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Abstract: PBX3 is a homeodomain-containing transcription factor of the pre-B cell leukemia (PBX) 
family, members of which have extensive roles in early development and some adult processes. A 
number of features distinguish PBX3 from other PBX proteins, including the ability to form specific 
and stable interactions with DNA in the absence of cofactors. PBX3 has frequently been reported as 
having a role in the development and maintenance of a malignant phenotype, and high levels of 
PBX3 tumor expression have been linked to shorter overall survival in cancer. In this review we 
consider the similarities and differences in the function of PBX3 in different cancer types and draw 
together the core signaling pathways involved to help provide a better insight into its potential as a 
therapeutic target. 
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1. Introduction 

The pre-B cell leukemia (PBX) family is a group of homeodomain-containing transcription 
factors and homologues of the Drosophila Extradenticle gene [1]. Humans have 4 PBX homologues, 
PBX1–4, all of which encode a protein that contains a homeodomain DNA-binding region and a 
protein interaction domain (PBC) that facilities interaction with PBX cofactors, including Myeloid 
Ecotropic Viral Integration Site 1 Homolog (MEIS) and HOX proteins [1]. PBX3 differs from other 
PBX proteins, as it can form a stable interaction with DNA as a monomer or homodimer, with a 
consensus binding sequence of TGATTGATTTGAT [2]. The other PBX paralogues bind to only a 
subset of this, TGATTTAT, and the interaction requires binding of a HOX protein of the 
Annetenapedia family (i.e., HOX paralogues 1-9) [2]. 

PBX proteins were initially and most extensively characterized for their role in early 
development, especially anteroposterior patterning of the main body axis and the limbs through 
forming heterodimers with HOX proteins, which are themselves expressed in a spatial order along 
this axis [3]. Many of these studies identify either PBX1 or PBX2 as HOX-binding partners, and PBX3 
[4], which was characterized relatively late, has had very few specific developmental roles ascribed 
to it. The most notable of these is a role in maintaining the undifferentiated state of embryonic stem 
cells [5], although it also has a potential role in cardiac development and congenital cardiac defects 
in humans [6]. To date, PBX3 is more frequently associated with cancer, and has been reported to be 
overexpressed in many solid tumors, as well as in several hematological malignancies, where it has a 
role in promoting cell survival, invasion, and proliferation. Here, we review the molecular 
mechanisms underlying these oncogenic functions in different cancers, and consider the potential of 
PBX3 as a therapeutic target. 
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2. Transcriptional and Post-transcriptional Regulation of PBX3 

PBX genes, including PBX3, were originally shown to be regulated by retinoic acid in P19 
embryonic stem cells [7], and a subsequent study revealed that this is dependent on retinoic acid 
receptor alpha (RARα) and occurs both at the level of transcription (although indirectly), and at the 
protein level, as the stability of PBX proteins is significantly increased (from approximately 6 hours 
to 12 hours) after treatment [8]. While this mode of regulation seems to be more relevant to early 
developmental processes [9], a number of other mechanisms have emerged as potential, specific 
regulators of PBX3 in the context of cancer. These include histone methylation in promoter and 
enhancer regions of PBX3 [10,11], as well as DNA methylation as revealed by a significant increase in 
PBX hypomethylation in CBFP-MYH11-rearranged acute myeloid leukemia (AML) [12]. There is 
also evidence for the regulation of PBX3 expression by androgen signaling in prostate cancer [13,14]. 
However, by far, the most frequently described mechanism of PBX3 regulation is the 
post-transcriptional inhibition through microRNAs (miRs). These are small (around 22 bases) 
non-coding RNA transcripts that can post-transcriptionally regulate gene expression by forming 
duplexes with mRNAs to which they are complementary. The formation of such a duplex can result 
in RNA cleavage, destabilization of the mRNA through shortening of the polyA tail, and/or direct 
inhibition of translation. It is now recognized that miRs play a significant role in regulating gene 
expression, with around 1900 miRs having been identified in the human genome [15]. Furthermore, 
miR-mediated regulation of gene expression seems to be of particular relevance in cancer, as many 
of the miRs identified to date have tumor suppressor functions [16]. 

The first report of a PBX3-specific miR was published in 2011, when Ramberg et al. 
demonstrated that the miR-let-7d repressed PBX3 expression in prostate cancer [14], and this was 
followed shortly after by a report that the closely related miR-let-7c was complementary to the 
3’UTR of PBX3 and could directly repress its expression in colorectal cancer [17], as could miR-let-7b 
in glioma [18]. Subsequently, PBX3 expression was also shown to be reduced by miR-181 in AML 
[19], miR-129-5p in pancreatic cancer [20], miR-495 in AML [21] and melanoma [22], miR-200b in 
breast cancer [23], miR-200b, miR-222, and miR-424 in hepatocellular carcinoma (HCC) [24], 
miR-320a in multiple myeloma [25], gastric cancer [26], and cancer-associated fibroblasts (CAFs) 
associated with HCC [27], miR-33a-3p in HCC [28], miR-497 in multiple myeloma [29], miR-144-3p 
in gastric cancer [30], miR-98 in glioma [31], miR-144 in lung cancer [32] and HCC [33], miR-302a in 
HCC [34], and miR-526b in cervical cancer [35]. In addition, within the context of early development, 
miR-320 was shown to maintain the undifferentiated state in chick blastodermal cells through 
repression of PBX3 [5]. All of these miRs were shown to bind to the 3’UTR of PBX3, along with a 
number of other target transcripts in some cases (Table 1). 

Acute Myeloid Leukemia 

The role of PBX3 has been most extensively investigated in AML. Along with a number of 
homeobox-containing transcription factors, PBX3 has been shown to be an oncogene in this 
malignancy. Forced overexpression of PBX3 along with its cofactor MEIS can transform normal 
hematopoietic stem cells in mice, leading to the formation of AML with a latency period similar to 
that observed for MLL-AF9, the most commonly observed oncogenic gene fusion, and a 
corresponding upregulation of HOXA cluster genes [36]. This concurs with the findings of more 
recent studies identifying PBX3 as a key transcriptional regulator of HOXA genes [37], and promoter 
of cell proliferation and resistance to chemotherapeutic agents [38]. PBX3 knockdown in both 
OCI-AML3 and U937 cells was shown to dramatically increase their sensitivity to cytarabine, and to 
a lesser extent mylotarg (a drug-antibody conjugate targeting CD33 [39]) [38]]. A similar approach 
using a mouse model of leukemia development revealed that this oncogenic role was specific to 
PBX3, as neither PBX1 nor PBX2 could substitute for it in forced expression experiments [40]]. PBX3 
binding to MEIS was shown to significantly increase the stability of the latter as, in the absence of 
PBX3, MEIS was rapidly degraded in a proteasome-dependent manner [41]. 

MEIS and PBX3 are necessary for the formation of stable high-affinity 
DNA/HOXA9/PBX3/MEIS complexes that in turn activate the transcription of key downstream 
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targets, including FMS-like tyrosine kinase 3 (Flt3) and Tribbles 2 (Trib2) [41]. Both Flt3 and Trib2 
have been characterized as oncogenes in AML, as well as in many solid malignancies. Flt3 is a 
tyrosine kinase receptor kinase that promotes proliferation and survival of hematopoietic stem cells 
and is one of the most frequently mutated genes in cytogenetically normal AML, with activating 
mutations being sufficient to transform 32D cells [42]. Trib2 is a pseudokinase with a very wide 
interactome, including components of pro-oncogenic signaling pathways, such as AKT [43]. High 
levels of Trib2 expression in AML are associated with drug resistance due to upregulation of AKT 
signaling and a consequent increase in cell proliferation, as well as increased cell survival mediated 
in part by elevated Bcl-2 expression [44]. 

Other studies have also supported a pro-oncogenic role of PBX3 in AML. For example, in 
NUP98-HOXD13-transformed AML, PBX3 was found to be necessary for the continued proliferation 
and survival of malignant cells [45], and suppression of PBX3 transcription through inhibition of the 
H3K79 methylase blocked the proliferation of NPM1-driven leukemia [11]. 

As discussed above, two miRs that target PBX3 at the post-transcriptional level both have 
tumor suppressor functions in AML [19,21]. miR-181 was shown to block the proliferation and 
survival of AML cells both in vitro and in vivo, with a significantly longer latency in a mouse model 
of this disease. Furthermore, effects of the elevated miR-181 expression could be partially rescued 
through PBX3 overexpression [19]. Likewise, miR-495 can also directly target PBX3 through binding 
to the 3’UTR of the transcript, and in doing so inhibits cell proliferation—an effect that can also be 
blocked by higher expression of PBX3 [21]. 

These in vivo and in vitro findings are further supported by clinical observations from multiple 
datasets that elevated PBX3 expression in patients with NMP1-mutated AML is associated with 
shorter overall survival [46]. 

3. Gastric Cancer 

Elevated PBX3 tumor expression has been found to be associated with a number of key clinical 
and pathological indicators associated with a poor outcome in gastric cancer, including invasion 
depth, and the stage and grad e of the tumor [47,48], and, correspondingly, tumor expression of 
miR-144-3p, which blocks PBX3 expression at the post-transcriptional level, is negatively correlated 
with tumor stage, invasion depth, and nodal metastasis [30]. More recently, miR-320a was also 
shown to have a tumor-suppressive role in gastric cancer through targeting PBX3, and that the 
expression of this miR in gastric cancer was repressed in part by methylation of its promoter [26]. 

In vitro studies have indicated a role for PBX3 in promoting epithelial-to-mesenchymal 
transition (EMT) [30,49], which in turn enables invasion and metastasis through a reduction in 
cellular adherence and an increase in migration. This may be partly dependent on activation of the 
AKT pathway, as there was a significant increase in phosphorylated AKT (Ser473) in the cells 
overexpressing PBX3 [49]. The overexpression of PBX3 also resulted in an increase in MMP9 activity 
[49], a key protease involved in metastasis [50], as well as an increase in the ability of gastric cancer 
cells to promote tubule formation by HUVEC cells, indicating an increase in pro-angiogenic 
signaling [49]. 

4. Colorectal Cancer 

The first indication of a role of PBX3 in colorectal cancer was the finding that lower tumor 
expression of the miR-let-7c was associated with increased metastases, increased grade, and shorter 
survival. The same study demonstrated that miR-let-7c targets PBX3, as well as K-Ras and MMP11, 
in the colorectal cancer-derived cell line LoVo [17]. Overexpression of PBX3 without its 
3’UTR-let-7c-binding sequence was able to rescue cells from tumor suppressive effects of this miR 
[17]. These findings are in agreement with those of the study looking at PBX3 RNA expression in 
colorectal tumors, in which high expression levels were found to be significantly associated with 
lymph node invasion, metastasis, advanced pathological stage, and shorter overall survival [51]. A 
more recent study revealed that PBX3 is highly expressed in the cells characterized by high levels of 
the WNT signaling activity at the edge of colorectal tumors, and that PBX3 expression in cells is 
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dependent on the WNT signaling as demonstrated by knockdown of the key mediator of the WNT 
pathway, beta-catenin. PBX3 was also shown to be necessary for EMT in colorectal cancer cells, and 
is upregulated by the SNAIL and Zeb1 EMT-associated transcription factors, possibly through an 
indirect mechanism involving suppression of the PBX3-targeting miR-200c [52]. 

5. Liver Cancer 

Tumor-initiating cells (TICs) are a subset of cancer cells that have exceptionally high 
tumorigenicity and often also display resistance to chemotherapy and radiotherapy, and are thus of 
particular importance as targets in cancer [53]. In hepatic cellular carcinoma (HCC), a subpopulation 
of cells that express voltage-gated calcium channel α2δ1 have been shown to have TIC-like 
properties, and also to express PBX3 at a high level [24]. Repression of PBX3 activity by 4 miRs 
(miR-let-7c, miR-200b, miR-222, miR-424) in non-TICs is sufficient to block the TIC phenotype, and 
PBX3 was shown to activate the transcription of α2δ1, as well as other genes involved in the 
maintenance of the stem-cell phonotype, such as SOX2 and SALL2 [24]. A subsequent study showed 
that another miR, miR-33a-3p, also blocks PBX3 expression in HCC cells and results in a reduction in 
invasion and metastasis, which concurs with clinical data for primary HCC demonstrating that low 
levels of miR-33a-3p expression are associated with a greater risk of metastasis and shorter overall 
survival [28]. There is also evidence that an additional miR, miR-320a, can be transferred to HCC 
cells from neighboring cancer-associated fibroblasts (CAFs) via exosomes. Once in HCC cells, 
miR-320a can block proliferation and migration through inhibition of EMT, as well as 
cyclin-dependent kinase 2 (CDK2) and MMP2 [27], and (from a later study) MAP3K2 [34]. 

6. Glioma 

Similar findings to those described for other cancers have also been obtained for glioma. 
Silencing PBX3 in glioma cells has been shown to reduce proliferation both in vitro and in vivo [54], 
and targeting of PBX3 by miR-98 reduced invasion and migration of glioma cells in an orthotopic 
model [18]. Cell proliferation could be blocked and apoptosis induced through miR-320, which 
targets PBX3 and consequently Raf1/MAPK1 pathway activation [55]. PBX3 also promotes a 
mesenchymal phenotype in glioma cells through a positive feedback pathway involving MEK, 
ERK1/2, LIN28, and miR-let-7b. Ectopic expression of PBX3 activated MEK/ERK1/2 signaling, 
upregulating a potent oncogenic transcription factor that promotes cell proliferation and survival, 
and can also immortalize cells through increasing telomerase activity [56]. cMyc can also activate 
LIN28 expression, which in turn inhibits miR-let-7b transcription, de-repressing genes that promote 
invasion such as IL-6 and HMGA2 [18]. To complete this cycle, miR-let-7b can post-transcriptionally 
repress PBX3, thus PBX3 expression can begin a positive feedback, increasing its own expression in 
glioma cells [18]. 

7. Other Cancers 

PBX3 expression has been reported in a number of other solid malignancies and in general is 
associated with a poor prognosis. This includes prostate cancer, in which PBX3 is expressed at 
higher levels in malignant compared to benign diseases, with the androgen-regulated miR inhibitor 
of PBX3, miR-let-7d, showing the opposite trend [14]. Notably, PBX3 seems to increase in expression 
within prostate glands that are adapting to androgen deprivation, which would correspond to 
reduced expression of miR-let-7d [13]. 

In cervical cancer, PBX3 overexpression promotes proliferation through the AKT pathway, and 
high levels of expression in primary tumors are associated with a poor prognosis [57], and, as with 
the other cancers described above, PBX3 expression is suppressed by an miR, miR-526b, preventing 
cells from undergoing EMT [35]. 

Other malignances in which miRs have been shown to promote apoptosis and block 
proliferation through targeting PBX3 are multiple myeloma [25,29], melanoma [22], breast cancer 
[23], pancreatic cancer [20], and lung cancer [32]. 
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8. The EWSR1-PBX3 Translocation 

EWS RNA-binding protein 1 (EWSR1) encodes a multifunctional protein involved in a range of 
cellular processes, including cell signaling, RNA processing and transport, and gene expression. It is 
frequently involved in oncogenic translocations, best characterized in Ewing’s sarcoma, and it is 
usually the transcriptional activation domain of EWSR1 that forms a chimera with the DNA-binding 
domain of the partner gene. EWSR1–PBX3 gene fusions have been identified in myoepithelial 
tumors of bone and soft tissue [58–60], and subsequently in retroperitoneal leiomyoma [59]. The 
majority of these fusions involve a break at exon 8 in EWSR1 and exon 5 of PBX3, but in all cases 
result in the transcriptional activator domain of EWSR1 fusing to the homeodomain of PBX3. 
Intriguingly, although EWSR1–PBX3 is a relatively rare translocation even within the chimeric 
EWSR1 family, it is very common in cutaneous syncytial myoepithelioma, although the reasons for 
this selectivity remain unclear [58]. 

9. PBX3-regulated Pathways in Cancer 

Based on the above, it is becoming clear that PBX3 interacts principally with the MAPK, AKT, 
and WNT signaling pathways (Figure 1). PBX3 was shown to increase signaling through MEK/ERK 
in several studies [18,57,58], although to date the only component of the pathway shown to be 
directly upregulated by PBX3 is the tyrosine kinase receptor Flt3 [41]. Activation of this pathway 
represents a positive feedback loop in which increased expression of the Myc transcription factor 
activates LIN28 expression, which in turn inhibits biogenesis of miR-let-7b, an miR that blocks PBX3 
expression post-transcriptionally [18]. PBX3 also increases signaling through the AKT pathway, and 
an increase in phosphorylated AKT has been demonstrated upon ectopic PBX3 expression [49], 
which may be the result, at least in part, of a PBX3-mediated increase in TRIP2 expression [41]. 
TRIP2 binds to AKT and promotes its phosphorylation at Ser473 [61]. PBX3 expression also increases 
in response to the signaling through the canonical WNT pathway via the activation of the Snail 
transcription factor [52]. Activation of PBX3 through these pathways increases EMT and hence 
invasion and metastasis (in part through increasing MMP9 [49], IL6, and HMGA-2 [18] expression) 
as well as cell survival and proliferation, and can also confer a TIC phenotype through upregulation 
of the SOX2 and SALL2 transcription factors and the voltage-gated calcium channel α2δ1 [24]. 
Hence, PBX3 is both a target and a regulator of the three key signaling pathways involved in 
formation and maintenance of the malignant phenotype, and consequently also interacts, at least 
indirectly, with multiple oncogenes. 
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Figure 1. Pre-B cell leukemia (PBX3) is a target and a regulator of multiple signaling pathways. These 
include the MEK/ERK pathway, and notably tyrosine kinase receptor Flt3. Activation of this 
pathway represents a positive feedback loop in which increased expression of the Myc transcription 
factor activates LIN28 expression, which in turn inhibits biogenesis of miR-let-7b, an miR that blocks 
PBX3 expression post-transcriptionally. PBX3 also increases signaling through the AKT pathway by 
activating expression of the AKT activator protein, TRIP2. In addition, PBX3 expression increases in 
response to the signaling through the canonical WNT pathway via the activation of the Snail 
transcription factor. Activation of PBX3 through these pathways increases epithelial-to-mesenchymal 
transition (EMT) and hence invasion and metastasis (in part through increasing MMP9, IL6, and 
HMGA-2 expression) as well as cell survival and proliferation, and can also confer a TIC phenotype 
through upregulation of the SOX2 and SALL2 transcription factors and voltage-gated calcium 
channel α2δ1. Dashed lines represent indirect pathways involving multiple steps and additional 
components. 

10. Targeting PBX3 

The clear role emerging for PBX3 as a promoter of cell survival, invasion, and metastasis in 
cancer makes it an attractive therapeutic target. However, conventionally it has been difficult to 
directly target transcription factors due to their intracellular location and their tendency to interact 
through large, hydrophobic surfaces. One approach to targeting PBX in general has been the use of 
cell-penetrating peptides that disrupt binding between PBX proteins and their HOX cofactors. These 
peptides have been shown to trigger apoptosis in a wide range of cancers [62]. However, this 
approach is not specific to PBX3. 

Other approaches have included indirect targeting at the level of transcription through altering 
methylation of enhancer and promoter regions. As described above, inhibition of DOT1L, a H3K79 
methyltransferase, reduced PBX3 expression in AML cells and induced apoptosis, although this 
might be an indirect mechanism through HOXA9 [11]. 

It may also be possible to exploit the extensive network of miRs that target PBX3. Synthetic 
miRs (also referred to as miR mimics) are currently in clinical trials for cardiovascular diseases [63], 
although for cancer only two miR mimics have entered trials to date, and of these only TargomiR, 
which is a mimic of miR-16, is likely to progress beyond Phase I [64]. It may also be possible to 
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develop small molecule inhibitors of PBX3 that do not target cofactor or DNA binding, but instead 
target PBX3 for degradation in the proteasome using the E3-ligase targeting (PROTAC) technology 
[65]. 

11. Conclusions 

PBX3 is emerging as a functionally significant transcription factor in a range of cancers, and in 
the majority of these its expression is linked to aggressive disease and shorter overall survival. It is 
both a regulator of and regulated by the MEK/ERK, WNT, and AKT signaling pathways and 
supports an oncogenic phenotype by promoting EMT, stem-like properties, and survival and 
proliferation. Its regulation by multiple miRs that are in turn key tumor suppressors indicates that it 
could be an important target in cancer. 

Table 1. PBX3-targetting microRNAs (miRs) in cancer. AML, acute myeloid leukemia; HCC, 
hepatocellular carcinoma; lncRNA, long non-coding RNA; MAP3K2, mitogen-activated protein 
kinase kinase2; MM, multiple myeloma; MMP11, matrix metalloprotease 11; UTR, untranslated 
region. 

miR Cancers Binding/other targets/regulation Ref. 
miR-let-7d Prostate cancer Upregulated by androgen [14] 
miR-let-7c Colorectal cancer Binds 3’UTR, also targets MMP11 [17] 
miR-let-7b Glioma Binds 3’UTR [18] 
miR-181 AML Binds 3’UTR [19] 

miR-129-5p Pancreatic cancer Binds 3’UTR [20] 
miR-495 AML and melanoma Binds 3’UTR, also targets MEIS1 [21] 

miR-200b HCC and breast cancer Binds 3’UTR [23,24] 
miR-222 HCC Binds 3’UTR [24] 
miR-424 HCC Binds 3’UTR [24] 

miR-320a MM, gastric cancer, and HCC Binds 3’UTR [25–27] 
miR-33a-3p HCC Binds 3’UTR [28] 

miR-497 MM Binds 3’UTR [29] 
miR-144-3p Gastric cancer Binds 3’UTR [30] 

miR-98 Glioma Binds 3’UTR [31] 
miR-144 Lung cancer, HCC Binds 3’UTR, also binds the lncRNA UCA1 [32,33] 

miR-302a HCC Binds 3’UTR, also targets MAP3K2 [34] 
miR-526b Cervical cancer Binds 3’UTR [35] 
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