons, which 400 

subsequently may make these neurons hyperexcitable, and as such, may act as a pain generator or 401 

amplifier (56). Hyperexcitability also plays a role in the genesis of multi-sensory symptoms after SCI, 402 

this might either be a common phenomenon across different sensory cortices, or one might postulate 403 

hyperexcitability within a structure with sensory input to the thalamus. Thus, the current study 404 

speculates that the glutamatergic activity could be related to neuropathic pain caused by SCI, which 405 

could provide an avenue for the clinical therapy of SCI. 406 

 407 

Conclusion 408 

In this report, the metabolite levels were almost similar in every cerebral region during the 409 
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different stages of SCI, but the metabolic kinetics (13C fractional enrichment in different carbon 410 

positions of metabolites) were significantly lower in most regions, especially the frontal cortex, 411 

parietal cortex, hippocampus, thalamus, and hypothalamus in both acute and chronic SCI groups. After 412 

long-term recovery, some metabolic kinetics were recovered, especially in the temporal cortex, 413 

occipital cortex and medulla. Furthermore, the impact of SCI on excitatory transmitters (Glu) was 414 

greater than on inhibitory neurotransmitters (GABA) in most brain regions, especially for the acute 415 

SCI group. The changes in metabolic kinetics revealed that the alteration in metabolism and 416 

neurotransmission in different brain regions could present evidence for the alternation of brain glucose 417 

oxidation after SCI. Therefore, SCI significantly influenced the cerebral function, especially for acute 418 

intervention. 419 
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Figure legends: 628 

Fig. 1: Assessment of motor recovery on chronic SCI rats (n=12 for every group) assessed by BBB 629 

scores over four weeks. Note: The scores indicate that the chronic SCI group showed significant 630 

improvement over the Sham group (p=0.0071). Statistical analysis was performed with one-way 631 

ANOVA involving multiple comparisons, **p＜0.01; Different lowercases mean there was significant 632 

difference among different period comparisons in the chronic SCI treatment. 633 

 634 

Fig. 2: HE and Nissl staining of the spinal cord (horizontal and transverse sections) after SCI. 635 

 636 

Fig. 3: NMR spectra for total metabolites (12C+13C, upper) and 13C related metabolites (2*13C, lower) 637 

from the POCE (1H observed/13C edited) NMR spectra for the frontal cortex. Note: subscript: proton 638 

signal connected with the 13C position in the metabolites; Asp: Aspartate; Gln: glutamine; Glu: 639 

glutamate; Glx: glutamine + glutamate; GABA: γ-aminobutyric acid; Cre: Creatine; NAA: N-640 

acetylaspartate. 641 

 642 

Fig. 4: The relative concentrations of metabolites in 11 different brain regions for four different groups 643 

(Sham (Acute):12; Acute SCI: 11; Sham (Chronic): 10; and Chronic SCI: 12). Note: (A): Glutamate, 644 

(B): GABA, (C): Aspartic acid; Values represent mean ± SEM; *p＜0.05, **p＜0.01. 645 

 646 

Fig. 5: The 13C fractional enrichments in different kinds of metabolites from [1-13C] glucose in the 647 

frontal cortex (A) and temporal cortex (B) for four different groups. Note: Values represent 648 

mean±SEM.*p＜0.05, **p＜0.01; C2-C4: proton signals connected with the related 13C positions (2-649 

4) in the metabolites. 650 

 651 

Fig. 6: The 13C fractional enrichments in different kinds of metabolites from [1-13C] glucose in the 652 

thalamus (A) and hippocampus (B) for four different groups. Note: Values represent mean ± SEM.*p653 

＜0.05, **p＜0.01; C2-C4: proton signals connected with the related 13C positions (2-4) in the 654 

metabolites. 655 


