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Abstract—Persistent Scatterer Interferometry (PSI) is an 

Interferometric Synthetic Aperture Radar (InSAR) technique 

based on a multi-temporal interferogram analysis of SAR 

images. The aim of the technique is to extract long-term high 

phase stability benchmarks of coherent point targets, namely 

Persistent Scatterers (PS). In the last decades, several 

approaches have been developed to obtain PSI point targets, 

proving their viability for applications to transport 

infrastructure monitoring and surveillance. However, SAR 

satellites can only detect displacements in the Line-of-Sight 

(LoS), with reference to the specific orbit-related incident angle. 

This work proposes a novel geo-statistical approach to ease post-

processing of large datasets of PSs resulting from the application 

of the PSI algorithms over an area of interest. The approach 

aims at correcting the component of the displacement collected 

from the acquisition geometry of the sensor. 

Keywords—Persistent Scatterers Interferometry (PSI), 

Transport Infrastructure Maintenance, Acquisition geometry, 
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(Heading 1) 

I. INTRODUCTION  

Persistent Scatterer Interferometry (PSI) is an 
Interferometric Synthetic Aperture Radar (InSAR) technique 
based on a multi-temporal interferogram analysis of SAR 
images, use to extract long-term high phase stability 
benchmarks of coherent PS point targets, namely Permanent 
Scatterers (PS) [1]. 

A major advantage of the PSI techniques is that SAR data 
can be acquired in daytime and nighttime, since they are 
independent from weather conditions and variations in 
lighting conditions. This is different from optical satellite 
sensors, that strictly require sunlight for data collection 
purposes. As a result of this, new datasets are available at each 
satellite orbit overpassing the same area. In the past few years, 
several approaches have been developed to obtain these PSI 
point targets. Among the others, PSInSAR™ [1,2,3], the 
SqueeSAR [4] and Small Baseline Subset (SBAS [5, 6]) 
techniques, have proven to work effectively for transport 
infrastructure monitoring and surveillance. However, SAR 
satellites can only detect displacements in the Line-of-Sight, 
with reference to the specific orbit-related incident angle. This 
work aims at provide a novel geo-statistical approach to 
efficiently post-process large amounts of PSs resulting from 

the application of the PSI algorithms over an area of interest, 
in order to correct the component of the displacement deriving 
from the acquisition geometry of the sensor. 

II. PSI FOR TRANSPORT INFRASTRUCTURE MONITORING 

The working framework of the PSI techniques relies on a 
statistical analysis of the signals emitted by the on-satellite 
sensor and back-scattered by a network of coherent targets on 
the ground, i.e., the Permanent Scatterers (PS). This approach 
allows to estimate the displacements occurred between 
different acquisitions by separation between the phase shift 
related to the ground motions and the phase component due to 
the atmosphere, the topography and the signal noise 
contributions [1,7].  

An advantage of these techniques is the relatively lighter 
data-processing required for the assessment of displacements 
and the detection of critical areas, as opposed to the higher 
computational load needed in other approaches [1,2]. As a 
consequence, the PSI   technique sets as an ideal technique in 
monitoring transport infrastructure, since the high density of 
radar stable targets allows for highly accurate measurements. 
This is more evident in rural environment where roads, 
railways and runways can typically generate numerous PSs. 
Several applications of PSI related to the transport 
infrastructure monitoring can be found in the literature, such 
as [8-15], confirming its applicability to this area of 
endeavour. 

Nowadays, various different in-situ technologies for 
subsidence and displacement mapping are available (e.g., GPS 
[16], levelling [17], strain gauges [18], laser scanner, [19]). 
However, their application is generally resource-consuming, 
as it often requires closure of the infrastructure to traffic and 
the presence of experienced surveyors on-site. The use of 
satellite SAR imagery allows to overcome these limitations, 
as measurements over large areas and, under suitable 
conditions, spatially dense information on slow ground-
surface deformations are possible. In addition, the PSI 
technique provides a high accuracy, ranging from 1 to 3 mm, 
on single measurements for each SAR acquisition in regard to 
the Line-of-Sight (LOS) deformation rate [1]. 

III. PROBLEM STATEMENT 

The acquisition of SAR satellite-images occurs along two 
different polar-orbits, respectively referred to as Ascending, 



i.e. if the satellite moves in a South-North direction, and 
Descending, i.e., if the satellite moves in a North–South 
direction . According to the acquisition orbit (i.e. the 
geometry), the Displacements are measured along a unit 
vector co-directional to the satellite, named LOS. Based on the 
specific orbit and position of the area of interest, different 
incidence angles of the signal on the ground can be observed. 
(Fig.1) 

 

 

Fig.1 SAR data acquisition along an Ascending and Descending orbit 

It is worth noting that the displacements detected in 
correspondence of a PS are 1D measurements. This involves 
that displacement values are defined as the projection of the 
3D component of the actual displacement vector on the 
satellite LOS direction.  

 

Fig. 2. Satellite acquisition geometry: look direction and angle between 
the azimuth and the north direction, δ, for (a) ascending and (b) descending 
modes; (c) local incidence angle, θ. 

As a consequence, no-phase variation is detected in case 
the radar target is affected by a displacement along the 
direction perpendicular to the LOS. Furthermore, it should be 
noted that no motion components can be detected by the SAR 
systems along the North-South direction.  This is due to the 
fact that these components do not create a significant range 
variation, due to the satellite orbits almost parallel to the Earth 
meridians.   

The use of a single SAR image in an acquisition geometry 
does not allow to discriminate between horizontal or vertical 
movements, as it only defines the displacement on the LoS 
direction. However, if PS data are available for both 
Ascending and Descending acquisition geometries, it is 
possible to estimate the two components of the real 
displacement vector. To this effect, a specific processing 
algorithm is presented in the section IV of this paper. 

IV. METHODOLOGY 

Let us consider a Cartesian reference system (x, y, z), where 

the three reference directions are parallel to the Easting (x), 

the Northing (y), and the vertical direction(z), respectively. If 

the PS, referred to the same structure, are identified in both 

descending and ascending data-sets, the PS technique can 

provide two components of the 3D displacement vector 

affecting this radar target. The PS average velocity-vector can 

be written as the following equation: 

  
where VV, VE, and VN are the components of the velocity 

vector along vertical, East-West, and North-South direction 

respectively, and 𝑠𝑥 ⃗⃗⃗⃗   𝑠𝑦⃗⃗  ⃗  𝑠𝑧⃗⃗  ⃗ are the versors of the Cartesian 

system. 

In Fig. 3, the Vertical (VV) and Horizontal (VE) components 

in East-West direction of the real-velocity vector (Vreal) is 

obtained by projecting the Ascending (VA) and Descending 

(VD) velocity values in the LoS direction, referred to the 

relevant acquisition geometries.  

Since both acquisition geometries are known, the following 

system of linear equation should be considered: 

 

 
where sx_asc, sy_asc, sz_asc, sx_desce, sy_desc, sz_desc are the 

direction cosines of the acquisition geometries (ascending 

and descending) and VA and VD are the projections of the 

velocity vectors along the two opposite lines of sight. 

Subsequently the number of unknowns (VV, VE and VN) in 

the system is greater than the number of equations, the full 3-

D vector cannot be estimated. 

 

However, the SAR radar is not sensitive to PS displacements 

in the N-S direction, since the satellite orbits are almost 

parallel to the Earth meridians. It is then a rational 

approximation to assume this component equal to zero and 

estimate the Easting and Vertical displacement components. 

Under the assumption of zero-displacements in the N-S 

direction, the satellite pointing parameters (i.e., the direction 

cosines), related to the incidence angle of the SAR sensor at 

the time of the acquisition, are known. 



 
 

Fig. 3. Satellite acquisition geometry 

If data acquired in both the acquisition geometries 

(Ascending and Descending) are available, this problem can 

be solved and the modulus of the average displacements 

velocity-vector, referring to the same PS radar target related 

to the horizontal (VE) and the vertical deformations (Vv), can 

be calculated by solving the following system of equations 

[20,21]:  

 (1) 
• VA and VD represent the velocity of deformation in 

Ascending and in Descending orbit, respectively; 

• VV and VE are the unknowns to be determined. These 
are the velocity in the vertical and horizontal (E-W) 
planes, respectively; 

• θa and θd are the incident angles (depending on the 

SAR mission) in Ascending and Descending orbit, 
respectively (Figure 2).  

The solution of this system requires every single 

measurement point to be recognized as a valid PS target from 

the satellite in both Ascending and Descending orbits, which 

is mostly unlikely to verify in reality. 

Within this framework, an innovative geo-statistical 

methodology is implemented to create a regular PS-grid out 

of the single acquisition geometry, with a fixed spacing in 

each direction. The grid generates a couple of Synthetic PS 

by a geo-statistical interpolation of the displacement values 

from Ascending and Descending acquisitions. To this effect, 

from now on the grid will be named as Synthetic-Interpolated 

Grid of Persistent Scatterers (SIG-PS). In particular, the geo-

statistical ordinary Kriging method was used and 

implemented for this purpose. [22,23] 

Kriging is one of the more flexible and accurate gridding 

methods due to the possibility to provide a representative map 

for different types of data-sets. It also can compensate for 

clustered data by giving less weight to the cluster in the 

overall prediction. Each grid node value is based on the 

known data-points neighbouring the node. Each data point is 

weighted by its distance away from the node and, 

consequently, points that are further from the node will be 

weighted less in the estimation of the node. To compute the 

Z value at a randomly given grid node A, the following 

equation is used [22,23]:  

 
 

Where ZA is the estimated value of grid node A, n is the 

number of neighbouring data values used in the estimation, 

Zi is the value at location i with weight, Wi. The value of 

weights will sum up to 1 to ensure that no bias is verified 

towards clustered data points. The weights are intended to 

summarise two important procedures in a spatial inference 

process: i) reflect the structural-proximity of samples to the 

estimation location; ii) -on parallel, they should have a 

desegregation effect, in order to avoid bias caused by 

potential sample clusters. 

 

Therefore, the proposed SIG-PS method allows to define 

for a couple of synthetic PS having the same coordinates for 

point of the grid, in order to solve the system of equations 

reported in Eq. (1) and to combine the information related to 

the orbit of acquisition. As a result of this, it is possible to 

perform a correction of the displacements measured in the 

LoS direction, in order to calculate the real vector 

displacement-Velocity (Vr).  

To elaborate, the SIG-PS was applied by adopting the 

following protocol (Fig. 4): 

 

I. A regular grid is created for each acquisition 

geometry by using the Geo-statistical Kriging Tool 

with the Surfer Software; 

II. at every point of the grid, the centroid value is 

interpolated from the targets included within a circle 

of radius equal to 10 m; 

III. a built-in Matlab code is used to solve the system of 

equations in (1), 

IV. as a result, the vertical (VV), and horizontal (VE) 

components of the actual displacement velocity 

vector can be obtained and represented by the same 

regular grid. 

 

 

 
 Fig. 4: Flow chart of the SIG-PS procedure used to calculate the   
components of the displacement velocity vector. 
 

V. CASE STUDY 

The methodology has been applied and tested over a airfield 

runway located in Italy, where the PSI data were acquired by 

the Sentinel 1 mission (“Data provided by the ESA: European 

Space Agency”) in the period from 2015 to 2019. The SAR 

imagery included both ascending and descending orbits, with 



47 Ascending and 49 Descending Single Look Complex 

(SLC)-Sentinel 1A SAR Products. 

 
Sentinel 1A –European Space Agency (ESA) 

Number of Images 47 Asc - 49 Desc 

Reference Period 04/2015–01/2019 

Frequency 5.4 GHz 

Ground-Range Resolution 

Azimuth Resolution 

5 m  

20 m  

TAB.1 – SAR Dataset characteristics 

  

The PSI data have been processed following the PSI-

nSAR (1,2) approach, using the Interferometric Stacking 

Module of the Software SARscape [24] integrated in the 

Software Envi, licensed within the framework of the ESA 

(European Space Agency)-approved project MOBI: 

“Monitoring Bridges and Infrastructures Networks” (EOhops 

proposal ID 52479). 

The results are reported in Fig. 5. The original set of PSs 

resulting from the processing of a single acquisition geometry 

data is shown in Fig.5a, whereas the result of the application 

of the SIG-PS method is reported in Fig. 5b. In this specific 

case, a 20 × 20 m regular grid was adopted. In Fig. 5b, the 

results of the ground-truth survey (i.e. levelling by means of 

a total station, represented by the larger dots in the figure) are 

reported together with the PS analysis, proving that the 

method works generally well. 

 

 
Fig 5 (a) processing of a single acquisition geometry data, (b) application of 

SIG-PS method 

 

It is worth noting that defining the grid size is a crucial 

task for making the algorithm effective. A low amount of 

points within each cell should be avoided in order to ensure 

the statistical significance of the dataset. On the other hand, 

widening the cell size involves to consider PSs quite distant 

each to one another, thereby increasing the likelihood to 

disregard some subsidence effects. As a consequence, using 

a larger grid mesh could lead to merging displacements that 

should potentially be considered as independent from a 

geological point of view (e.g., subsidence affecting two 

different river basins could be mapped as a unique 

occurrence). 

 

VI. CONCLUSION 

This work presents an innovative geo-statistical 
methodology for the calculation of the vertical and horizontal 
components of the displacement velocity within a PSI 
analysis. The methodology, named as Synthetic-Interpolated 
Grid of Persistent Scatterers SIG-PS, is based on the 
development of a regular synthetic interpolated PS grid out of 
the single acquisition geometry data-base. This allows to pair 
interpolated values of displacement velocity having the same 
geographical coordinates but relative to different acquisition 
orbits. 

As a result, it is possible to solve the theoretical problem 
discussed in Section IV, in order to calculate the real 
displacement velocity vector in vertical (VV) and E-W (VE) 
directions, starting from the two vectors observed in the LoS 
direction of the two acquisition geometries (VA, VD). Once the 
vertical and horizontal components of the deformation vector 
are known (positive velocities mean uplift or eastward 
deformations; negative velocities mean subsidence or 
westward deformations), it is possible to calculate the main 
direction of ground deformation (Vr), so as to discriminate 
areas affected by subsidence or by landslides. 

The methodology has been finally tested in a real scenario 
represented by an airfield runway located in Italy. The 
preliminary results have proven the viability of the method to 
evaluate the actual deformation pattern of the area, as 
demonstrated by way of comparison with the ground-truth 
survey. 
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